Supplementary Materials: The STAT3/Slug Axis Enhances Radiation-Induced Tumor Invasion and Cancer Stem-like Properties in Radioresistant Glioblastoma

Jang-Chun Lin, Jo-Ting Tsai, Tsu-Yi Chao, Hsin-I Ma and Wei-Hsiu Liu

A

C

B

D

Figure S1. Radioresistant GBM cells display a more invasive phenotype. (A) Representative radio-resistant picture of GBM. The primary GBM cell lines received ionizing radiations (IR) and then irradiated cells also received transwell invasion assay. Then the irradiated/invasinve cells were generated for several cell lines, termed Par, R1I1, and R2. R4I4. (B) Cell viability of survical relative rate to nonirradiaated cell in the cell lines, Par, R1I1, and R2. R4I4. (C) GBMPar and GBM-R2I2 cells in two individual patients were subjected to clongenic assays to assess the glioblastoma cells phenotype. Scale bars: $50 \mu \mathrm{~m}$. ${ }^{*} p<0.01$ by Student's t-test. (D) GBMPar and GBM-R2I2 cells in two individual patients were subjected to invasion assays to assess the glioblastoma cells phenotype. ${ }^{*} p<0.01$ by Student's t-test.

Figure S2. STAT3 activates cell motility and tumor invasion through Slug. (A)Left: A qPCR analysis of EMT-related genes N-cadherin, Snail, Slug, Twist1, Zeb1 and Vimentin. Right: A qPCR analysis ofRT2Profiler PCR Arraygenes. (B) Western blot of the target gene Slug. (C) Transwell invasion assay in GBM-R2I2 cells transfected with sh-STAT3 or sh-Slug versus scrambled shRNA control vector (sh-Scr). Scale bars, $50 \mu \mathrm{~m} .{ }^{*} p<0.01$ by Student's -test. (D) Transwell invasion assay in GBM-Par cells transfected with ectopic STAT3 or Slug versus the vector control (Ctrl). Scale bars: $50 \mu \mathrm{~m} .^{*} p<0.01$ by Student's t-test. The data shown are the mean SD of three independent experiments.

Figure S4. STAT3/ Slug axis silencing increases the synergistic effects with radiosensitivity and prolongs the survival of GBM-R2I2 in vivo. GBM-Par were intracranially transplanted into NOD-SCID mice, and six mice in each group ($n=6$ in each group; total 36 mice). (A) Tumor volumes in GBM-Par r transplanted mice treated with vector control (Ctrl) combined with IR (5Gy) treatment were significantly smaller than those receiving different protocol. * $p<0.01$ by Student's t-test. (B) A qPCR analysis of Oct4, and Sox2 in R2I2/sh-Scr, R2I2/sh-STAT3, and R2I2/sh-STAT3/Slug cells with or without IR in transplanted mice. ${ }^{*} p<0.01$ by Student's t-test. (C) Kaplan-Meier survival analysis further described mean survival rate for animals injected with GBM-R2I2 cells treated with indicated treatments. Mice with GBM-R2I2 cells treated with sh-STAT3 and IR had a significantly prolonged survival rate compared with untreated GBMR2I2 mice. * $p<0.01$ by log rank test. The data shown are the mean \pm SD of three independent experiments. (D)Kaplan-Meier survival analysis further revealed that the mean survival rate for animals injected with GBM-Par treated with indicated treatments. * $p<0.01$ by Student's t test. The data shown are the mean \pm SD of three independent experiments.

Figure S5. The percentage of STAT3-and Slug-positive GBM cells (1st surgery, 9 patients) was dramatically elevated in the tumor-relapse samples (2nd surgery, 4 patients).

Table S1. Primers for Slug promoter constructions, ChIP and Q-ChIP.

Primers for Slug promoter constructions, specific PCR, ChIP		
Slug	Slug Full F	5^{\prime} - AGTCTTGACATCACCACTGT-3 ${ }^{\text {² }}$
	Slug Full R	5 - -GGCTGGGAGGGTTTTTTTTT-3^
	Slug-D1 F	5 - AATTTGTTCTTTCCTTATTCGATAGGGATA-3^
	Slug-D2 F	5°-TCTTCCCGCTTCCCCCTTCCGCCAAGAGGT-3
	Slug-D3 F	$5^{\text { }}$-CTCTCAGCTGTGATTGGATCGAGAGGAAAA-3 ${ }^{\text {² }}$
	Mut Slug F	$5^{\text { }}$-CCCCCTTCCTTTTTCAAGGGCCAAGAGGTAA-3${ }^{\text {² }}$
	Mut Slug R	
ChIP and Q-ChIP for Slug	-38~-27 F	$5^{\text { - CAAACCACTGTACAAAGAATTGTTTGTT-3 }}$
	-38~-27 R	5^{\prime}-TACAGTGGTTTGGTACTAATCATG-3 ${ }^{-1}$
	-472~-463 F	5 - TTTTTCAAAAGCCAAGAGGTAATTATT-3 ${ }^{\text {² }}$
	-472~-463 R	5^{\prime}-TTTTGAAAAAGGAAGGGGGAAGCGG-3
	-1195~-1185 F	$5^{\text {- -TTTTAGCAAAAGATAGGGATAAAAGTC-3}}$
	-1195~-1185 R	$5^{\text {- -TTTTGCTAAAAGAATAAGGAAAGAA-3 }}$
	N. C. F	5^{\prime}-ACCTGTTAGAAACAAGAGTA-3 ${ }^{-1}$
	N. C. R	5^{\prime}-TCTAACAGGTGCTGGAGGAA-3${ }^{\prime}$

ChIP: chromatin immunoprecipitation. N.C: Non-specific control region.
Table S2. The sequences of the primers for quantitative RT-PCR.

Gene (Accession No.)	Primer Sequence (5^{-}to 3^{-})	Product size (bp)	$\mathrm{Tm}\left({ }^{\circ} \mathrm{C}\right)$
STAT3 (NM_003150)	F: AGCAGCACCTTCAGGATGTC R: GCATCTTCTGCCTGGTCACT	168	60
Slug (NM_003068)	F: GTGATTATTTCCCCGTATCTCTAT R: CAATGGCATGGGGGTCTGAAAG	292	55
Snail (NM_005985)	F: CGAGCTGCAGGACTCTAAT R: ССАСТGTCСТСАТСТGACA	231	55
BRCA1 (NM_007294)	F: TGTGAGGCACCTGTGGTGA R: CAGCTCCTGGCACTGGTAGAG	69	55
Rac1 (NM_006908)	F: CACGATCGAGAAACTGAAGGA R: AGCAGGCATTTTCTCTTCСTC	201	58
Rho (NM_000539)	F: GAAGCCACCTGCTCTTTTGC R: CAAGGAAGGTAGGCCCAGTG	174	55

| N-cadherin (NM_001792) | F: CCACGCCGAGCCCCAGTATC
 R: CCCCCAGTCGTTCAGGTAATCA | 232 | 61 |
| :---: | :---: | :---: | :---: | :---: |
| Twist1 (NM_000474) | F: GGGAGTCCGCAGTCTTACGA
 R: AGACCGAGAAGGCGTAGCTG | 277 | 61 |
| Zeb1 (NM_030751) | F: ACTGCTGGGAGGATGACAGA
 R: ATCCTGCTTCATCTGCCTGA | 72 | 55 |
| Vimentin (NM_003380) | F: GCAATCTTTCAGACAGGATGTTGAC
 R: GATTTCCTCTTCGTGGAGTTTCTTC | 118 | 59 |
| Oct-4 (NM_002701) | F: TGTGGACCTCAGGTTGGACT
 R: CTTCTGCAGGGCTTTCATGT | 207 | 58 |
| Nanog (NM_024865) | F: TCTTCCTACCACCAGGGATGC
 R: CACTGGCAGGAGAATTTGGC | 250 | 59 |
| Nestin (NM_006617) | F: CGAGTGGAAACTTTTGTCGGA
 R: TGTGCAGCGCTCGCAG | 74 | 58 |
| Bmi1 (NM_005180) | F: AGGAGGAGTTGGGTTCTG
 R: GGAGTGGAGTCTGGAAGG | 112 | 55 |
| GAPDH (NM_002046) | F:AAATGCTGGAGAACTGGAAAG
 R:CTGTGGATGAGGAGACTGC | 124 | 57 |

Bp, base pairs; Sox2, sex determining region Y-box 2; GAPDH, glyceraldehyde 3-phosphate dehydrogenase.

Table S3. List of proteins tested by antibodies.

Protein	Assay	Antibody	Origin	Dilution	Incubation period
STAT3	WB	mmab	\#9139, Cell Signaling, Inc	1:1000	overnight
	IF			1:1000	
	IHC			1:500	
p-STAT3	WB	mmab	\#4113, Cell Signaling, Inc	1:1000	overnight
Slug	WB	rpab	Ab38551, Abcam, Inc	1:1000	overnight
BCAR1	WB	rpab	Ab80016, Abcam, Inc	1:1000	overnight
Rac1	WB	mmab	Ab33186, Abcam, Inc	1:1000	overnight.
Rho	WB	rmab	Ab17732, Abcam, Inc	1:2000	overnight
N -cadherin	WB	rpab	Ab18203, Abcam, Inc	1:1000	overnight
	IF			1:200	
E-cadherin	WB	mmab	Ab76055, Abcam, Inc	1:1000	overnight
	IF			1:200	
Snail	WB	rpab	Ab180714, Abcam, Inc	1:1000	overnight
	IHC			1:200	
Twist1	WB	rpab	\#4119, Cell Signaling, Inc	1:1000	overnight
Zeb1	WB	mmab	Ab180905, Abcam, Inc	1:2000	overnight
Vimentin	WB	rpab	\#4745, Cell Signaling, Inc	1:1000	overnight
Fibronectin	IF	rpab	Ab2413, Abcam, Inc	1:200	2 hrs
B-actin	WB	mmab	Ab3280, Abcam, Inc	1:10000	

Abbreviations: WB, Western blot; mmab, mouse monoclonal antibody; rmab, rabbit monoclonal antibody; rpab, rabbit polyclonal antibody ;IF, immunofluorescence; IHC, Immunohistochemistry.

Table S4. Primers for $6 \times$ RE STAT3 binding sites reporter construction.

	Primers for 6xRE STAT3 binding sites reporter construction	
	Forward synthesized 5'-	5'-pTTACTCTGAAAATTACTCTGAAAATTACTCTGAAAAT
6xRE	phosphorylated	TACTCTGAAAA TTACTCTGAAAATTACTCTGAAAA-3'

Table S5. STAT3/Slug axis regulated the tumor-initiating activity of GBM in vivo.

Pt. No.	Injected Cells Numbers	R2I2/sh- Scr	R2I2/sh- STAT3	R2I2/sh- STAT3 + Slug	Par/Ctrl	Par/STAT3	Par/STAT3 + sh-Slug
Pt. 1	50,000	$3 / 3$	$3 / 3$	$3 / 3$	$3 / 3$	$3 / 3$	$3 / 3$
	10,000	$3 / 3$	$2 / 3$	$3 / 3$	$2 / 3$	$3 / 3$	$2 / 3$
	1,000	$3 / 3$	$1 / 3$	$3 / 3$	$0 / 3$	$3 / 3$	$2 / 3$
	500	$2 / 3$	$0 / 3$	$1 / 3$	$0 / 3$	$0 / 3$	$0 / 3$
	100	$2 / 3$	$0 / 3$	$1 / 3$	$0 / 3$	$0 / 3$	$0 / 3$
	50	$0 / 3$	$0 / 3$	$0 / 3$	$0 / 3$	$0 / 3$	$0 / 3$
	50,000	$3 / 3$	$3 / 3$	$3 / 3$	$1 / 3$	$3 / 3$	$3 / 3$
	10,000	$3 / 3$	$1 / 3$	$3 / 3$	$2 / 3$	$2 / 3$	$1 / 3$
	1,000	$2 / 3$	$1 / 3$	$1 / 3$	$0 / 3$	$1 / 3$	$1 / 3$
	500	$0 / 3$	$0 / 3$	$1 / 3$	$0 / 3$	$0 / 3$	$0 / 3$
	100	$0 / 3$	$0 / 3$	$0 / 3$	$0 / 3$	$0 / 3$	$0 / 3$
	50	$0 / 3$	$0 / 3$	$0 / 3$	$0 / 3$	$0 / 3$	$0 / 3$

GBM tumor- R2I2/sh-Scr, R2I2/sh-STAT3, R2I2/sh-STAT3+Slug, Par/Ctrl,. Par/STAT3 and $\mathrm{Par} /$ STAT3+sh-Slug transfected cells were transplanted into the brain striatum of mice with different number of cells as indicated $(N=3)$. Each GBM tumor cell type wasinjected into 18 mices.After 8 weeks follow. After 8 weeks follow-up, the presence of tumor nodules in each mouse was determined and listed in the table.

Table S6. GBM patients' description and characteristics.

Patient No.	Age/Sex	Treatment	Survival time
1	$57 / \mathrm{M}$	$1^{\text {st }}$ Surgery + CCRT $+2^{\text {nd }}$ surgery	1.0 yr
2	$83 / \mathrm{M}$	$1^{\text {st }}$ Surgery + CCRT	0.8 yr
3	$69 / \mathrm{F}$	$1^{\text {st }}$ Surgery + CCRT $+2^{\text {nd }}$ surgery	2.3 yr
4	$75 / \mathrm{F}$	$1^{\text {st }}$ Surgery + CCRT	1.8 yr
5	$45 / \mathrm{M}$	$1^{\text {st }}$ Surgery + CCRT $+2^{\text {nd }}$ surgery	3.7 yr
6	$56 / \mathrm{M}$	$1^{\text {st }}$ Surgery + CCRT	3.2 yr
7	$63 / \mathrm{M}$	$1^{\text {st }}$ Surgery + CCRT $+2^{\text {nd }}$ surgery	1.4 yr
8	$48 / \mathrm{M}$	$1^{\text {st }}$ Surgery + CCRT $+2^{\text {nd }}$ surgery	2.7 yr
9	$71 / \mathrm{F}$	$1^{\text {st }}$ Surgery + CCRT	1.5 yr

The second surgery for tumor relapses.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

