Cancers 2018, 10, x 1 of 2 ## Supplementary Materials: The Impact of p53 Dysfunction in ATR Inhibitor Cytotoxicity and Chemo- and Radiosensitisation ## Fiona K. Middleton, John R. Pollard and Nicola J. Curtin Table S1. ATR inhibition by VE-821 in the cell line panel. Cells were co-exposed to 1 μ M gemcitabine with increasing concentrations of VE-821 for 1 hour. The IC₅₀ was interpolated from concentration–response curves. Data are mean and SEM of 3 independent experiments or individual measurements where only 2 experiments were valid. | p53 wt | | p53 mutant | | | |-----------|-----------------|---------------|-----------------|--| | Cell line | IC50 (μM) | Cell line | IC50 (μM) | | | HCT116 | 0.92 ± 0.34 | HCT116 p53-/- | 2.46 ± 0.42 | | | U20S | 8.95, 4.5 | U2OS p53DN | 4.85 ± 1.77 | | | MCF7 | 3.62 ± 1.94 | MDA-MB-231 | 0.57 ± 0.30 | | | MCF10A | 1.16 ± 1.32 | | | | **Table S2.** VE821 single-agent cytotoxicity. Pooled LC₅₀ values interpolated from survival curves from ≥3 individual experiments as shown in Figure 1B. Data are mean ± SEM from values calculated for each individual experiment. Significance of difference between p53 wt and mutant/null is given in parenthesis. | p53 wt | | p53 mutant | | | |-----------|-----------------|---------------|-----------------------------|--| | Cell line | LC50 (μM) | Cell line | LC ₅₀ (μM) | | | HCT116 | 2.13 ± 1.0 | HCT116 p53-/- | $4.56 \pm 1.79 \ (p = 0.1)$ | | | U20S | 2.54 ± 2.21 | U2OS p53DN | $3.34 \pm 2.74 \ (p = 0.7)$ | | | MCF7 | 1.89 ± 0.81 | MDA-MB-231 | $1.93 \pm 0.93 \ (p = 1)$ | | | MCF10A | >10 | | | | **Table S3.** Summarised chemosensitisation data for all cell lines. LC₅₀ values were calculated and compared within each cell line and the potentiation factor at 50% (PF₅₀) cell kill compared between cell lines; both cancer cell lines were potentiated >4-fold but there was no potentiation in MCF10A (i.e. $PF_{50} < 1$). | Cell line | LC50 gemcitabine)
(nM) | LC50 gemcitabine +VE-821 (nM) | Fold potentiation by 1 µM VE-
821 | | | |------------------|---------------------------|-------------------------------|--------------------------------------|--|--| | MCF10A | 7.8 ± 1.8 | 10.0 ± 5.4 | 0.87 ± 0.13 | | | | MCF7 | 53.4 ± 3.0 | 12.7 ± 5.3 | 4.9 ± 1.46 | | | | MDA-MB-231 | 54.6 ± 29.1 | 16.5 ± 11.0 | 4.3 ± 1.5 | | | | HCT116 | 24.6 ± 31.0 | 11.5 ± 6.1 | 1.5 ± 0.9 | | | | HCT116
p53-/- | 42.0 ± 36.2 | 8.7 ± 2.1 | $4.3 \pm 1.4 \ (p = 0.035)$ | | | | U2OS | 13.7 ± 5.7 | 6.9 ± 0.5 | 1.97 ± 0.44 | | | | U2OS DNp53 | 11.1 ± 7.3 | 6.0 ± 0.6 | 1.76 ± 0.58 | | | Cancers 2018, 10, x 2 of 2 **Table S4**. Summarised Radiosensitisation by VE821 in all cell lines. Data are mean \pm SEM of 3 independent experiments, p values are from unpaired *t*-tests of the values obtained in each independent experiment. (SF = surviving fraction (%)) | Treatment | HCT116+/+ | HCT116-/- | U2OS wt | U2OS DN | MCF7 | MDA-MB-231 | MCF10A | |--------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------| | SF 2Gy | 37.7 ± 5.3 | 33.3 ± 5.6 | 21.9 ± 1.7 | 32.6 ± 2.3 | 31.2 ± 6.4 | 33.1 ± 4 | 46.7 ± 7.2 | | SF 2Gy + VE-821 | 10.3 ± 1.3 | 6.4 ± 1.9 | 4.9 ± 1.4 | 4.7 ± 1.7 | 12.0 ± 2.6 | 16.7 ± 1.8 | 30.4 ± 4 | | fold-sensitization | 3.9 ± 0.9 | 6.4 ± 2.01 | 5.72 ± 2.27 | 11.7 ± 6.4 | 2.6 ± 0.04 | 2.05 ± 0.39 | 1.61 ± 0.34 | | p | 0.0074 | 0.011 | 0.002 | 0.0006 | 0.05 | 0.020 | 0.118 | | SF 4Gy (%) | 6.44 ± 1.2 | 6.5 ± 0.89 | 4.42 ± 0.55 | 9.71 ± 1.6 | 3.78 ± 0.76 | 13.7 ± 1.95 | 23.4 ± 6.8 | | SF Gy + VE-821 (%) | 1.13 ± 0.25 | 0.57 ± 0.23 | 1.2 ± 0.3 | 0.47 ± 0.12 | 2.32 ± 0.33 | 6.03 ± 0.78 | 20.6 ± 12 | | fold-sensitization | 6.67 ± 2.5 | 18.7 ± 9.9 | 4.11 ± 1.08 | 26.8 ± 12.5 | 1.74 ± 0.45 | 2.32 ± 0.36 | 1.67 ± 0.59 | | p | 0.013 | 0.003 | 0.007 | 0.005 | 0.152 | 0.022 | 0.851 | © 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).