Supplementary Materials: Microfluidic-based method for measuring RBC aggregation and blood viscosity in a continuous and simultaneous fashion

Yang Jun Kang

Figure S1. Microscopic images of blood flow with respect to blood flow rate (QBlood) and concentrations of dextran solution (Cdextran). Hematocrit of blood was adjusted to 50% by adding normal RBCs into a specific concentration of dextran solution (Cdextran) (Cdextran = 0 mg/mL, 5 mg/mL, 10 mg/mL, and 15 mg/mL). Blood and PBS solution were simultaneously supplied into the microfluidic device, at the sample flow rate (QBlood=QPBS=Q). (A) Microscopic images representing RBC aggregation of blood (RBCs suspended in PBS solution) with respect to Q. (B) Microscopic images representing RBC aggregation of blood (RBCs suspended in dextran solution (Cdextran= 5 mg/mL)) with respect to Q. (C) Microscopic images representing RBC aggregation of blood (RBCs suspended in dextran solution (Cdextran= 10 mg/mL)) with respect to Q. (D) Microscopic images representing RBC aggregation of Diod (RBCs suspended in dextran solution (Cdextran= 10 mg/mL)) with respect to Q. (D) Microscopic images representing RBC aggregation of Diod (RBCs suspended in dextran solution (Cdextran= 10 mg/mL)) with respect to Q. (D) Microscopic images representing RBC aggregation of Diod (RBCs suspended in dextran solution (Cdextran= 10 mg/mL)) with respect to Q. (D) Microscopic images representing RBC aggregation of Diod (RBCs suspended in dextran solution (Cdextran= 10 mg/mL)) with respect to Q. (D) Microscopic images representing RBC aggregation of Diod (RBCs suspended in dextran solution (Cdextran= 15 mg/mL)) with respect to Q.