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Abstract: Machined surface quality in terms of residual stress and surface roughness has an important
influence on the performance of devices and components. In the present work, we elucidate the
formation mechanisms of residual stress and surface roughness of single crystalline cerium under
ultraprecision diamond cutting by means of molecular dynamics simulations. Influences of machining
parameters, such as the rake angle of a cutting tool, depth of cut, and crystal orientation of the
workpiece on the machined surface quality were also investigated. Simulation results revealed that
dislocation activity and lattice distortion are the two parallel factors that govern the formation of
both residual stress and surface roughness. It was found that both distributions of residual stress
and surface roughness of machined surface are significantly affected by machining parameters.
The optimum machining parameters for achieving high machined surface quality of cerium by
diamond cutting are revealed.
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1. Introduction

Cerium, as a lanthanide element with an atomic number of 58, is an important rare earth material.
Cerium has been widely used in many industrial and civil fields, and has high practical value and
research significance. Machined surface quality, in terms of residual stress and surface roughness,
is one of the most important factors for improving the performance and life cycle of cerium-based
components and parts. Thus, it is critical to improve machined surface quality of cerium by gaining
fundamental understanding of formation mechanisms of residual stress and surface roughness, as well
as their dependence on machining parameters. Ultraprecision diamond cutting is an important
mechanical machining technique for achieving high machined surface quality [1–3].

Considerable work has been carried out to investigate the machined surface quality in
diamond-cutting process. Tazehkandi et al. studied the cutting forces and surface roughness in
turning of Inconel 738 and presented the optimum condition [4]. Yao et al. investigated the influence of
cutting parameters on residual stress in cutting of TB6 [5]. Patrik et al. performed cutting experiments
of quenched steel with changing of inclination angle and cutting parameters, and found that the
main factors affecting the residual stress were the rake angle of the tool [6]. However, the literature
review showed that either experimental or theoretical work about the diamond cutting of cerium
has been rarely reported. The deformation behavior of cerium under diamond cutting is complex
for its unique chemical, physical, and mechanical properties. Cerium has multiple lattice structures
accompanied with rich paths of phase transformation [7–11]. It has been demonstrated that there are
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seven kinds of solid phases in cerium: γ (face centered-cubic, FCC), α (FCC), β (double hexagonal close
packed, DHCP), δ (body centered-cubic, BCC), α’ (C-type orthorhombic or the α-U structure), α” (C2/m
monoclinic) and ε (body centered tetragonal, BCT). The phase transformation from γ-Ce, which is
stable under normal temperature and pressure, to α-Ce at 8 kbar and 295 K is accompanied with a
large volume collapse of 20% [12–14]. The phase transformation-induced modification of the electronic
structure and bonding configuration in cerium inevitably has a strong impact on its deformation
behavior. In addition, cerium shows high plasticity, which may lead to undesired shaping flow under
mechanical processing [15]. In particular, while diamond cutting is a highly coupled process between
workpiece material and cutting tool, it is difficult to obtain high quality of machined surface of cerium
due to the above special features of cerium. Previous work demonstrated that although dislocation
slip is the dominant deformation mechanism of cerium under diamond cutting, there are trivial phase
transformations from γ-Ce to δ-Ce occurred in both the machined surface and the formed chip [16,17].

While experimental investigation of a machining process is limited by the resolution of the
machine tool and measuring appratus due to the ultrasmall materoval depth, theoretical investigation
could provide microscopic dynamic details of an ongoing machining process. Given the discrete
characteristics of material removal, conventional continuum mechanics theory cannot be applied
to the analysis of the nanometric cutting process due to the size limitation. Molecular dynamics
(MD) simulation has been demonstrated to be a powerful tool for studying various manufacturing
processes at the nanometer scale, as it can reveal various phenomena that are out of reach by traditional
approaches. In particular for mechanical machining processes, many researchers have adopted MD
simulations to study a number of issues that are challenging for traditional numerical simulations
or experimental approaches. Chavoshi et al. conducted an MD simulation of nanometric cutting on
silicon in specific combinations of crystal orientation and cutting direction using a diamond tool [18].
Li et al. reported that the minimum wear depth of single crystalline Cu(111) under nanoscratching
that is equivalent to the critical penetration depth at which plasticity initiates increases with probe
radius [19]. In addition, previous studies also widely investigated the effect of machining parameters
on machining processes, or the sensitivity of the established model in parameter selection [20,21].
However, there is limited work that investigated the formation mechanisms of residual stresses and
surface roughness generated in nanomachining. Therefore, it is necessary to understand the formation
mechanisms and distribution of residual stress and surface roughness in the diamond cutting with the
aid of MD simulations.

Experimental and theoretical work has demonstrated that machining parameters have a strong
impact on cutting processes. Xu et al. studied the influence of the hard particle on the surface
generation, plastic deformation, and processing forces by means of MD simulations in nanocutting
of aluminum [22]. Li et al. found that the plastic deformation for different scratching rates depends
on the competition of scratching force, workpiece temperature, and tool–workpiece contacting
time, which affect dislocation evolution [23]. Zhu et al. built a model to investigate the atomic
force microscope (AFM)-based nanometric cutting process of copper using a diamond tool [24].
The effects of toolgeometry, cutting depth, cutting velocity, and bulk temperature were studied.
To et al. experimentally studied diamond cutting of single-crystal aluminum with different crystal
orientations [25]. It was found that dislocation density of different crystal plane is different, the highest
is Ce(111) crystal plane, and the lowest is Ce(110) plane. The degree of difficulty of the dislocation
movement will affect material plastic deformation resistance and further affect surface quality of
materials. Ding et al. carried out diamond cutting of oxygen-free copper and found that internal
crystal orientations will lead to the fluctuation of cutting force and uneven distribution of surface
roughness [26]. Lucazeau and Abello adopted micro-Raman spectroscopy to study the residual stress
field induced by microindentation by mapping the indented zones [27]. They found that amorphous
silicon exists in the center of indentation and the amorphous silicon is partly recrystallized. Other work
also used micro-Raman spectroscopy to study phase transition and residual stress in crystalline silicon
induced by machining [28,29]. Romero et al. found that the adhesion during orthogonal cutting
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of a copper substrate could be reinforced by varying the tool rake angle or by choosing specific
lattice orientations [30]. Besides, several modeling approaches have been developed to study residual
stresses in machining. Tian et al. built a two-dimensional axisymmetric finite element model to
predict the full-field residual stress in grounding of silicon wafers [31]. Winsner et al. developed a
two-dimensional model to investigate the effect of temperature field on residual stress of aluminum
alloy after high-speed cutting [32]. Although previous studies have provided valuable insights into the
machining parameter dependence of cutting processes, there is no report on the influence of machining
parameters on residual stress and surface roughness of cerium under diamond-cutting processes.

Therefore, in the present work, we perform MD simulations to elucidate the formation
mechanisms of residual stress and surface roughness of cerium under diamond cutting process.
Furthermore, the influences of rake angle of a cutting tool, crystallographic orientation of workpiece,
and depth of cut (DOC) on the residual stress and surface roughness in diamond cutting of cerium
are studied.

2. Simulation Method

The MD model of diamond cutting consists of a rigid diamond tool and a single crystal
cerium workpiece, as indicated in Figure 1. The cerium workpiece had a dimension of 41, 25, and
31 nm in the X, Y, and Z direction, respectively. To investigate the influence of crystal orientation,
three cerium workpieces with Ce(100), Ce(110) and Ce(111) free surface in Y direction were considered.
The diamond-cutting tool with a sharp edge had a relief angle γ of 9◦. Seven rake angles α, as 10◦,
20◦, 30◦, −10◦, −20◦, −30◦, and 0◦, were utilized to address the influence of rake angle. The Ce-Ce
interaction between workpiece atoms and the Ce-C interaction between workpiece and diamond tool
are described by the embedded atom method (EAM) [33] and Morse potential [16].
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Figure 1. Molecular dynamics (MD) model of diamond cutting of cerium. α and γ are rake angle and
clearance angle, respectively.

After the relaxation of the system at 300 K for 50 ps, the diamond tool cut the workpiece with a
constant cutting speed of 100 m/s and a constant DOC until a predetermined travel distance of 60 nm
was reached. To fully characterize the formation of residual stress and surface roughness, the cutting
tool was then withdrawn after achieving the aforementioned travel distance. In this way, the machined
surface went through full relaxation. All the MD simulations are based on LAMMPS developed by
Sandia National Laboratory (PO Box 5800, Albuquerque, NM, USA) [34]. The Ovito was utilized to
perform visualization of MD simulation of the machining process [35]. The detailed description of MD
model of diamond cutting can be found elsewhere [16,17].
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The cutting force acting on the diamond tool in vector form can be expressed in Equation (1) as:

F =
NT

∑
i=1

∑
j

∂U
(
rij
)

∂rij
(1)

where F is the cutting force, NT is the number of atoms in the cutting tool, U stands for the pairwise
Morse potential, rij is the distance between atom i and j. There are three components of machining force
acting on the diamond tool, as cutting force along horizontal direction, normal force perpendicular to
machined surface and lateral force along longitudinal direction, respectively. In addition, the six stress
tensors, as σxx, σyy, σzz, σxy, σxz, and σyz shown in Figure 2, for each atom can be derived from viral
stress shown in Equation (2):

χ =
1
Ω

N

∑
i

(
mivi ⊗ vi +

1
2 ∑

i 6=j
rij ⊗ fij

)
(2)

where χ denotes the average viral stress with six components, Ω is the volume of the cutoff
domain [23,36], N stands for the total number of atoms in the domain, and mivi is the momentum of
the atom i, ⊗ is the tensor product of two vectors, fij stands for the individual interaction force exerted
on atom i by atom j. In addition, the equivalent Von Mises stress can be calculated in Equation (3):

σ2 =
1
2
[
(
σxx − σyy

)2
+
(
σyy − σzz

)2
+ (σzz − σxx)

2 + 6
(

τ2
xy + τ2

yz + τ2
zx

)
] (3)
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Figure 2. Schematic diagram of stress components in diamond cutting.

While the surface of single-crystal cerium workpieces can be considered to be uniform and regular,
surface roughness characterization uses the surface contour arithmetic mean deviation Ra as one of
the evaluation parameters, which can be expressed in Equation (4) as:

Ra =
1
lr

∫ lr

0
|yi|dx (4)

As shown in Figure 3, yi is the height of sampling point, lr is the sampling length. While cerium
is a metallic material of high plasticity, there are grooves, holes, and other surface microtopography
characteristics formed on the machined surface in the diamond cutting process. Therefore, local and
random information of surface morphology needed to be expressed clearly. It should be noted that 3D
surface roughness parameters that characterize the full surface morphology of the area would provide
more comprehensive and accurate information than the current 2D surface roughness parameters.
In this work, the more complex profile Rq as another evaluation parameter is adopted, which is
described in Equation (5) as:

Rq =

√
1
lr

∫ lr

0
y2

i dx (5)
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3. Results and Discussion

3.1. Formation Mechanisms of Residual Stress and Surface Roughness

The formation mechanisms of residual stress and surface roughness were first investigated by
MD simulation of diamond cutting of Ce(100). The cutting tool with a rake angle of 0o was utilized.
The DOC is 20 Å. Figure 4 plots variations of cutting force and normal force with cutting length,
indicating that the cutting process could be categorized into three phases as highlighted by the dash
lines. The workpiece material first underwent pure elastic deformation, accompanied with a rapid
increase of machining forces. After reaching a cutting length of 3 nm, plastic deformation occurred by
dislocation emissions from the top surface and left surface. Consequently, machining forces dropped
slightly. Upon further advance of diamond tool, the cutting process became stable, and machining
forces fluctuated around stable values. Simultaneously, considerable dislocations nucleated from free
surface and subsequently glided along slip planes under the stress applied by the diamond-cutting tool.
After the diamond tool separated from the workpiece, machining forces decreased with increasing
cutting length, accompanied with significant dislocation reaction and annihilation at free surface due
to the release of surface stress. The detailed description about the microscopic deformation of materials
and its correlation with macroscopic machining results can be found elsewhere [16,17].
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Due to the friction between the rake face of the cutting tool and displaced workpiece material,
large amount of heat was produced in the cutting process, which led to a significant increase of
temperature in the cutting zone. It is seen from Figure 5a–d that the generated heat distribution was
not uniform. Correspondingly, Figure 5e–h presents instantaneous defect structures formed within
the workpiece, which shows that the distribution of dislocations coincides well with the distribution
of heat. In addition, the workpiece had serious local plastic deformation that led to the nonuniform
change of the surface morphology from a flat surface to a rough one, as shown in Figure 6. In particular,
the zoom view highlighted by the yellow ellipse in Figure 6 shows that the arrangements of local
atoms on the machined surface became disordered, which was caused by the incompletely recovery of
plastic strains. While a large number of dislocations were produced within the workpiece by plastic
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deformation, subsequent dislocation slipped and reaction events led to the formation of local stress
concentration, as shown in Figure 5i–l. New energy was required for atoms in the defect zone of
the workpiece material to maintain their balance. The vast majority of stored energy was consumed
by material deformation to compensate for lattice distortion, which further increased the energy
of the deformed crystals to reach thermodynamically unstable states. Furthermore, a spontaneous
tendency to revert to the lowest stable state of free enthalpy, which is the origin of residual stress
formation, occurred. A careful examination of atomic arrangements showed that lattice distortion was
mainly localized in the topmost layers of the machined surface. Correspondingly, the residual stress of
machined surface can be obtained by averaging atomic stress in the topmost layers. The calculated
surface roughness Ra and residual stress were 1.67 Å and 0.84 GPa, respectively.
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Figure 5. Evolution of cerium workpiece surface at different stages of the machining process.
(a–d) present variations of temperature. (e–h) present instantaneous defect structures, atoms are
colored according to calculated common neighbor analysis (CNA) values, and FCC atoms are not
shown. (i–l) present variations of stress. The first, second, third and fourth row represent a cutting
length of 0, 10, 30, and 60 nm, respectively.
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3.2. Effect of Rake Angle

Based on the fundamental understanding of the formation mechanisms of surface residual stress
and surface roughness of cerium under diamond cutting, the influence of the rake angle of a cutting
tool was investigated. The crystal orientation of the cerium workpiece was Ce(100), and the DOC
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was 20 Å. Figure 7a–f shows the residual stress distribution of machined surface under different rake
angles of a cutting tool, which shows that there were local areas with considerable stress concentration
formed on the machined surface. It is found from Figure 7 that the average surface residual stress was
larger for the negative rake angle than that for the positive one. Furthermore, the numerical value of
surface residual stress decreased with increasing rake angle. It is known that the stress state in the
contacting zone between cutting tool and workpiece material was greatly influenced by the rake angle
of the cutting tool. With the increase of rake angle from a negative value to positive, the composition
of compressive stress gradually decreased. Consequently, both displaced material flow and lattice
rotations changed with the rake angle of the cutting tool.
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Figure 8 plots the variations of contour arithmetic mean deviation Ra and the mean square
deviation Rq with rank angle of the cutting tool. The surface roughness obtained under positive rake
angle was smaller than that under a negative rake angle. Furthermore, surface roughness decreased
with the increase of the rake angle. Figure 8 demonstrates that processing parameters had a more
pronounced influence on Rq than that on Ra, indicating that Rq was more sensitive to atomic points
deviating from the average plane in the evaluation. Therefore, it is indicated that the rake angle
of 30◦ was optimal for the diamond cutting of cerium for achieving minimum residual stress and
surface roughness.
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3.3. Effect of Crystal Orientation

The influence of crystal orientation on the diamond cutting of cerium under the optimal rake
angle of 30◦ was also investigated. Three kinds of single crystal, Ce(110), Ce(111), and Ce(100) were
considered, respectively, and all other machining parameters were the same, with a DOC of 20 Å
and a rake angle of 30◦. Figure 9 shows that both magnitude and distribution of residual stress of
surface were different for different crystal orientations. The magnitude of residual stress of Ce(111) was
significantly lower than that of Ce(100) and Ce(110). Furthermore, Ce(110) had the most nonuniform
distribution due to the most serious dislocation slip-dominated plastic deformation occurring during
the cutting process. It is known that the geometry of activated slip systems with respect to a free
surface is different for different crystal orientations. Consequently, different intersections between
dislocation and free surface lead to different residual stress for different crystal orientations [37,38].
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Figure 10 shows the diagrams of Ra and Rq of machined surface with different crystal orientations.
It is seen from Figure 10 that the surface roughness of Ce(111) was the largest, while the surface
roughness value of Ce(110) and Ce(100) was almost the same. It is known that the spacing of crystal
planes and the density of covalent bonds vary with crystal orientation. The strength and wear resistance
to bond broken of Ce(111) were higher than Ce(110) and Ce(100).Therefore, it is indicated that the
Ce(100) crystal orientation was optimal for the diamond cutting of cerium due to low residual stress
and moderate roughness.
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3.4. Effect of DOC

The influence of DOC on the diamond cutting of cerium was further studied under the machining
conditions of a rake angle of 30◦ and a crystal orientation of Ce(100). The material removal mode of
plowing and cutting is closely associated with the DOC. The critical DOC at which removal mode
transition occurs was dependent on the sharpness of the cutting tool due to stress concentration.
Therefore, to magnify the impact of DOC, a blunt cutting edge with an edge radius of 2 nm was
utilized, as shown in Figure 11. Five cutting depths, as 2 Å, 6 Å, 10 Å, 15 Å, and 20 Å, were utilized to
address the influence of DOC [17].
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The DOC had a significant impact on the material removal mode of cerium under the
diamond-cutting process. Specifically, material removal can be achieved through plowing or cutting
under different DOCs [17]. Son et al. theoretically calculated the minimum cutting depth of chip
formation by diamond-cutting tools, which can described in Equation (6) as [39]:

hmin = R
(

1− cos
(
π− β

2

))
(6)

where R is the edge radius of cutting tool and β is the friction angle. Simulation results show that
there was chip formation under the cutting mode using a DOC of 15 Å and 20 Å, while displaced
material mainly accumulated on both sides of the formed groove under the plowing mode under a
DOC of 2 Å, 6 Å, and 10 Å [17]. It is found from Figure 12 that the DOC had a nontrivial size effect on
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the residual stress of the machined surface. The residual stress distribution of the machined surface
was also extremely uneven. In particular, the DOC of 10 Å had obvious stress concentration near the
cutting edge of the workpiece.
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(e) 20 Å. (f) Magnitude of residual stress at the DOC of 10 Å.

Figure 13 shows that a small DOC of 2 Å or 6 Å led to small roughness of Ra or Rq. With the
increase of DOC, the variation of roughness was relatively smooth, especially after the chip formation.
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The result indicates that the DOC was less sensitive than other processing parameters in the affecting
of surface roughness.Micromachines 2018, 9, x FOR PEER REVIEW 12 of 11 
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4. Summary

In summary, we performed MD modeling and simulation to elucidate the formation mechanisms
of surface residual stress and surface roughness of single crystalline cerium under ultraprecision
diamond cutting. Simulation results revealed that surface roughness is closely correlated with a
dislocation slip that leads to the formation of surface steps on a machined surface. The formation
of residual stress after cutting processing is determined by both lattice distortion and dislocation
glide. It was found that machining parameters, such as DOC, rake angle of the cutting tool, and
crystal orientation of the workpiece have a strong influence on residual stress and surface roughness.
The optimal machining conditions, i.e., a rake angle of 30◦, with a shallow DOC, and a crystal
orientation of Ce(100), can lead to high quality of machined surface of cerium under diamond cutting.
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