Supplemental Information

On-Chip Asymmetric Microsupercapacitors Combining Reduced Graphene Oxide and Manganese Oxide for High Energy-Power Tradeoff

Richa Agrawal¹ and Chunlei Wang^{1,2}[‡]

¹ Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, United States
² Center for the Study of Matter of Extreme Conditions (CeSMEC) Florida International University, Miami, FL 33199, United States

[‡]Author to whom correspondence should be addressed: <u>wangc@fiu.edu</u>

Figure S1: Microstructure of the single layer graphene oxide (SLGO)

Figure S2: Typical cyclic voltammograms at different scan rates of a) the asymmetric rGO//MnO_x-0.6C MSC and b) the asymmetric rGO//MnO_x-1.2C MSC; typical GCD curves of c) the asymmetric rGO//MnO_x-0.6C MSC and d) the asymmetric rGO//MnO_x-1.2C MSC; cycle life of e) the asymmetric rGO//MnO_x-0.6C MSC and f) the asymmetric rGO//MnO_x-1.2C MSC.

Figure S3: Ragone chart of the different MSC systems.