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Abstract: Advanced electrode designs have made single-unit neural recordings commonplace
in modern neuroscience research. However, single-unit resolution remains out of reach for the
intrinsic neurons of the gastrointestinal system. Single-unit recordings of the enteric (gut) nervous
system have been conducted in anesthetized animal models and excised tissue, but there is a large
physiological gap between awake and anesthetized animals, particularly for the enteric nervous
system. Here, we describe the opportunity for advancing enteric neuroscience offered by single-unit
recording capabilities in awake animals. We highlight the primary challenges to microelectrodes in
the gastrointestinal system including structural, physiological, and signal quality challenges, and we
provide design criteria recommendations for enteric microelectrodes.

Keywords: microelectrodes; in vivo electrophysiology; neural interfaces; enteric nervous system;
conscious recording; electrode implantation

1. Introduction

The enteric nervous system is a subdivision of the peripheral, autonomic nervous system that
resides in the gastrointestinal tract (Figure 1A–C). The small intestine alone has been estimated to
contain more than 733,000 neurons in the mouse, 3.7 million neurons in the guinea-pig, and 88 million
neurons in the sheep [1]. The human enteric nervous system is estimated to contain between 200 and
600 million neurons, roughly as many as the spinal cord [2]. For over a century, the enteric nervous
system has been known to regulate gastrointestinal motility, and the circuitry controlling basic motor
patterns is relatively well understood [3]. Pathologies of the enteric nervous system include functional
and motility disorders, developmental disorders, and neurological disorders [4,5].
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Figure 1. Anatomy of the enteric nervous system. A segment of the gastrointestinal tract and the 

anatomical tissue layers. Pan-neuronal marker HuC/D (A) and neuron tubulin marker Tuj-1 (B) 

imaged in whole intestinal tissue by light sheet microscopy, adapted from [6]; (C) Immunoreactive 

labelling of cell nuclei (DAPI, blue) and neuron tubulin (Tuj-1, red) in sections of the intestine, adapted 

from [7]; (D) Histology of (i) healthy colon; (ii) inflamed colon; and (iii) inflamed small intestine with 

crypt abscess (arrowhead) and granuloma (arrows). 
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other systems in neuroscience. Our knowledge of enteric neuroscience remains antiquated compared 

to the central nervous system because of the lack of specialized tools and methods. For instance, it 

has been possible to record cortical neurons intracellularly in freely-moving animals [8], and calcium 

activity from populations of cortical neurons in head-fixed animals [9] for over a decade. In contrast, 

recordings from the enteric neurons have been conducted almost exclusively in excised tissue. 

Classical enteric electrophysiology is conducted using flat-sheet preparations, a method that has 

remained largely unchanged for decades. As enteric neuroscience progresses, flat-sheet preparations 

are not sufficient to investigate the interactions of the enteric nervous system with other systems, 

including the gut-brain axis, neuro-immune crosstalk, interaction with microbiota, etc., in living 

systems. For proper context, our understanding of these systems will be enhanced by measurements 

in live animal models, which offer greater physiological fidelity and greater potential for translational 

research. However, technology for awake, single-unit recordings in the gastrointestinal system is 

underdeveloped. 

Currently, in vivo neural recordings from the gastrointestinal tract must be conducted under 

anesthesia, presumably during acute, non-survival surgical procedures. Anesthesia and invasive 

surgical procedures greatly alter the physiology of the gastrointestinal environment, directly 

affecting neurotransmission and motility. To fully realize the advantages of in vivo enteric 
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Figure 1. Anatomy of the enteric nervous system. A segment of the gastrointestinal tract and the
anatomical tissue layers. Pan-neuronal marker HuC/D (A) and neuron tubulin marker Tuj-1 (B) imaged
in whole intestinal tissue by light sheet microscopy, adapted from [6]; (C) Immunoreactive labelling of
cell nuclei (DAPI, blue) and neuron tubulin (Tuj-1, red) in sections of the intestine, adapted from [7];
(D) Histology of (i) healthy colon; (ii) inflamed colon; and (iii) inflamed small intestine with crypt
abscess (arrowhead) and granuloma (arrows).

Despite its size and importance, the enteric nervous system is under-examined compared to other
systems in neuroscience. Our knowledge of enteric neuroscience remains antiquated compared to
the central nervous system because of the lack of specialized tools and methods. For instance, it has
been possible to record cortical neurons intracellularly in freely-moving animals [8], and calcium
activity from populations of cortical neurons in head-fixed animals [9] for over a decade. In contrast,
recordings from the enteric neurons have been conducted almost exclusively in excised tissue.

Classical enteric electrophysiology is conducted using flat-sheet preparations, a method that has
remained largely unchanged for decades. As enteric neuroscience progresses, flat-sheet preparations
are not sufficient to investigate the interactions of the enteric nervous system with other systems,
including the gut-brain axis, neuro-immune crosstalk, interaction with microbiota, etc., in living
systems. For proper context, our understanding of these systems will be enhanced by measurements
in live animal models, which offer greater physiological fidelity and greater potential for translational
research. However, technology for awake, single-unit recordings in the gastrointestinal system
is underdeveloped.

Currently, in vivo neural recordings from the gastrointestinal tract must be conducted under
anesthesia, presumably during acute, non-survival surgical procedures. Anesthesia and invasive
surgical procedures greatly alter the physiology of the gastrointestinal environment, directly affecting
neurotransmission and motility. To fully realize the advantages of in vivo enteric electrophysiology,
neural recording and stimulation must be conducted in conscious animal models. Advancing
neurogastroenterology with the tools for single-unit recordings in awake animal models demands new
and innovative neural microelectrode technology.

First, we review the traditional methods for enteric electrophysiology, discussing ex vivo
preparations and the limitations of anesthetized in vivo neural recordings. Secondly, we discuss
the current challenges to single-unit recordings from enteric neurons in awake animal models, such
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as gastrointestinal pathophysiology (Figure 1D). Finally, we consider design criteria for novel enteric
microelectrodes and potential applications of single-unit recordings from conscious animals and the
potential synergy with other novel technologies.

2. Classical Methods for Enteric Electrophysiology

Electrophysiology in the enteric nervous system has largely been conducted in excised tissue
(Figure 2). Excised tissue can be kept alive and functional for several hours, often with direct access
to enteric ganglia. More complex preparations have been developed to capture neural activity with
greater physiological relevance, such as suction electrodes for whole-organ recordings. Enteric neuron
recordings are rarely conducted in vivo. In this section, we discuss the advantages and limitations of
flat-sheet and whole-organ preparations, and the challenges of anesthetized recordings.
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Figure 2. Classical methods for enteric electrophysiology. (a) Flat-sheet LMMP preparation; (b)
Full-thickness flat-sheet preparation; (c) Whole-organ preparation; (d) Anesthetized in vivo preparation.
M: mucosa, SM: submucosa, SMP: submucosal plexus, CM: circular muscle, MP: myenteric plexus, LM:
longitudinal muscle.

2.1. Neural Recordings in Excised Tissue

Enteric neural recordings are most commonly conducted ex vivo, using flat-sheet preparations
in organ baths. In these preparations, the gastrointestinal tract is dissected out, opened along the
mesenteric border, and pinned flat in a Sylgard dish. The mucosa, submucosa, and circular muscle
is frequently dissected away, leaving only the myenteric plexus attached to the longitudinal muscle
(LMMP) [10]. The flat-sheet LMMP preparation was fundamental for the intracellular recordings
that first classified electrophysiology in enteric neurons as S (Type 1) or AH (Type 2) neurons [11,12].
Although the electrophysiology classification system is less frequently used than neurochemical or
functional classification [13,14], it is often used to characterize patient biopsies [15]. The primary
advantage of this preparation is the accessibility of myenteric ganglia for pharmacological assays
with extracellular recordings, patch clamp recordings, etc. [16]. However, the flat-sheet LMMP
preparation has limited applications because the submucosal plexus, circular muscle, lamina propria,
and epithelium have been dissected away. Therefore, this preparation is not suitable for examining the
effect of intraluminal stimuli or communication with epithelial cells, resident immune cells, submucosal
neurons, or circular muscle.

Alternatively, the full-thickness flat-sheet preparation maintains the connections to circular
muscle, submucosal plexus, lamina propria, and epithelium. As a result, the full-thickness flat-sheet
preparation is ideal for examining intraluminal stimuli and interactions between enteric neurons and
the epithelium, resident immune cells, and smooth muscle. For example, Spencer and colleagues have
revealed novel firing patterns in enteric neurons that drive coordinated smooth muscle response
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using the full-thickness flat-sheet preparations [17,18]. The full-thickness flat-sheet preparation
is also advantageous for calcium imaging because it captures either plexus in a single imaging
plane [19,20]. However, myenteric and submucosal neurons are enclosed within the smooth muscle
layers and the lamina propria in the full-thickness flat preparation, making single-unit and intracellular
recordings prohibitive in this preparation. A fundamental limitation of all flat-sheet preparations is
the longitudinal incision along the mesenteric border. This incision disrupts the electrical syncytium,
particularly in the circular muscle, and severs many circumferentially projecting fibers. Further,
the flat-sheet preparation is not well equipped to propel luminal contents.

Gastrointestinal motility patterns are better examined in whole-organ preparations [21,22].
Whole-organ preparations maintain the intrinsic connections of the enteric nervous system, leaving
the smooth muscle, lamina propria, and epithelial layers intact. Whole-organ preparations consist of
intact segments of the gastrointestinal tract in organ baths, and they are well-suited for examining
gastrointestinal motility patterns or intraluminal stimuli because the longitudinal and circular
smooth muscles remain functional and intact. As with the full-thickness flat-sheet preparation,
the enteric neurons in whole-organ preparations are inaccessible by classical electrophysiology
methods. Suction electrodes on the serosal surface provide an alternate method by measuring smooth
muscle activity in whole-organ and full-thickness flat-sheet preparations, but they are inadequate to
describe enteric neural activity directly [23–25].

Neural recordings from excised tissue present a convenient platform for examining single-unit
response under a variety of conditions and stimuli. However, several limitations exist for all excised
tissue preparations, including, most notably, the lack of peripheral innervation and extrinsic circuitry.
In some ex vivo preparations, peripheral fiber recordings are possible, but they lack extrinsic circuits
in the central nervous system [26,27]. The limitations of ex vivo preparations can be addressed by
studying the enteric nervous system in live animal models.

2.2. Challenges of Anesthetized Recordings from Enteric Neurons

Anesthesia allows for recordings from live animal models, which provide more
physiologically-relevant conditions compared to excised tissue. Due to current technological
limitations, flat-sheet preparations are better suited for single-unit recordings than anesthetized
recordings. Additionally, anesthesia greatly changes gastrointestinal function, making results from
anesthetized preparations difficult to interpret. We discuss two direct effects of various anesthetic
agents on gastrointestinal function: the effect of anesthesia on various receptors of the enteric nervous
system, and the effect of anesthesia on gastrointestinal motility.

First, several neuron species in the enteric nervous system act on receptors that
are directly affected by various anesthetic agents. Here, we review the inhibiting and
potentiating effects of common anesthetic agents on some of the primary receptor classes in
the enteric nervous system: nicotinic cholinergic, P2X, 5-HT3, N-methyl-D-aspartate (NMDA),
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), gamma-Aminobutyric acid (GABA),
and glycine receptors (Table 1). Agonists to these receptors are expressed by common neuron
species in the myenteric ganglia and submucosal ganglia [13,28–30]. Although glutamate
and glycine are less well-studied in enteric ganglia in comparison to acetylcholine, serotonin,
and purinergic neurotransmitters, their role as enteric neurotransmitters are strongly supported
by electrophysiological responses to pharmaceutical stimuli [30,31]. The receptor-specific responses
for several forms of anesthesia have been reviewed by [32]. In addition to the direct effects of
anesthesia, [33] have reported that common anesthetic agents (isoflurane, sevoflurane, ketamine,
and urethane) modulate glutamate receptors, voltage-dependent calcium channels, and voltage-gated
potassium channels, suggesting that anesthesia may have prolonged effects on neural activity.
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Table 1. The effect of common anesthetic agents on various receptors of the enteric nervous system.

Neuron Species Approximate Percentage Affected
Receptors

Inhibiting
Anesthetic Agents

Potentiating
Anesthetic Agents

Cholinergic

ChAT-positive neurons:

◦ 80% of myenteric neurons [29,34,35]
◦ 50% of submucosal neurons [29,34,35]

Neuronal nACh

Ketamine [36],
pentobarbital [37],

propofol [37],
isoflurane [37,38],
halothane [37,38],
sevoflurane [37]

Urethane [39]

Purinergic

ATP-releasing neurons:

◦ 2–25% of myenteric neurons [28,40]
◦ 40–60% of submucosal neurons [28,40]
◦ Other: Enteric glia (P2X7) [41]

P2X2 Sevoflurane [42] -

P2X3 Pentobarbital [43] -

P2X4 - Propofol [44]

P2X7 - Ketamine [45],
propofol [45]

Serotinergic
5-HT-positive neurons:

◦ 2% of myenteric neurons [13]
5-HT3

Ketamine [46,47],
pentobarbital [46],

propofol [46]

Isoflurane [38,48],
halothane [38,48]

Glutamatergic

NMDA-positive neurons:

◦ Almost all myenteric neurons [30]
◦ Almost all submucosal neurons [30]

NMDA
Ketamine [49],
urethane [39],

pentobarbital [50]
-

AMPA-positive neurons:

◦ 30–60% of myenteric neurons [30]
◦ Almost all submucosal neurons [30]

AMPA
Urethane [39],

pentobarbital [51],
propofol [50]

-

GABAA-positive neurons:

◦ 3–8% of myenteric and submucosal
neurons [52,53]

GABAA -

Ketamine [54],
urethane [39],
pentobarbital

[55,56],
propofol [54,57],

isoflurane [54,58],
halothane [54,58]

Glycinergic
Glycine-responsive:

◦ 57% of colonic myenteric neurons [31]
Glycine -

Urethane [39],
propofol [57],

isoflurane [59],
sevoflurane [59],
halothane [59]

Secondly, commonly used anesthetic agents impair gastrointestinal motility. Here, we review the
effects of commonly used injected and inhaled anesthetic agents (ketamine, urethane, pentobarbital,
propofol, isoflurane, sevoflurane, and halothane) on gastrointestinal motility during anesthesia
(Table 2). Generally, anesthetic agents have been shown to impair gastrointestinal motility by delaying
gastric emptying or decreasing intestinal transit time.

In addition to the effects of anesthesia, invasive abdominal surgery has been shown to impair
gastrointestinal motility. For example, human patients who have undergone laparotomy often
experience motility disorders such as postoperative ileus or pseudo-obstruction [60,61]. In horses,
surgery has been shown to disrupt gastrointestinal motility for 8 to 12 h [62]. Furthermore,
complications during surgery can lead to acute acidosis, which has been shown to directly reduce
gastrointestinal motility [63]. To mitigate the adverse effects of invasive surgery on gastrointestinal
function, animals should be allowed to recover prior to neural recordings or other experiments.
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Table 2. The effect of common anesthetic agents on gastrointestinal motility during anesthesia.

Anesthetic Agent Route of Administration Gastric Emptying Intestinal Transit

Ketamine Injection Unaffected [64,65] Unaffected/slight
decrease [64–67]

Urethane Injection Decrease [68–71] Decrease [68,69]

Pentobarbital Injection Decrease [70] Dose-dependent
increase/decrease [66]

Propofol Injection Decrease [72,73] Slight decrease [66,67]

Isoflurane Inhalation Decrease [74,75] Decrease [62,76]

Sevoflurane Inhalation Decrease [77] Decrease [77,78]

Halothane Inhalation Decrease [79] Decrease [79–81]

In summary, the flat-sheet preparation is a fundamental tool for enteric electrophysiology, and it
will not be replaced by new technology. However, the versatility of ex vivo preparations are limited,
and they lack the necessary context to examine more physiologically complex behaviors. Although
anesthetized, in vivo animal models are more physiologically relevant, however, anesthesia and
invasive surgery alter neurotransmission and impede gastrointestinal motility. Therefore, the effect
of various anesthetic agents and sufficient recovery time should be considered in the design of
experiments. Importantly, this demonstrates the potential advantages of conducting neural recordings
in conscious animals, particularly for neurogastroenterology.

3. Challenges to Gastrointestinal Neuro-Electrophysiology in Conscious Animals

Recently, new technology has been developed for myo-electrophysiology in the gastrointestinal
system of anesthetized animals and patients. L. K. Cheng and collaborators at the University of
Auckland examine smooth muscle function and electrical slow wave, using methods originally
developed by [82]. Arrays featuring multiple surface electrodes can be used to build spatiotemporal
maps of slow wave propagation with high resolution in anesthetized animal models [83] and in patients
during surgery [84]. In vivo myo-electrophysiology has led to an improved understanding of electrical
slow wave activity in healthy and diseased models. Although high-resolution myo-electrophysiology
has not yet reached conscious animals, it shows great promise, particularly for improved diagnosis
of gut pathophysiology. Simultaneously, in vivo gastrointestinal neuro-electrophysiology remains
largely out of reach, especially in awake animals. There are several barriers to in vivo gastrointestinal
neuro-electrophysiology, most of which are not unique to the gastrointestinal environment, such as
fibrosis and biofouling. In this section, we focus on the challenges that are greatly exacerbated in
the gut.

We identified six key challenges to in vivo gastrointestinal neuro-electrophysiology across three
categories: structural, physiological, and signal quality challenges (Table 3). The structural challenge is
the movement of the gastrointestinal tract within the abdomen, worsened by the lack of accessible
skeletal structures on which to mount a device. The two physiological challenges describe the
risks of disrupting gastrointestinal function: the issue of ischemia and reperfusion, and maintaining
gastrointestinal homeostasis. The three signal quality challenges are contamination from the electrical
slow wave, smooth muscle action potentials, and artifact due to tissue movement.
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Table 3. Key challenges to in vivo gastrointestinal neuro-electrophysiology.

Categories Challenges

Structural Large tissue displacements and no rigid structures on which to mount a device

Physiological
Ischemia and reperfusion injury

Maintaining gastrointestinal homeostasis

Signal Quality
Electrical slow waves

Smooth muscle action potentials
Artifact due to tissue movement

3.1. Structural Challenges in Neurogastroenterology

Animal movement is problematic for all methods of awake electrophysiology; movement
adds noise to the recording, damages the recording device, and harms the test subject. Generally,
the effect of conscious movements on neural recordings can be mitigated in two ways: restraining
the animal, such as head-fixed recordings, or minimizing aberrations in movement by fixing the
recording device to the skeleton. Restrained recordings pose fewer movement-related problems than
unrestrained (a.k.a. freely-behaving) recordings, but the restraint method may alter natural neural
activity. For example, single-unit recordings from freely-moving rats led to the discovery of place
cells in the hippocampus [85]. These methods have proven useful tools for probing the brain, and are
adaptable for other systems; head-fixed preparations, for example, have led to spine-fixed recordings
and spinal recordings in awake, moving rats [86,87]. However, these advancements have not led to
similar innovation in enteric neuroscience because of unique movement-related challenges posed by
the gastrointestinal environment.

Awake, single-unit recordings from enteric neurons are limited by structural challenges in the
gastrointestinal system. First, there are no accessibly skeletal structures below the stomach on which to
mount rigid devices, as used in brain and spine research. Additionally, enteric neurons are not fixed in
place within the abdominal cavity. Enteric neurons are located within the wall of the gastrointestinal
tract. In the gastrointestinal wall, smooth muscles drive macroscopic tissue motion in the form of
stationary or propagating waves of contractions, known as segmentation and peristalsis, respectively.
Smooth muscle contractions can induce tissue displacement several orders of magnitude greater than
micromotions observed in the brain. For example, micromotions in the brain have been observed on
the order of 10 to 100 µm in rats [88]. Meanwhile, maximum distension in the colon can deform the
circular muscle up to 10 mm in guinea-pigs [89].

Movement-related challenges are amplified in the gastrointestinal system. Future implantable
devices must consider the mechanical characteristics at the tissue, organ, and body scales. Such devices
will likely combine flexible electrode arrays and interconnects, and rigid headstages mounted far from
the recording site. Additionally, the inflammation and irritation caused by sutures or adhesives must
be considered.

3.2. Disrupting Gastrointestinal Physiology

The gastrointestinal tract has evolved defense mechanisms that pose significant challenges for
medical device implants, particularly neural microelectrodes. In addition to the foreign-body response
associated with all medical implants, the gastrointestinal system poses unique challenges. Here, we
discuss the general principles of maintaining homeostasis in the gastrointestinal tract and the potential
challenges of intestinal injury caused by implanting neural microelectrodes. Intestinal injury and
inflammation induced by resident immune responses and ischemia reperfusion injury pose challenges
for enteric in vivo neuro-electrophysiology because they greatly alter the behavior of enteric neurons,
enteric glial cells, and resident immune cells, and disrupt gastrointestinal function.

The mammalian intestine encounters trillions of innocuous foreign antigens, symbiotic microbes,
and pathogens daily. The intestinal immune system is able to tolerate innocuous antigens and
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simultaneously respond to pathogens using three layers of regulation: physical barriers, antimicrobial
reagents, and immune cells [90]. First, the intestine is covered by a single lining of intestinal
epithelium cells, and specialized intestinal epithelium cells secrete mucus to protect the epithelium
from microbiota [91,92]. Second, specialized intestinal epithelium cells also release antimicrobial
compounds. For example, Paneth cells express antimicrobial peptides such as RegIIIγ and α-defensin
to inhibit luminal microbe growth and colonization in intestine [93]. Third, antigen-presenting cells,
including dendritic cells and macrophages, are responsible for immune surveillance and maintaining
homeostasis. Intestinal dendritic cells make up the most complex dendritic cell populations in the
body, and they are essential for establishing tolerance in the homeostatic environment by promoting
regulatory T cells [94,95]. Gastrointestinal macrophages are unique; unlike most tissue-resident
macrophages, which are yolk sac or embryo derived with self-renewal capacity, gastrointestinal
macrophages are continuously replenished by circulating monocytes and are exquisitely sensitive to
environmental stimuli [96,97]. Mature gastrointestinal macrophages maintain epithelial cell integrity,
and limit bacteria-induced inflammatory responses by constantly secreting inhibitory cytokines and
low levels of tumor necrosis factor (TNF), and engulfing penetrating bacteria via efficient phagocytosis,
respectively [98,99]. The intestinal immune system carefully titrates the inflammatory response to
innocuous antigens, symbiotic microbes, and pathogens, but it may be dysregulated by implanted
neural microelectrodes.

Implanted neural microelectrodes in the intestine have the potential to cause severe intestinal
inflammation by disrupting epithelial barrier function and activating antigen-presenting cells. First,
epithelial barrier function is importance for homeostasis, and has been implicated in inflammatory
bowel disease patients [100,101]. Breaking down epithelial cells in animal models, such as with
dextran sulfate sodium or 2,4,6-trinitrobenzenesulfonic acid, has been shown to induce severe colitis
and intestinal inflammation [102–105]. Barrier function can also be disrupted by ischemia reperfusion
injury, a common gastrointestinal disease in which hypoxia-ischemia and reperfusion in the epithelium
leads to epithelial cell death caused by enhanced reactive oxygen species production once blood
flow is re-established in hypoxic regions [106,107]. Disrupted barrier function can lead to bacteria
translocation and directly activate enteric neurons and glial cells that express innate pattern recognition
receptors, such as toll-like receptors [108,109].

Additionally, intestinal inflammation may be induced by antigen-presenting cells in response to
pathogens, translocated bacteria, or when they are dysregulated. For example, intestinal inflammation
developed spontaneously in mice after knocking out A20, a nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-kB) signaling pathway inhibitor [110]. Distinct dendritic cells, pro-inflammatory
monocytes, and pro-inflammatory macrophages promote the intestinal inflammation response, increase
differentiation of pro-inflammatory monocytes and macrophages, and production of pro-inflammatory
cytokines [111–114]. Chronic inflammation can mediate enteric neuron cell death, posing additional
challenges to in vivo neuro-electrophysiology [115]. Neural microelectrode implants have the potential
to disrupt homeostasis and barrier function, induce cell death and bacteria translocation, and lead to
chronic inflammation.

3.3. Signal Quality

The signal-to-noise ratio of enteric neuro-electrophysiology will likely be contaminated by three
main sources of noise specific to the gastrointestinal tract. First, electrical slow waves will introduce
low-frequency noise. Second, action potentials from surrounding smooth muscle tissue will contribute
high-frequency noise. Third, peristalsis and segmentation will create motion artifact, introducing
additional high-frequency noise.

Electrical slow waves propagate through smooth muscle along the length of the gut, from
esophagus to rectum, and they are driven by pacemaker cells known as interstitial cells of
Cajal [116]. Populations of interstitial cells of Cajal vary along the length of the gut and occupy
the myenteric, intramuscular, and submucosal layers and have individual pacemaker frequencies [117].



Micromachines 2018, 9, 428 9 of 19

The pacemaker potentials conduct through the smooth muscle syncytium, generating electrical slow
waves [118]. The smooth muscle layers directly border the myenteric and submucosal plexuses,
and any recording from the plexus layers will contain signals from electrical slow waves [119].
The slow waves will contribute low-frequency noise, because they occur at 2–40 cycles per minute,
depending on animal species and location along the gastrointestinal tract [29]. Therefore, high-pass
filtering will remove most slow-wave noise from neural recordings.

Smooth muscle action potentials and motion artifact will contribute physiological noise to neural
recordings at high frequencies. Smooth muscle fibers border the myenteric and submucosal plexuses,
and recordings from the plexus layers will likely contain neural action potentials and muscle action
potentials [120]. For single-unit recordings, it will be difficult to filter out muscle action potentials and
claim with certainty that the spiking signals are of neural origin. Extracellular action potential shape
analysis or template matching will likely be the most effective way to differentiate these signals [121].

Coincident with smooth muscle activity are macroscopic movements in gastrointestinal tissue,
causing artifacts in electrical recordings. Motion artifact is a long-standing issue for gastrointestinal
electrophysiology in excised tissue, and it continues to pose challenges for understanding
electrical slow waves and characterizing smooth muscle action potentials [122,123]. In classical
neuro-electrophysiology in excised tissue, slow waves, smooth muscle action potentials, and motion
artifact can be blocked pharmacologically [15]. However, these sources of noise cannot be blocked
during in vivo neuro-electrophysiology without disrupting gastrointestinal physiology. Instead,
limiting these sources of noise during in vivo neural recordings may be achieved by improved implant
design and various signal processing techniques.

4. Enteric Microelectrode Design Criteria

The gastrointestinal environment poses unique challenges that have slowed progress in enteric
neuroscience. Novel neural microelectrodes designed specifically for the gut may overcome these
unique challenges and provide access to single-unit activity for the first time. In this section, we suggest
design criteria for enteric microelectrodes for awake, single-unit recordings. The design criteria target
the six key challenges to in vivo gastrointestinal neuro-electrophysiology by focusing on: intrinsic
material properties, extrinsic design parameters, and the implant procedure (Table 4).

Table 4. Enteric microelectrode design criteria for awake, single-unit recordings.

Design Criteria Features

Material Properties Low Young’s modulus
High elasticity

Design Parameters
Low cross-sectional area

Tethered recording platform
Multiple recording sites along the length of the shank

Implant Procedure
Implant along longitudinal axis

Shallow insertion angle
Undisturbed submucosa and epithelial layer

4.1. Intrinsic Material Properties

The gastrointestinal tract has high elasticity, and enteric microelectrodes will need to withstand
large tissue displacements and strain without failure. Gastrointestinal tissues have an isotropic elastic
modulus ranging from 0.3 kPa to 5 MPa depending on species and tissue segment [124]. For example,
the rat distal colon and human small intestine have a Young’s modulus as low as 0.3 kPa and 1.0 kPa,
respectively [125]. The Young’s modulus of the porcine and human rectum can reach up to 1.8 and
5.2 MPa, respectively, and the tissues can elongate up to 2.1 and 1.6 their original length before failure,
respectively [126].
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Due to the high elasticity of the gastrointestinal tract, enteric microelectrodes may benefit from
flexible substrates with greater compliance and decreased bending stiffness [127]. Ultra-soft microwire
electrodes, for example, have Young’s modulus reportedly less than 1 MPa and may reduce the risk of
intestinal injury [128]. Traditional microelectrodes such as monolithic silicon would be problematic due
to their intrinsic stiffness, and would inevitably lead to increased cell death and pathophysiology [129].
Beyond the unique challenges of the gastrointestinal system, device characteristics such as electrical
and insulative properties must also be considered. These material properties are discussed in detail
by [130], and are summarized as: single-unit activity is better captured by low impedance and low
surface area recording sites, with enough insulation to minimize parasitic capacitance.

4.2. Extrinsic Design Parameters

Extrinsic design parameters, such as probe geometry, electrode density, etc., can reduce the risk
of disrupting gastrointestinal function and improve the signal-to-noise ratio of single-unit activity.
First, enteric microelectrodes can increase flexibility with decreasing cross-sectional area, particularly
probe thickness. For example, nanoelectronic thread electrodes are less than one-micron thick
and “ultra-flexible”; the bending stiffness and mechanical interactions are on the order of cellular
forces [131–133]. Ultrathin probes with a small cross-sectional area will be crucial to withstand the
constant forces and movement within the gastrointestinal tract.

The macroscopic tissue movement in the gastrointestinal tract, and lack of nearby anchoring
locations (i.e., skull, spine, etc.) pose additional challenges for enteric microelectrode design.
The gastrointestinal environment will almost certainly demand a flexible tether between the anchored,
transcutaneous connector and a recording platform [130]. The recording platform and enteric
microelectrode must be anchored to the gastrointestinal wall without obstructing motility. Scaling up
the mounting techniques from peripheral nerve interfaces, such as the spiral cuff [134] or locking-buckle
cuff [135] are inappropriate, because they will prevent gastrointestinal distension and obstruct
motility. Anchoring the recording platform with sutures through the serosa and muscular layers
of the gastrointestinal wall will be less likely to obstruct the gastrointestinal tract and not directly
disrupt barrier function [136–138].

Enteric microelectrodes should contain multiple recording sites along the length of the shank.
To reach the myenteric plexus, the enteric microelectrode must penetrate the serosa and longitudinal
muscle. Multiple recordings sites along the shank will allow a greater margin of error for probe depth
and increase the likelihood of positioning a recording site near an enteric ganglion. The spacing
between recording sites requires experimental optimization, and it will vary based on the insertion
angle of the microelectrode. Importantly, multiple recording sites within the plexus layer will improve
single-unit isolation [139]. Positioning additional recording sites in neighboring longitudinal or
circular muscle layers may provide auxiliary physiological signals such as muscle action potentials or
electrical slow wave activity. The additional recording sites and physiological signals could provide
greater context for single-unit recordings or be used in signal processing techniques to increase the
signal-to-noise ratio of single-unit recordings.

4.3. Implant Procedure

The implant procedure will greatly impact gastrointestinal physiology, and the procedure should
be designed to reduce the risk of intestinal injury. A flexible microelectrode shank inserted into the
gastrointestinal wall will be difficult to reliably position, and chronic macroscopic tissue motion will
cause the electrode to drift over time, causing significant tissue damage [140,141]. To minimize the
dimensions of tissue displacement relative to the probe, enteric microelectrodes should theoretically
be implanted along the longitudinal axis, instead of the circumferential axis. However, this approach
would be well-supported by experimental analysis.

Finally, enteric microelectrodes should be inserted at shallow angles relative to the serosa of the
gastrointestinal wall. Microelectrodes should be designed to penetrate the longitudinal muscle layer
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without penetrating the submucosal layer. Piercing the epithelial layer or compromising barrier
function will cause inflammation and sepsis [142]. Therefore the length of the microelectrodes
and insertion angle should be designed specifically for the anatomy of the target species, because
gastrointestinal dimensions scale across species [143].

5. Discussion

The available methods in enteric neuroscience are largely limited to excised tissue. While flat-sheet
and whole-organ preparations are reliable tools to examine enteric neurophysiology, they are
inadequate to study the interactions with the immune system, microbiota, extrinsic nervous system,
etc. Anesthesia, on the other hand, modulates neurotransmission and impedes gastrointestinal
motility, which confounds the interpretability of anesthetized in vivo recordings. Previously,
we reported electrical activity from the enteric nervous system in anesthetized mouse, supported by
simultaneous calcium imaging [144]. Although we observed increases in activity as expected with
pharmacological stimulation and strong correlation with calcium activity, the source and robustness
of the electrical activity remains disputed. This previous account demonstrates the challenges of
anesthetized recordings, as well as the structural, physiological, and signal quality challenges in the
gastrointestinal environment.

Single-unit recording capability from enteric neurons in awake animals has the potential
to improve our understanding of the enteric nervous system, neurogastrointestinal function,
and nutrition-mediated behavior. Single-unit resolution in awake animals will lead to computational
models that better capture enteric neurophysiology which could guide future therapeutics [145,146].
Additionally, single-unit recordings pose great opportunities to synergize with advancements in
other neurophysiology tools. Calcium imaging has been used reliably to monitor enteric neurons
simultaneously in excised tissue [147,148] and anesthetized animals [144]. Furthermore, optogenetic
stimulation and inhibition techniques have been adapted for enteric neurons [149], and have
already been used to modulate motility in awake, freely-moving mice [150]. Additionally, neural
microelectrodes designed for chronic, in vivo conditions have applications in electrical stimulation as
an alternative to optogenetic stimulation.

6. Conclusions

In vivo electrophysiology in awake animals provides several opportunities and advantages over
in vitro, ex vivo, and anesthetized in vivo recordings. Single-unit recordings from awake animals
will require novel devices and methods to overcome the unique technical challenges posed by the
gastrointestinal system. Importantly, single-unit recordings from awake animals have great potential to
synergize with recent developments in optogenetics and in vivo imaging, but they will not completely
replace traditional electrophysiology methods.
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