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Abstract: Breast cancer (BC) is the most common type of cancer in women worldwide; it is a
multifactorial genetic disease. Acetylation and deacetylation are major post-translational protein
modifications that regulate gene expression and the activity of a myriad of oncoproteins. Aberrant
deacetylase activity can promote or suppress tumorigenesis and cancer metastasis in different types
of human cancers, including breast cancer. Sirtuin-1 (SIRT1) is a class-III histone deacetylase (HDAC)
that deacetylates both histone and non-histone targets. The often-described ‘regulator of regulators’ is
deeply implicated in apoptosis, gene regulation, genome maintenance, DNA repair, aging, and cancer
development. However, despite the accumulated studies over the past decade, the role of SIRT1
in human breast cancer remains a subject of debate and controversy. The ambiguity surrounding
the implications of SIRT1 in breast tumorigenesis stems from the discrepancy between studies,
which have shown both tumor-suppressive and promoting functions of SIRT1. Furthermore, studies
have shown that SIRT1 deficiency promotes or suppresses tumors in breast cancer, making it an
attractive therapeutic target in cancer treatment. This review provides a comprehensive examination
of the various implications of SIRT1 in breast cancer development and metastasis. We will also
discuss the mechanisms underlying the conflicting roles of SIRT1, as well as its selective modulators,
in breast carcinogenesis.

Keywords: breast cancer; SIRT1; deacetylation; epigenetic silencing; tumor promoter; tumor
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1. Introduction

Breast cancer is a genetically heterogeneous disease that remains the most commonly diagnosed
malignancy amongst women worldwide. It is also the second leading cause of cancer death among
females in developed countries after lung cancer [1]. Epigenetic alterations of proteins, histones, and
chromatin play a fundamental role in gene expression regulation and ultimately, cancer formation.
Reversible protein acetylation and deacetylation are amongst those alterations [2]. Histone deacetylases
(HDACs) are major actors in gene expression regulation. By removal of acetyl groups from N-terminus
tails of histones, HDACs repress the expression of genes implicated in the carcinogenesis process,
such as oncogenes and tumor suppressor genes (TSGs). In addition to histones, HDACs regulate the
expression and activity of a myriad of proteins involved in both cancer initiation and progression.
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Furthermore, aberrant expression of HDACs in various human cancers, and consequently their
dysfunctional deacetylase activity, is deeply involved in the carcinogenesis process [3].

Sirtuins (SIRTs) are nicotinamide adenine dinucleotide (NAD+)-dependent class-III HDACs
or lysine deacetylases (KDACs) that belong to the silent information regulator 2 (SIR2) family.
The seven mammalian sirtuins (SIRT1–7) are key regulators in major biological processes, including
cell death and survival, regulation of genomic stability, cellular senescence, metabolic regulation and
inflammation [4,5]. Therefore, sirtuins have gained tremendous attention in the past decade in cancer
research and numerous studies have demonstrated their direct implication in the carcinogenesis process
of multiple human cancers [6]. Silent mating type information regulation 2 homolog 1 (Sirtuin-1)
is the founding member of the sirtuin family and the most extensively studied. SIRT1 is expressed
ubiquitously and is mainly found in the nucleus, but can shuttle between the nucleus and cytoplasm
using its two nuclear localization signals and two nuclear export signals [7]. Due to its deacetylase
activity, SIRT1 regulates a wide variety of fundamental cellular processes including apoptosis, DNA
damage response and repair, cell differentiation and proliferation, chromatin remodeling and gene
expression, endocrine signaling, aging, metabolism, stress response, and cancer development and
metastasis [4,5,8–10]. Similar to most HDACs, aberrant SIRT1 expression is identified in numerous
human malignancies and is directly linked to the tumorigenesis process and metastasis.

The implications of SIRT1 in breast cancer occurrence and development have been reported
and largely studied over recent years, but its exact role in breast cancer remains very controversial
and paradoxical so far. In fact, bifurcated SIRT1 can act as either a tumor suppressor or promoter in
cancer cells. This highly context-specific role of SIRT1 in breast carcinoma seems to depend mainly
on its upstream regulators or downstream substrates, as well as on its spatial distribution, cellular
and molecular context, and tumor types. In this review, we summarize available data and give a
general overview of the multiple implications of SIRT1 in breast tumorigenesis. We also explore the
mechanisms underlying SIRT1 opposite functions in breast carcinogenesis.

2. The Multifaceted Functions of HDAC SIRT1 in Cancer Biology

Other than histone deacetylation, the functional roles of SIRT1 are fulfilled by directly interacting
with and deacetylating a wide range of downstream non-histone substrates, resulting in activation or
repression of their catalytic activity. SIRT1 deacetylase activity regulates:

1. Tumor suppressors, including p53 [11], p73 [12], Forkhead transcription factors (FoXO) [13],
E2F1 [14], and Rb (Retinoblastoma) [15].

2. Tumor promoters, including c-Myc [16], N-Myc [17], cortactin (CTTN) [18], NF-κB [19],
β-catenin [20], and HIF-1α [21].

3. Chromatin-related enzymes, including p300 [22], hMOF and TIP60 [23], PCAF [24], HDAC1 [25],
DNMT1 [26], SUV39H1 [27], and EZH2 (enhancer of Zest 2) [28].

4. Nuclear receptors and related factors, including estrogen receptor-alpha (ER-α) [29], androgen
receptor (AR) [30], liver X receptor (LXR) [31], PPARγ [32], and PPARγ coactivator 1α
(PGC-1α) [33].

5. DNA damage repair enzymes, such as Ku70 [34], XPC [35], XPA [36], APE1 [37], and WRN [38].

As a result of its diverse biological functions, multifaceted SIRT1 is critically implicated in the
occurrence and progression of numerous human malignancies. Yet researchers have long been baffled
by SIRT1 contradictory actions in the carcinogenesis process, and its involvement in cancer biology
remains an open question.

3. SIRT1-Dependent Epigenetic Silencing via Histone Modification in Breast Carcinogenesis

SIRT1 lysine deacetylase activity regulates chromatin structure and transcription through
epigenetic mechanisms [9]. Lysine acetylation of histones H3 and H4 is classically associated with
transcriptional activation and increased gene expression. On the contrary, their deacetylation is
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generally associated with inactive chromatin and repression of gene expression [39]. In carcinogenesis,
histone deacetylation leads to epigenetic silencing of various cancer-related genes; thus, HDACs
could exert either tumor-promoting or tumor-suppressive roles depending on whether the repression
happens in the genomic region of a tumor suppressor or a tumor promoter respectively. HDAC
SIRT1 embodies these properties, and orchestrates the regulation of multiple cancer-related genes
through histone deacetylation. Indeed, SIRT1 contributes to the epigenetic silencing by deacetylating
H3 and H4 acetylated markers such as histones H3 lysine 4 (H3K4) [40], lysine 56 (H3K56) [41], lysine 9
(H3K9), lysine 14 (H3K14), and histone H4 lysine 16 (H4K16) [42,43]. In breast cancer, SIRT1-dependent
epigenetic silencing of both oncogenes and TSGs is reported.

Pruitt et al. demonstrated that SIRT1 deficiency re-activates aberrantly silenced TSGs by increasing
the acetylation of H3K9 and H4K16 epigenetic markers at their promoters in two breast cancer (BC)
cell lines, indicating SIRT1-mediated epigenetic repression of TSGs through histone modifications
in BC [44]. In contrast, Wang et al. revealed a tumor suppressor role of SIRT1 in BC. They reported
that SIRT1 inhibits tumor growth in vivo by suppressing the expression of survivin, a member of the
inhibitor of apoptosis (IAP) family that drives cell proliferation and viability [45]. SIRT1-mediated
epigenetic silencing of survivin occurs through deacetylating the H3K9 marker on the survivin
promoter, consequently suppressing its transcription in mammary tumors [46]. To address the
confusion regarding SIRT1-dependent epigenetic regulation in BC pathogenesis, we characterized
in recent studies an aspect of SIRT1 epigenetic behavior in human breast carcinoma. We showed
that the opposite functions of SIRT1 in breast cancer are closely related to the molecular subtype.
By modulating the acetylation status of key H3 and H4 epigenetic markers in a subtype-specific
fashion, SIRT1 is more likely to exert an oncogenic role in luminal molecular subtypes and a tumor
suppressor role in the triple-negative subtype (TNBC), also known as basal-like, both in vitro and
ex vivo. Furthermore, we revealed that SIRT1 deficiency is associated with substantial induction
of acetylated markers on six breast cancer-related gene promoters: AR, BRCA1, ERS1, ERS2, EZH2,
and EP300, suggesting an active role of SIRT1 in regulating the expression of these genes in BC.
We concluded that SIRT1 differential epigenetic regulation in breast cancer is predominantly governed
by gene type and molecular subtype [40,47]. Other than BC, the duality of SIRT1 epigenetic regulation
was also highlighted in colorectal cancer [48].

In fact, SIRT1-mediated epigenetic regulation extends to histone acetyltransferases (HATs), and
other histone modifiers involved in transcription repression. SIRT1 fine-tuning of gene expression
regulation is partly manifested through the repression of acetyltransferase activity of major HATs.
Remarkably, these HATs acetylate the same histone targets as SIRT1. For instance, SIRT1 downregulates
and blocks the activity of p300 of the p300/CBP family [22], hMOF and TIP60 of the MYST family [23],
and PCAF of the GNAT family [24]. It stabilizes and stimulates the activity of HDACs, e.g.,
HDAC1 [25], DNA methyltransferases, e.g., DNMT1 deacetylated at Lys1349 and Lys1415 [26], and
histone methyltransferases (HMTs), e.g., SUV39H1, deacetylated at Lys266 [27]. Furthermore, SIRT1
interacts and has a close functional relationship with EZH2, an essential HMT that constitutes the
core catalytic subunit of polycomb repressive complex 2 (PRC2). SIRT1 and EZH2 form part of the
PRC4 complex, along with other polycomb group proteins which are found overexpressed in breast
cancer tumors. The two enzymes recruit SUV39H1 and DNMT1 to promote transcriptional repression
at targeted genes [27,28,49,50]. Collectively, the data indicated that SIRT1 epigenetic regulation of
gene expression is implemented by the means of regulation both, histone markers and their epigenetic
‘writers’ and ‘erasers’.

4. SIRT1 Assuming the Role of Tumor Promoter in Breast Carcinogenesis

The ‘guardian of the genome’ p53, a vital TSG that is frequently mutated in human tumors, was
one of the first identified non-histone substrate of SIRT1 and the first evidence of SIRT1 implication
in tumorigenesis. SIRT1 deacetylation of p53 at its Lys382 residue (p53K382) results in repression of
p53-dependent apoptosis in response to DNA damage and promotes cell survival [11]. Upon DNA
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damage stimuli, SIRT1-mediated deacetylation of p53 is optimized by breast cancer metastasis
suppressor 1 (BRMS1) [51]. BRMS1 potentiates SIRT1 activity through physically interacting with
deleted in breast cancer 1 (DBC1), a negative regulator of SIRT1 [52]. SIRT1 also deacetylates and
represses the activity of other damage-response enzymes, the mammalian forkhead transcription
factors FoXO3a and FoXO4, inhibiting forkhead-dependent cell death [13,53]. In addition, SIRT1 binds
to and inhibits the activity of E2F1, a tumor suppressor and apoptosis regulator, impairing its apoptotic
functions [14]. SIRT1 also downregulates the activity of the tumor-suppressing retinoblastoma protein
(Rb). Deacetylation of Rb by SIRT1 formed a domain similar to the SIRT1-targeted domain of p53,
resulting in inhibiting Rb-dependent apoptosis [15]. Furthermore, SIRT1 overexpression in tumors is
associated with upregulation of various oncoproteins. For example, SIRT1-dependent deacetylation
of prototypic Myc oncogenes, c-Myc and N-Myc, enhances their stability and transcriptional activity,
resulting in cancer cell survival and proliferation [16,17], respectively.

On the premise that SIRT1 is upregulated in various human cancers, SIRT1 could act as a tumor
promoter. Since an abundance of SIRT1 expression is observed in breast tumors, many studies assert
an oncogenic role of SIRT1 in breast carcinogenesis, and clinical studies demonstrated SIRT1 as a
prognostic factor that significantly correlates with unfavorable clinicopathological factors. Actually,
SIRT1 overexpression in breast tumors and mammary BC cell lines is significantly associated with
lymph node metastasis, advanced TNM stage, low grade as per the modified Bloom–Richardson
system, lymphovascular invasion, shorter disease-free survival (DFS), and overall survival (OS),
luminal subtype, ER and PR expression, and is marginally associated with p53 loss [54–56]. Hence,
SIRT1 upregulation is strongly correlated with breast tumorigenesis.

Xu et al. reported an upregulation of SIRT1 in breast tumors and (ER+) luminal BC cell line MCF-7.
The authors revealed that SIRT1 upregulation promotes the proliferation, migration, and invasion of
MCF-7 cells, whereas SIRT1 knockdown inhibits those effects. They showed that SIRT1 overexpression
positively correlates with decreased expression of p53 and increased expression of DNA polymerase
delta1 (POLD1) gene, an oncogene involved in genomic instability and cell proliferation; whilst the
result of SIRT1 silencing is opposite. They concluded that SIRT1 is involved in breast carcinogenesis by
inhibiting p53 and activating POLD1 [57]. This was in line with a study by Jin et al. who revealed that
SIRT1 upregulation significantly promotes breast cancer growth both in vitro and in vivo, whereas
SIRT1 deficiency inhibits cancer cell proliferation. The authors showed that SIRT1 has effects on breast
cancer cell growth through promoting the activity of oncogenic PI3K/Akt signaling pathway in vitro,
and that SIRT1 is positively correlated with the expression of P-Akt in vivo [56]. SIRT1 is also involved
in breast cancer progression and metastasis. Ota et al. demonstrated that SIRT1 inhibition by Sirtinol,
a selective SIRT1 inhibitor, induces a senescence-like growth arrest in luminal cell line. The cellular
senescence induced by SIRT1 inhibition co-occurs with impaired activation of oncogenic Ras–MAP
kinase signaling pathways, implicated in cell growth and proliferation. These findings suggest an
active role of SIRT1 in driving cell proliferation through Ras-MAP kinase signaling pathways [58].
Meanwhile, Zhang et al. found that SIRT1 and Cortactin; an oncogene associated with breast cancer
metastasis), are more abundant in breast tumors than in their normal adjacent tissues. They showed
that SIRT1-mediated deacetylation of cortactin promotes cell migration and breast tumorigenesis [18].

Meanwhile, SIRT1 oncogenic activity in BC is downregulated by different subclasses of
miRNAs [59]. MiRNAs are small non-coding microRNAs that regulate the expression of many
cancer-related genes. A recent study by Zou et al. reported that SIRT1 is negatively regulated by
miR-22, a subclass of miRNAs, in the ER+ MCF-7 cell line. The authors showed that an ectopic
expression of miR-22 reduces the proliferation, migration and invasion of MCF-7 cells, whereas
SIRT1 overexpression eliminates the suppressive effects of miR-22. They concluded that miR-22
inhibitory effects are partly fulfilled by downregulating SIRT1 expression in vitro [60]. A similar
study by Zhang et al. confirmed SIRT1 as a direct target of miR-22 in both (ER+) and (ER−) cell lines.
The authors showed that SIRT1 knockdown induces apoptosis, inhibits tumorigenesis, and enhances
radiosensitivity of breast cancer cells. In addition, miR-22 overexpression suppresses tumorigenesis
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and improves radiosensitivity of breast cancer cells by targeting SIRT1 in vitro. They concluded on the
same note as Zou et al. [61].

SIRT1 is a confirmed target of another subclass of miRNAs. MiR-34a represses SIRT1 expression
through a miR-34a-binding site within the 3′UTR of SIRT1. MiR-34a-mediated inhibition of SIRT1 leads
to an increase of acetylated p53 and consequently, increased expression of pro-apoptotic genes p21 and
PUMA in colon cancer cells [62]. In breast cancer, an ectopic expression of miR-34a inhibits the growth
of breast cancer cells by inducing apoptosis and suppressing cell migration in both ER+ and ER−
cell lines. It was revealed that miR-34a tumor-suppressive role is partly implemented by the means
of suppressing SIRT1 expression in vitro [63]. Another study showed that SIRT1 downregulation or
miR-34a upregulation inhibits cell proliferation and colony formation ability in the MCF-7 cell line,
as well as in CD44+/CD24− breast cancer stem cells (BCSCs). SIRT1 knockdown in BCSCs positively
correlates with decreased expression of BCSCs markers: ALDH1, BMI1, and NANOG. In addition,
a stable expression of miR-34a or silencing of SIRT1 reduces tumor growth in nude mice xenografts.
SIRT1 downregulation also positively correlates with decreased ALDH1 in vivo. It is postulated then,
that miR-34a upregulation suppresses the proliferative potential of BCSCs in vitro and in vivo by
partially downregulating SIRT1 [64]. The diverse tumor-promoting properties of SIRT1 in breast cancer
are resumed in Table 1.

Table 1. Mechanisms of action of SIRT1 tumor-promoting functions in breast carcinogenesis. SIRT1:
sirtuin-1; TSG: tumor suppressor gene; POLD1: DNA polymerase delta1; BC: breast cancer; BCSC:
breast cancer stem cell.

Mechanism of Action References

SIRT1 represses TSG expression through epigenetic silencing [44]
SIRT1 upregulation positively correlates with p53 downregulation and POLD1 upregulation [57]

SIRT1 stimulates the activation of PI3K/Akt signaling pathway [56]
SIRT1 downregulation co-occurred with impaired activation of Ras-MAPK signaling pathway [58]

SIRT1-mediated deacetylation of cortactin promotes cell migration [18]
SIRT1 upregulation eliminates the tumor-suppressive effects of miR-22 [60]

SIRT1 downregulation induces apoptosis and enhances radiosensitivity of BC cells [61]
SIRT1 downregulation by miR-34a suppresses proliferation and migration of BC cells [63]

SIRT1 downregulation in BCSCs positively correlates with decreased expression of BCSCs markers
and reduces tumor growth in nude mice xenografts [64]

5. SIRT1 Assuming the Role of Tumor Suppressors in Breast Carcinogenesis

Alternatively, there is much convincing evidence supporting a tumor suppressive role of SIRT1 in
carcinogenesis, considering its implication in maintaining genome integrity via chromatin regulation
and DNA damage response. Following DNA damage, SIRT1 regulates and optimizes DNA repair
pathways, and is required for efficient single-strand and double-strand DNA breaks (DSB) repair [65].
SIRT1 stabilizes and upregulates the activity of DNA damage repair enzymes including Ku70 [34],
XPC [35], XPA [36], APE1 [37] and WRN [38]. Aside from regulating genome stability, SIRT1
represses the expression of oncogenes through epigenetic silencing, and downregulates the activity
of oncoproteins through direct deacetylation. For example, SIRT1 downregulates the transcriptional
activity of the NF-kappaB-dependent cell survival pathway through physically interacting and
deacetylating the RelA/p65 subunit of NF-kappaB at lysine 310 (NF-κB K310) [19]. SIRT1 also impairs
the oncogenic activity of the Wnt/β-catenin signaling pathway. Aberrant activation of this pathway in
various cancers promotes the transcription of many oncogenes through the transcriptional activity of
β-catenin. SIRT1-mediated deacetylation of β-catenin suppresses its ability to activate transcription
and drive cell proliferation [20].

In breast cancer, Wang et al. asserted a tumor suppressor role of SIRT1 through its implication
in DNA damage response and genome integrity. The authors revealed that SIRT1 haploinsufficiency
in SIRT1+/− p53+/− mice facilitates tumorigenesis, whereas SIRT1 activation by resveratrol, a bona
fide activator of SIRT1 [66], reduces tumorigenesis in vivo. Moreover, by mutating the SIRT1
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gene, they found that SIRT1-null mice embryos die during embryonic development and that SIRT1
deficiency causes genetic instability and impaired DNA damage repair. The authors also found an
increased expression of anti-apoptotic oncoproteins Bcl-2 and survivin in SIRT1-null embryos [67].
To investigate this observation, Wang et al. conducted another study on human BRCA1-associated
breast cancers. The authors noticed that lack of BRCA1 in BRCA1-mutant breast tumors is associated
with reduced expression of SIRT1 and high levels of survivin, and showed BRCA1 to positively regulate
SIRT1 expression in vitro. They also demonstrated that SIRT1 activation by Resveratrol blocks cell
proliferation and antagonizes tumor growth through downregulating survivin expression in vivo [46].
Paradoxically, survivin is also repressed by wild-type p53 [45], the latter being a certified target of
SIRT1 [11].

The interplay between SIRT1 and BRCA1 in BC is uncovered in another study. Zhang et al.
revealed that BRCA1 induction suppresses AR-dependent tumor growth through SIRT1 activation in
both (ER+) and (ER−) cell lines. They showed that resveratrol inhibits AR–stimulated proliferation by
activating SIRT1 in vitro, and that SIRT1 overexpression in xenograft model BALB/c mice represses
tumor growth in vivo. They concluded on the note that SIRT1 inhibits breast cancer development
through diverse cellular processes [68], further establishing SIRT1 tumor-suppressive properties in
breast cancer. In fact, the direct functional link of SIRT1 with AR was previously characterized by
Fu et al. who revealed that SIRT1 binds to and downregulates AR activity in vitro. They showed
that SIRT1-mediated repression of AR activity inhibits androgen-induced cell proliferation in prostate
cancer [30]. A recent study by Yu et al. showed that an ectopic expression of SIRT1 in mesenchymal
stem cells (MSCs) effectively suppresses breast tumor growth by inhibiting proliferation and inducing
apoptosis in vivo. The authors found that SIRT1-induced antitumor activity in MSCs is achieved by
increasing CXCL10 expression, a chemotactic factor necessary for the recruitment of the antitumor
natural killer (NK) cells. They showed that breast tumor suppression is carried out through the actions
of CXCL10-recruited NK cells [69].

In addition, SIRT1 reduces drug-resistance in breast cancer. A well-structured study by Shi et al.
reported that SIRT1 deficiency induces chemo-resistance to paclitaxel (PTX), a chemotherapy drug used
to treat BC, by disrupting the SIRT1-PRRX1-KLF4 axis which regulates chemo-resistance. The authors
found that SIRT1 depletion destabilizes PRRX1 and leads to KLF4 upregulation, a core stemness
factor that promotes carcinogenesis. KLF4 subsequently promotes transcription of ALDH1, which
induces BCSCs, confers cellular resistance to chemotherapy, and promotes distant metastasis [70].
SIRT1 was also shown to reduce drug-resistance to tamoxifen (TAM), a widely used drug in the
treatment of luminal BC. Li et al. revealed that SIRT1 silencing leads to TAM-resistance in luminal
MCF-7 cell line (TAMR-MCF-7 cells), whereas SIRT1 restoration compromised brachyury-mediated
TAM-resistance. The authors demonstrated that the overexpression of brachyury, a molecular
mediator of resistance to tamoxifen, enhances TAM-resistance by increasing cell viability, reducing cell
apoptosis, and downregulating SIRT1 expression in vitro. They concluded that brachyury mediates
TAM-resistance by downregulating SIRT1 expression [71]. However, a study by Choi et al. postulated
that SIRT1 overexpression contributes to TAM-resistance in MCF-7 cells by activating FoxO1 (Forkhead
box-containing protein, O subfamily1), which in turn upregulates the expression of MRP2 (multidrug
resistance protein 2) in TAMR-MCF-7 cells [72]. The diverse tumor-suppressive properties of SIRT1 in
breast cancer are resumed in Table 2.
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Table 2. Mechanisms of action of SIRT1 tumor-suppressive functions in breast carcinogenesis. AR:
androgen receptor; MSC: mesenchymal stem cell; NK: natural killer.

Mechanism of Action References

SIRT1 upregulation by resveratrol reduces breast tumorigenesis in vivo
SIRT1 loss causes genetic instability and impaired DNA damage repair

SIRT1 loss positively correlates with an increased expression of oncoproteins Bcl-2 and survivin
[67]

SIRT1 upregulation antagonizes tumor growth by downregulating survivin expression in vivo
SIRT1 represses survivin expression through epigenetic silencing [46]

SIRT1 upregulation inhibits AR–stimulated proliferation in vitro
SIRT1 upregulation represses tumor growth in xenograft BALB/c mice [68]

SIRT1 upregulation in MSCs suppresses tumor growth in vivo through CXCL10-recruited NK cells [69]

SIRT1 downregulation causes chemo-resistance by impairing SIRT1-PRRX1-KLF4 axis [70]

SIRT1 downregulation induces brachyury-mediated tamoxifen-resistance in the luminal cell line [71]

6. The Functional Duality of SIRT1 in Breast Cancer

Conflicting studies concerning SIRT1 ambiguous involvement in breast cancer extend to many
aspects of the disease.

6.1. SIRT1 Role in ER-α-Positive Luminal BC Molecular Subtypes

The oncogenic estrogen/ER-α-mediated signaling pathways stimulate cell proliferation and tumor
growth in luminal hormone-dependent subtypes, through the activation of estrogen-responsive genes
by ER-α transcriptional activity. Yu et al. revealed that SIRT1 binds to and inhibits the transcriptional
activity of ER-α by regulating its acetylation status. They showed that SIRT1 represses the co-activator
synergy between DBC1 and CCAR1, ER-α co-activators that enhance its transcriptional activity. They
asserted SIRT1 as a major regulator of ER-α activity and co-activator synergy [29]. Meanwhile, Moore
et al. reported that SIRT1 inhibits tumor cell reaction to estrogen in vitro. The authors showed that
SIRT1 represses basal and inducible expression of estrogen-responsive genes, while inhibition of
SIRT1 activity results in transcriptional activation of estrogen-responsive genes and consequently,
cancer cell proliferation. They demonstrated that SIRT1-mediated repression of the proliferative
response to estrogens is ER-α-dependent. They concluded that SIRT1 downregulates the ER-mediated
signaling pathway in BC cells [73]. A more recent study by Xu et al. showed that SIRT1-mediated
deacetylation of ER-α represses the transactivation of ER-α and consequently, inhibits the proliferation
of BC cells in vitro. The authors showed that checkpoint suppressor 1 (CHES1) interacts with ER-α and
enhances the recruitment of SIRT1, thus enabling SIRT1-mediated repression of ER-α transactivation
and impairing ER-α transcriptional activity [74]. Furthermore, the SIRT1 activator resveratrol has been
reported to suppress estrogen-dependent growth of luminal BC cells [75]. These studies demonstrated
an anti-tumor role of SIRT1 in luminal subtypes through impairing ER-mediated signaling pathways
(Figure 1).

On the other hand, alternative studies reported an oncogenic role of SIRT1 in luminal breast
tumors. Elangovan et al. revealed that SIRT1 is activated and upregulated by ER-α in response to
estrogens. They showed that ER-α physically binds to and functionally cooperates with SIRT1 toward
the stimulation of breast tumor cells. In addition, SIRT1 inactivation eliminates estrogen/ER-α-induced
cell growth and tumor development, triggering apoptosis and cell growth arrest. The authors
concluded that SIRT1 is required for estrogen-induced breast cancer growth [76]. Another study
by Yao et al. demonstrated that SIRT1 deficiency suppresses ER-α expression and leads to inhibition
of estrogen-responsive gene expression in vitro. They showed that SIRT1 deficiency downregulates
ER-α-mediated estrogen response genes in vivo, impairing ER-α-mediated signaling pathways in
breast tumors. They postulated that SIRT1 may be a co-activator of ER-α in breast cancer [77].
In accordance with these findings, Santolla et al. investigated the expression and function of SIRT1 by
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estrogens in ER-negative BC cells and cancer-associated fibroblasts (CAFs). The authors showed that
estrogens upregulate SIRT1 expression through GPER (G protein-coupled ER) along with subsequent
activation of the oncogenic EGFR/ERK/c-fos/AP-1 transduction pathway in vitro. They demonstrated
that SIRT1 and GPER promote tumor growth both in vitro and in vivo. The authors then asserted a
pro-survival role of SIRT1 and its implication in the prevention of apoptosis and cell cycle arrest [78].

6.2. SIRT1 Role in Non-Hormone-Dependant Triple-Negative Subtype (TNBC)

There are also contrasting studies concerning SIRT1 biological role in the TNBC subtype. Yi et al.
reported that SIRT1 activation by a SIRT1 specific activator YK-3-237, induces the deacetylation of
mt-p53, the oncogenic mutant form of p53, Deacetylation of mt-p53 upregulates the expression of
wild-type p53-targets the PUMA and NOXA pro-apoptotic genes, suppressing cell proliferation and
arresting cell growth of TNBC cell lines [79]. On the other hand, Wu et al. asserted an oncogenic
role of SIRT1 in TNBC subtype. They revealed that an increased expression of SIRT1 is associated
with poor prognosis, shorter DFS and OS, and distant metastasis in both TNBC and non-TNBC
subtypes [55]. These findings are in agreement with those of Chung et al. who reported that SIRT1
upregulation positively correlates with tumor invasion and lymph node metastasis. They also showed
that SIRT1 gene silencing with SIRT1-siRNA significantly reduces the invasion ability of transfected
versus non-transfected TNBC cell lines. The authors suggested the potential role of SIRT1 as a
prognostic indicator, as well as a novel therapeutic target in triple negative BC [80]. Interestingly,
a recent study by Urra et al. showed that SIRT1-mediated activation of AMPK selectively inhibits
fibronectin-dependent migration of TNBC cells. However, the activation of SIRT1/AMPK axis has a
cyto-protective effect in TNBC cells, promoting cell survival and proliferation but suppressing their
ability to migrate. The authors demonstrated that SIRT1/AMPK activation impairs cell migration
by reducing β1-integrin, a key protein involved in fibronectin-stimulated cell migration, on the cell
surface and in turn, reduces cellular adhesion to the extracellular matrix [81].

6.3. SIRT1 Implication in the Epithelial-to-Mesenchymal Transition (EMT) Process, and Breast Cancer
Invasion and Metastasis

The EMT process refers to the transformation of an epithelial cell to a mesenchymal cell; the
process results in repressed E-cadherin expression and loss of cell-adhesive properties of epithelial cells.
It also prevents apoptosis, and is critically implicated in cancer invasion and metastasis [82]. Using
a xenograft mouse model, Simic et al. analyzed the metastatic potential of BC cells with or without
SIRT1 in vivo. They found that SIRT1 upregulation suppresses cancer metastasis by reducing EMT,
consequently maintaining E-cadherin expression; whereas SIRT1 repression promotes metastasis of
breast epithelial cells in an orthotopic model of breast cancer. The authors also demonstrated that SIRT1
restrains the transforming-growth-factor (TGF)-β-signaling pathway that drives EMT. They postulated
that SIRT1 suppression leads to E-cadherin degradation from the cell surface, thereby releasing
β-catenin from the cadherin junctions to the nucleus, which is the characteristic of mesenchymal
cells [83], thus asserting SIRT1 tumor-suppressive properties in the EMT process of BC. In contrast,
Eades et al. reported that SIRT1 is overexpressed upon EMT-like transformation of human mammary
cells in vitro, and that TGF-β-induced EMT leads to SIRT1 overexpression in epithelial cells. They also
observed an increased SIRT1 recruitment to the E-cadherin promoter, resulting in SIRT1-mediated
epigenetic silencing of E-cadherin, while SIRT1 knockdown restores E-cadherin expression. The authors
also showed that SIRT1 deficiency prevents transformation of mammary epithelial cells by decreasing
anchorage-independent growth and cell migration in vitro, hence indicating SIRT1 role in maintaining
EMT-like transformation of the mammary epithelium [84]. Another study by Jin et al. revealed
that SIRT1 expression is significantly correlated with increased expression of EMT-related proteins,
vimentin and snail-1, and reduced expression of E-cadherin in triple-negative breast tumors; whereas
inhibition of SIRT1 has opposite effects in vitro. They showed that SIRT1 inhibition also reduces the
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invasion ability of TNBC cell lines in vitro. The authors then suggested an oncogenic role of SIRT1 in
association with EMT in tumor invasion of TNBC subtype [85].Cancers 2018, 10, x  9 of 15 
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7. SIRT1 Modulators towards Breast Cancer Treatment

Being a key regulator of numerous cancer-associated processes, SIRT1 has been the subject of
intense research in recent years. As a consequence, countless studies investigated/reviewed the
therapeutic potential of SIRT1 in cancer treatment, and a plethora of small chemical compounds
that modulate SIRT1 activity were discovered and patented [86–89]. These modulators (i.e.,
activators/inhibitors) not only enabled researchers to have a greater understanding of SIRT1 biological
function and regulatory mechanisms, but also showed promising therapeutic applications in clinical
trials for various human diseases, such as metabolic disorders, cardiovascular and neurodegenerative
diseases, endothelial dysfunctions, inflammation, and cancer [90–92]. Although SIRT1 modulators
have proven their efficiency in cancer cells by reducing cell viability and inducing apoptosis, their
therapeutic functions remain utterly related to the role and expression rate of SIRT1 in a specific cancer,
which in turn may vary drastically as we previously described.

While SIRT1 activators were initially favored as calorie restriction mimetics, researchers
demonstrated their beneficial effects in delaying age-related decline in heart function and neuronal
loss, also in preventing tumorigenesis. Resveratrol, a polyphenol described as an anti-aging drug
and calorie restriction mimetic, was amongst the first characterized activators of SIRT1 [66,93].
In breast cancer, we previously showed that SIRT1 activation by resveratrol in SIRT1+/− p53+/− mice
reduces tumorigenesis in vivo [67], as well as AR–stimulated proliferation [68]. Also, resveratrol was
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shown to repress estrogen-dependent growth by impairing ER-α-mediated signaling pathways [75].
Due to shortage in resveratrol bioavailability, synthetic compounds that are structurally unrelated
to resveratrol but 1000-fold more potent were synthesized and collectively named SIRT1-activating
compounds (STAC) [94]. These STACs are currently being used as SIRT1 activators in breast cancer
studies; they include among others SRT1460, SRT1720, SRT2104, and SRT2183 [86,87,91].

SIRT1 inhibitors have shown their therapeutic potentials in the treatment of various pathologies
such as immunodeficiency virus infections, parasitic diseases, Parkinson’s disease, and cancer therapy.
Since SIRT1 is upregulated in multiple types of cancer, anticancer studies were more focused on
SIRT1 inhibitors compared to SIRT1 activators [87,92]. As a result, a wide range of pharmacological
inhibitory molecules were designed and tested such as sirtinol, salermide, splitomicin, cambinol,
suramin, tenovin, nicotinamide, indole derivatives, and their structurally similar analogs. In breast
cancer, in vitro and in vivo studies on ER+ and ER− cell lines showed that SIRT1 inhibition by these
molecules suppresses cancer cell proliferation and induces p53-mediated apoptosis through increasing
the acetylation of its Lys382 (p53K382), or in some cases, induces p53-independent apoptosis by
reactivating proapoptotic genes (such as CASP genes that encode for caspase-3/8/9) that were
epigenetically repressed by SIRT1 [95–100], thus proving the antitumor activity of SIRT1 inhibitors
in BC.

8. Conclusions and Future Directions

In conclusion, regardless of whether SIRT1 has a pro-survival role by repressing TSGs,
upregulating the expression of oncogenes, and activating oncogeneic signaling pathways such as
PI3K/Akt and Ras-MAP kinase, or whether it has a proapoptotic role by reducing tumorigenesis
and AR-mediated proliferation, downregulating the expression of oncogenes, and participating in
ER-α-mediated signaling pathways and the EMT process, there is no doubt as to its significant role
in breast carcinogenesis. Studies showed that SIRT1 plays different roles according to different
BC molecular subtypes. Since BC is characterized by its molecular and clinical heterogeneity,
with variations in gene expression profiles compared to intrinsic subtypes, one might argue that
researchers should take into account the molecular classification of used human mammary tumors
and cell lines in their future studies. Further investigations should also include a statistically sufficient
sample size, and use of multiple cell lines in the same study. Nonetheless, considerable progress
has been made in this research area in the last 10 years. SIRT1 modulators have been discovered or
designed, and clinical studies investigating the therapeutic potential of SIRT1 in cancer treatment hold
promising results. Thus, this research field should be prioritized and more large-scale studies are
needed in order to decipher the code of the enzymatic duality of SIRT1 in breast carcinogenesis.
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