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Abstract: This study condenses huge amount of raw data measured from a MEMS
accelerometer-based, wrist-worn device on different levels of physical activities (PAs) for subjects
wearing the device 24 h a day continuously. In this study, we have employed the device to build up
assessment models for quantifying activities, to develop an algorithm for sleep duration detection and
to assess the regularity of activity of daily living (ADL) quantitatively. A new parameter, the activity
index (AI), has been proposed to represent the quantity of activities and can be used to categorize
different PAs into 5 levels, namely, rest/sleep, sedentary, light, moderate, and vigorous activity states.
Another new parameter, the regularity index (RI), was calculated to represent the degree of regularity
for ADL. The methods proposed in this study have been used to monitor a subject’s daily PA status
and to access sleep quality, along with the quantitative assessment of the regularity of activity of daily
living (ADL) with the 24-h continuously recorded data over several months to develop activity-based
evaluation models for different medical-care applications. This work provides simple models for
activity monitoring based on the accelerometer-based, wrist-worn device without trying to identify
the details of types of activity and that are suitable for further applications combined with cloud
computing services.
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1. Introduction

Acceleration due to the human activities is proven to be of great importance in epidemiological
research and physical activity-based health assessment. MEMS accelerometer-based, wrist-worn
devices, such as smart watches and smart wrist-bands, are becoming more and more popular for
PA monitoring. These devices are not only being used to perform sleep assessment [1–3] but also
for activity monitoring. Most of them provide number of steps and calorie consumption during the
wearing period, and may even try to identify types of activities performed from the acceleration data
measured by the accelerometer inside the devices. However, there are still unanswered questions such
as: How accurate are these for the identified types of activities and calories burned, due to the fact the
information is derived indirectly from acceleration information?

Having a good physically active life style can reflect one’s health condition and could be used
to predict whether subjects might suffer from some diseases or not [4]. More importantly, having a
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regular life style and good sleep quality in the long run will even impact the subject’s health condition.
However, there is no quantitative way to assess the regularity of daily life. Inadequate PA may result
in many health problems and diseases related to the lungs, heart, etc. [5–7]. Tracking PA on daily basis
provides valuable information related to the human body [8,9]. A number of platforms have been
designed, implemented, and tested successfully in order to track subjects’ PA based on the wearable
MEMS accelerometer [10,11]. Recent growth of IoT [12,13] and the capability of smart-phones in the
past few years made PA recognition a dynamic field of study [14–16]. Bender et al. conducted an
empirical study of various fitness devices such as Fitbit Flex, Fitbit Charge HR, Garmin Vívoactive,
and Apple Watch to compare PA recognition accuracy and device performance [17].

Several previous works also proposed methods for activity identification and PA pattern analysis
using external software, such as those executed on PCs or smart phones. For instance, Guillermo R.
Oviedo et al. [18] have used GT3X ActiGraph accelerometer (Firmware 4.4.0, ActiGraph™, FortWalton
Beach, FL, USA), and data were downloaded with the ActiLife 6 Software (v.6.12.0., ActiGraph™,
Fort Walton Beach, FL, USA) for certain types of activity identification through activity patterns on PCs.
Chelsea Dobbins and Reza Rawassizadeh [19] used principal component analysis feature selection
(PCAFs) and correlation feature selection (CFs) on PCs to refine clustering of raw accelerometer
data that had a positive effect on the computational burden that is associated with processing large
sets of data, as energy efficiency and resource use is decreased, because less data is processed by
the clustering algorithms, but a tremendous amount of raw data from devices is still required.
A. K. Chowdhury et al. [20] have proposed the use of posterior-adapted, class-based weighted decision
fusion to effectively combine data from multiple accelerometer-based devices for improving physical
activity recognition. Nan Zeng et al. [21] have used NL-1000 pedometer and ActiGraph GT3X
accelerometer for assessing the reliability of using motion sensors to measure children’s PA Levels in
Exergaming. Matin Kheirkhahan et al. [22] have developed machine learning methods for identifying
activity types and computing energy expenditures using standard statistical methods, as well as the
bag-of-words (BoW) approach. However, this research poorly describes further applications for the
results that have been analyzed.

In summary, these results are not found to be accurate enough or to have a close association
with the timing information so that they could be considered for medical-care systems and clinical
applications. Therefore, this research aims to bridge this gap and to develop simple mathematical
models and algorithms for achieving parameters and results that are closely associated with actual
on-set timing information. Moreover, the models and algorithms are simple enough to be easily
deployed inside wrist-worn, accelerometer-based devices, and the results obtained are accurate and
precise enough to be considered for medical-care systems and clinical applications.

Therefore, in this study we have proposed a methodology for the quantification of physical
activities performed the daily life, i.e., activity index (AI), which is closely associated with human
body acceleration [23]. These results can be used to categorize activities into 5 different levels, i.e.,
rest/sleep, sedentary, light, moderate, and vigorous activity states. Based on the AIs, a sleep duration
detection algorithm has also been developed. Furthermore, by calculating the correlation coefficient
for AIs on a daily or weekly basis, a quantitative method to express the regularity of daily life, i.e.,
the regularity index (RI), has been proposed in this study. By combining all these quantitative indices,
such as activity, sleep duration, and regularity of ADL, this index can be used for many activity
monitoring-based medical-care applications. Moreover, these results could be synced to smart phones
for IoT applications with a greater capability of sensing human activity ubiquitously and unobtrusively
through advancements in miniaturization and sensing abilities. This could unleash a systematic
methodology in mobile-health for the prevention and early detection of chronic diseases.

2. Materials and Methods

This study was reviewed and approved by the institutional review board (IRB) of the Chang
Gung Memorial Hospital, Taiwan, R.O.C. An accelerometer-based, wrist-worn device (GeneActiv,
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Activinsights Ltd., Huntingdon, UK, as in Figure 1) has been used to record wrist movement
acceleration in three orthogonal directions along with timestamp and body temperature. This device
is equipped with MEMS-based accelerometer, which was set for a sensing range of ±8 g at a 12-bit
digital resolution (i.e., 3.9 mg resolution, 1 mg = 1/1000 g), in which ‘g’ is the gravitational force. Even
though the sampling frequency of this device was configurable, the sampling frequency was set to
20.0 Hz, as it was used to monitor ADL and also to prevent too much data were generated due to high
sampling rate. Ten normal subjects were chosen and have been asked to wear the device for 24 h a day
during their normal routine. After a maximum of 30-days, data were downloaded at the data-server
station, and the subjects were given another device immediately for continuous data recording.
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Figure 1. (a) Accelerometer-based GENEActiv device, Activinsights Ltd., Huntingdon, UK. (b) Walking
subject with GENEActiv device on right-wrist. (c) Physical dimensions and side view of the GENEActiv
device. (d) Top view of the device.

Downloaded data were then further analyzed and interpreted. A mathematical model has been
proposed and implemented for the data processing and parameters for quantifying and assessing PAs
that were defined, quantified, and evaluated. A brief description about data analytical models are as
given below.

2.1. Data Analytical Models

With the fact that the kinematic energy associated with human activities can be given as (1),

E =
1
2

mv2 (1)

in which ‘m’ is the human’s body mass moving with a velocity of ‘v’. Since v = a·∆t + v0, in which ‘a’
is the moving acceleration of the body in the time interval of ‘∆t’, and ‘v0’ is the initial velocity. If the
movement starts from rest position, then the initial velocity, ‘v0’, can be taken as 0, and v = a·∆t. Now,
the kinematic energy in (1) will be proportional to the square of acceleration, as in (2), assuming that
the subject’s mass is constant over the period ∆t.

E ∝ a2 (2)

The magnitude of acceleration, Aj, at the data instance j could be calculated as in (3), and since
only the magnitude is calculated, the impact of the orientation of accelerometer will be eliminated.
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Aj =

√(
a2

x_j
+ a2

y_j
+ a2

z_j

)
(3)

In (3), ax_j, ay_j, and az_j are the raw data from accelerometer along the X-, Y-, and Z-axis sampled
at the time instance j. The standard deviation, σ, of the acceleration magnitude within a pre-defined
epoch period can be calculated as in (4).

σ =

√
1
N ∑ N

j=1

(
Aj − µ

)2, where µ =
1
N

(A1 + A2 + A3 + · · · · · · · · ·+ AN) (4)

In (4), N is total number of acceleration data points measured in the epoch period, and µ is
the mean value of the total acceleration within that period. Since the acceleration measured by the
accelerometer also contains gravity force all the time; therefore, the average of total acceleration within
a short period can be considered as the gravity. Hence, deducting the acceleration’s mean value ‘µ’
from the magnitude of acceleration Aj measured by accelerometer will give the net acceleration of the
body movement. Therefore, the square of standard deviation, σ, calculated in (4) can be considered
as the average of the square of total net acceleration within the epoch period, such that the human
kinematic energy will also be proportional to the square of standard deviation, σ, as in (5).

E ∝ a2 ∝ σ2 (5)

Since the square of standard deviation, σ2, over the epoch period is very small and usually less
than 1, so the standard deviation, σ, is taken into consideration in the model proposed in this study
for the larger value represented. Regarding the results, an activity index (AI) is proposed as the
summation of the standard deviation, σ, over a desired time interval, as shown in (6).

AI = ∑ M
k=1σk (6)

in which M is the total number of epoch periods within the time interval and σk represents the standard
deviation of acceleration in the k-th epoch period within that time interval. In the implementation of
the data analytical models described here, a 5-s epoch period is considered. The choice of 5-s epoch
period typically will not cover more than two activities within that epoch period and will still generate
manageable amounts of data in the computation. Since the sampling frequency of the accelerometer in
the device was set to 20 Hz, within the 5-s epoch period, there will be 100 measured data points, i.e.,
N = 100 as in (4). To generate a minutely-wise AIs, i.e., choosing one minute as a basic time interval,
then there will be 12 epoch periods in the time interval, and hence M = 12 as in (6).

2.2. Categorization for Different Levels of Activities

With the AI introduced in Section 2.1, testing of 14 different activities of daily life (ADL) and
each activity lasted for 3 min was conducted with 10 normal subjects wearing the device. These
activities included sleeping, sitting and watching TV, sitting and reading newspaper, sitting and web
browsing, housekeeping, driving, walking—no hand-swing, walking—with hand-swing, upstairs—no
hand-swing, upstairs—with hand-swing, downstairs—no hand-swing, downstairs—with hand-swing,
jogging—no hand-swing, and jogging—with hand-swing. Among these 10 different normal subjects
under test, only the types of activities to perform for testing were instructed; no detailed constraints,
such as numbers of body turns during the sleep, moving (swing) frequency of the arms, walking speed,
etc., were asked to be followed. Figure 2a shows a normal subject walking with hand-swing during
the test, and Figure 2b depicts the magnitude of acceleration recorded over an epoch period, 5 s, for
the activity, and a sample calculation for the standard deviation of acceleration recorded within that
period is shown as Figure 2b. Figure 2b shows that the 12 standard deviations, σ′s, calculated in a
one minute time interval, and by accumulating such 12 σ′s, a minute-wise activity index, AI, for the
walking with hand-swing is obtained.
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Figure 2. (a) Photo of walking test and (b) acceleration waveform of measured activity and calculation
of AI.

Among these 14 ADL tested, sleeping is considered as a typical rest/sleep level of activity; the
activities sitting and watching TV, sitting and reading newspaper, and sitting and web browsing,
which were all performed in sitting position, are sedentary level activities; housekeeping, driving, and
walking without hand-swing are classified as light level of activities; walking with hand-swing and up
and down stairs, with or without hand-swing, are all moderate levels of activities; finally, jogging with
or without hand-swing are considered vigorous levels of activity.

2.3. Sleep Duration Detection

Figure 3 shows the 24-h AI pattern of a subject. These AIs were calculated minute-wise, and hence
there are 1440 AI values within 24-h period of daily life. The 24-h period started from 12:00:00.000 on
the day and end at 11:59:59.950 on the next day, so that the typical sleep duration during the night can
be covered in a 24-h minute-wise AI pattern completely. From this pattern, it is very clear that around
14:07, the level of AI is very low, as the subject was taking a nap, and the duration between 23:13:00 to
05:52:00 of the next day is also low, as the subject was sleeping.
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Figure 3. 24 h minute AI pattern with sleep state identified.

Although detecting sleep duration with accelerometer has been practiced for a long time, neither
methods use the proposed AI for recognition nor results are precise and accurate enough so that they
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can be used for clinical applications. Sleep duration detection is of utmost importance in the diagnosis
of diseases like insomnia, drowsiness, and other sleep-related disorders. A smart sleep duration
detection algorithm has been developed and is introduced in more detail below. The algorithm is
based on the AI models that have been proposed in previous section.

The flow chart of the sleep duration detection algorithm is shown in Figure 4. The proposed
algorithm consists of two phases. Phase I is to judge whether the subject in current time interval is in
sleeping or awake state. In this phase, the proposed algorithm will thoroughly process all of the AIs
corresponding to all basic time intervals. If the previous time interval is in awake state, the algorithm
will judge if the subject falls asleep in the current time interval; otherwise, it will see if the subject
wakes up during this time interval.
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A subject is said to be in a fuzzy period when the subject just woke up within certain period
of time within the sleep duration, and there are two different criteria to judge if the subject falls
asleep in current time interval or not based on if the subject is in a fuzzy period. This reflects the fact
that a subject will be most likely to fall asleep again when the awaking duration is not long enough.
As a result, relaxed criteria (higher threshold value considered for current AI) could be used to judge
if the subject falls into asleep or not when the subject is in a fuzzy state. Otherwise, stricter criteria
(lower threshold value could be considered for current AI) is used to detect if the subject falls asleep.
Besides the threshold value used, the criteria for a subject to fall asleep in current time interval requires
the number of AIs, i.e., SLEEP_MIN, that is lower than the threshold value, SLEEP_TH, within the
following certain time window 1 to be more than some pre-defined value, SLEEP_MINTH, and also
that the AI of current time interval be lower than the threshold value.

Similarly, judging if the subject wakes up in current time interval requires meeting wake-up
criteria. It is defined as the number of AIs, i.e., SLEEP_MIN, that are lower than the threshold value
within the following certain time window 2 to be less than some pre-defined value, WAKEUP_MINTH,
and for the AI of current time interval to be greater than the threshold value.

After all the AIs of the all basic time intervals have been processed thoroughly, all the sleeping
periods are detected. Then, the algorithm goes into Phase II. Phase II is to merge any two adjacent
sleeping periods into a single period if the duration is less than certain pre-defined time. This phase
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could eliminate the results of fragmented sleep durations detected in Phase I that falsely indicate bad
sleep quality. Typically, people will consider they sleep for a whole period of time but often wake up
during sleep instead of having fragmented sleep durations. Phase II considers this situation and, as a
result, will have more matched and accurate sleep duration with the subject’s intuitive cognition.

As per the assessment of AI under rest/sleep level of activities in previous section, the AI is less
than 0.1 within the 1-min time interval under rest/sleep status. Hence, AI value of 0.1 is used in the
very beginning of the sleep duration detection algorithm to judge if that time interval is in AWAKE
state or not.

2.4. Quantification of Regularity of ADL

In the IRB testing, a typical situation was that a single subject with un-regular living patterns in
two consecutive days has been observed; this is shown in Figure 5. Indeed, the subject went to the
emergency room (ER) for urgent health situation on the next day. Apparently, as in top of Figure 5,
the subject’s sleep duration was between 21:21:01 on the day to 04:41:01 of the next day. However,
according to the AI pattern of the next day, as in the bottom of Figure 5, the subject went to bed
around 04:00:01 in the morning and woke up at 07:21:01 with only very short sleep duration and also
in extremely irregular time slot. This situation suggested that the subject’s life style on these two
consecutive days was extremely irregular, which might result in his visiting ER the next day. This
observation motivated the need for a quantification assessment of regularity of ADL.
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As shown in Figure 6a, there are 1440 data points of minute-wise AIs in a 24-h day, which raises
significant complexities for further processing. Therefore, hour-based AI patterns were generated
by taking the cumulative values of 60 min-wise AIs patterns into the total AI within an hour. As a
result, hourly AI patterns of the day are generated, as shown in Figure 6b. By finding the correlation
coefficient between the hourly AI patterns of day i−1 and day i, as shown in Figure 6c, the result can
indicate the regularity of ADL of the day i with respect to the previous day i−1, namely, day-to-day
Regularity Index (RI). Similarly, if the hourly AI patterns of day i are compared with the patterns of
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the day one week before, i.e., day i−7, then it is called week-to-week Regularity Index. Since the range
of the correlation coefficient is in between −1 and +1, the result of +1 means the ADL pattern of day i
is the same as day i−1. 0 stands for totally uncorrelated and −1 stands for totally inversely correlated.
With the continuous monitoring of days for human’s ADL, the trend for the regularity of that subject’s
living style can be plotted as in Figure 6d.
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3. Results

As described in Section 2.2, 14 different types of daily physical activities (PAs) were performed
by 10 normal subjects with GeneActiv devices worn on their wrists. Maximum and minimum values
of AI for a specific PA have been identified; furthermore, the mean value of AI for that type of PA
was calculated. As there were no detailed constraints, such as numbers of body turns during sleep,
moving (swing) frequency of the arms, walking speed, etc., for any specific type of activity that were
followed in the test, the range of maximum and minimum AIs for some types of activities were quite
large. However, they can still be categorized into different levels of activity based upon their mean AI
values; furthermore, the AI value falls between the specific maximum and minimum ranges, as shown
in Table 1. For instance, mean AI value less than 0.1 indicates that the subject under observation was
sleeping or resting, similarly, mean AI value between 0.1 and 0.5 will be considered as subject was
performing sedentary types of PAs. For light PAs, the mean AI falls between 0.5 and 2.0. Moderate
PAs could be considered as having mean AI in the range of 2.0~4.0. Additionally, all PAs having mean
AI greater than 4.0 could be considered as performing the vigorous activities. The level of activities
that have been categorized are shown as the yellow line in Figure 5, with rest/sleep leveled at 0 and
vigorous activities leveled at 4 respectively.

With the same acceleration data, a 24-h minute-wise AI pattern starting from the noon of a day
to the noon of next day were analyzed by the proposed smart sleep duration detection algorithm to
detect the sleep duration with a precision up to 1 min. The red line in Figure 3 shows the identified
sleep states, and it represents ‘awake’ state by ‘0’ and ‘sleep’ state by ‘1’. As stated, through the phase
II—sleep period merging, no more fragmented sleep periods were generated due to the bad sleep
quality. The sleep quality can also be quantified by calculating the average minute-wised AI during
the sleep duration. Larger value means there were more activities during the sleep, and hence it stands
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for bad sleep quality. Smaller values mean few activities occurred during the sleep, which indicates
good sleep quality.

Table 1. Classification of different PAs based upon AI.

Daily Life Activities Level of Activities Maximum Minimum Mean

Rest/Sleeping REST/SLEEP 0.096975 0.082482 0.088523
Sit-Watching TV SEDENTARY 0.345286 0.092849 0.186028

Sit-Reading News paper SEDENTARY 0.466089 0.090514 0.301787
Sit-Web browsing SEDENTARY 0.12198 0.100102 0.111355

Housekeeping LIGHT 1.604074 0.829076 1.222838
Driving LIGHT 1.378413 0.976756 1.171664

Walking-no Hand-Swing LIGHT 2.334001 0.648251 1.59335
Walking-w/Hand-Swing MODERATE 3.973975 2.048219 2.541614

DownStairs-no Hand-Swing MODERATE 8.124398 1.673799 3.890505
DownStairs-w/Hand-Swing MODERATE 3.40835 1.243286 2.415157

UpStairs-no Hand-Swing MODERATE 2.602795 2.352814 2.515802
UpStairs-w/Hand-Swing MODERATE 2.464628 2.308799 2.393241
Jogging-no Hand-Swing VIGOROUS 12.95352 4.437786 8.742815
Jogging-w/Hand-Swing VIGOROUS 7.27138 4.832407 6.033422

Regularity Index (RI) of ADL, which is the correlation coefficient between the hourly AI patterns
of day i−1 and day i, effectively represents the regularity of PAs on hourly-basis on the day i and is in
the range of ±1. Table 2 lists an example of one-week data for a subject, arranged from noon to noon
of next day; hourly AIs are listed in different columns with respect to the dates. RI value of +1 means
the ADL pattern of the day i is the same as of day i−1; 0 stands for totally uncorrelated, and −1 stands
for inversely correlated.

Table 2. A sample of one-week data, illustrating assessment of RI.

Hour\Date 9 May 2018 10 May 2018 11 May 2018 12 May 2018 13 May 2018 14 May 2018 15 May 2018

12:00:00 91.6985 7.9372 52.1803 39.1756 16.1481 120.7643 7.4088
13:00:00 68.0396 155.7581 104.2664 20.2958 190.7752 68.5014 59.4915
14:00:00 60.9835 132.4570 209.2683 47.8527 165.0358 24.0670 79.0501
15:00:00 127.9568 97.1954 152.4025 63.6552 72.7410 17.4707 110.0526
16:00:00 50.0016 37.5953 5.2637 20.1774 34.5341 125.6139 55.4181
17:00:00 52.6829 63.8394 5.0618 40.1613 60.5130 50.6716 35.2950
18:00:00 58.4110 44.1087 15.8595 39.5041 35.8857 16.3036 43.0587
19:00:00 30.3024 11.9919 23.8395 20.0936 34.3655 24.9894 19.2359
20:00:00 32.9313 44.0399 19.5678 19.0029 49.1668 21.5088 42.3071
21:00:00 25.9622 20.2555 32.2234 16.1118 45.0717 18.5637 26.7250
22:00:00 13.7704 16.6188 12.7696 9.2744 26.0573 9.6644 16.1690
23:00:00 8.8460 11.4903 13.3283 9.6019 16.6092 8.3738 10.8001
00:00:00 9.1765 8.0131 11.8799 9.2327 12.3928 7.2355 7.0924
01:00:00 11.7781 13.9831 9.7203 7.5271 18.6474 12.4477 7.9296
02:00:00 7.1743 25.7008 6.9460 10.2525 9.9166 7.7463 15.6859
03:00:00 6.9395 16.4114 8.0269 7.3836 13.6776 7.3144 8.6616
04:00:00 6.9992 18.5755 10.9319 6.9433 13.1182 7.3127 11.0475
05:00:00 6.6685 66.1852 33.5049 10.2133 87.0340 81.8432 69.0056
06:00:00 51.9434 60.5493 53.4563 45.3398 28.0925 201.7091 43.4253
07:00:00 60.3498 146.4305 152.9999 199.2066 72.4182 161.1731 138.3872
08:00:00 146.0198 185.8036 184.6546 132.9641 95.0854 98.3405 239.4251
09:00:00 109.5714 126.9927 105.3715 178.1697 16.5196 96.5270 150.3620
10:00:00 50.1309 97.9686 48.7204 84.0562 42.8646 131.4003 77.6424
11:00:00 53.7380 95.5183 34.1327 74.0714 37.0004 53.0020 78.3121

RI - 0.7078 0.8386 0.6484 0.1430 0.1105 0.4395

4. Discussions and Conclusions

With the proposed analytical model representing the quantified PAs and different levels of PAs
identified in this study, several parameters can be used to evaluate the status of subject with the
activity-based information. As shown in Table 3, besides the AI/min. (minute-wised activity index)
and day-to-day RI introduced previously, a simple total summation of the AIs over the whole day,
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i.e., T_AI, can simply indicate the total amount of activities within the day performed by the subject.
The SL_T and SL_Q representing the sleep hours and sleep quality can indicate the amount of time that
the subject was asleep or in rest during the day and the quality of the sleep/rest, respectively. T_[level
of activity] stands for the total number of hours that a subject can perform certain level of activities.
For example, if the information of the duration that a subject performed activities above certain level
(including the specific level) is required, then it can be calculated with T_[Level] + T_[Level+1] +
. . . + T_[4]. The last parameters, A[x]_T_[level of activity], which are of interest, constitute the time
duration that a subject performed certain level of activities within certain time window from when the
subject was awoke. This may indicate the capability of that subject performing certain level activities
within the time window from getting enough rest, i.e., period from when they awoke. For example,
in some clinical applications, the capability (evaluated by the time duration) that people can perform
activity levels greater than or equal to 3 (moderate level) within 3 h when they awake may be a strong
indication representing their lung condition.

Table 3. Parameters used for activity-based monitoring.

Parameters Meanings

AI/min. Activity Index/min.—minute-wised activity index

T_AI Total Activity Index of a Day—summation of all the
minute-wised AIs within a day

D_RI D-to-D Regularity Index—regularity index between the day
and the day before

SL_T Sleep hours—number of hours in sleeping/resting
SL_Q Sleep quality—average minute-wised AI in sleep duration

T_[Level of Activity] Hours of Activity [Level]—total time duration performing
certain level of activities in a day

A[x]_T_[Level of Activity]
Duration of Activity [Level] within [x] hours after

awake—time duration of performing certain level of activities
within [x] hours after awake

With these parameters or even by combining these, they could be strong indicators for many
medical-care applications by analyzing either the changes of the long-term trends of these parameter
or some machine learning algorithms. In this study, analytical models and methods were proposed
to perform activity-based monitoring with accelerometer-based wearable devices. A new parameter,
activity index (AI), has been introduced and used to categorize different PAs into 5 levels. Another
new parameter, regularity index (RI), has been proposed to represent the degree of regularity of ADL.
It provides a quantitative measurement of the regularity of living and can be used for many quantified
risk assessments of certain diseases. The proposed models and calculations are simple enough to have
them implemented into existing accelerometer-based wearable devices. Hence, they are extremely
suitable for further applications combining cloud computing services and IoT-based online health
monitoring platform, or for monitoring the health condition of a patient discharged from the hospital
and predicting their next re-hospitalization by observing varying patterns in ADL.
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