
cancers

Article

The Potential Mechanism of Bufadienolide-Like
Chemicals on Breast Cancer via
Bioinformatics Analysis

Yingbo Zhang 1,2,†, Xiaomin Tang 3,†, Yuxin Pang 3,4,*, Luqi Huang 4,*, Dan Wang 1,2,
Chao Yuan 1,2 , Xuan Hu 1,2 and Liping Qu 5

1 Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences,
Danzhou 571737, China; zhangyingbo1984@catas.cn or zhangyingbo1984@163.com (Y.Z.);
wang_dan1414@163.com (D.W.); yuanchao79@126.com (C.Y.); mchuxuan@163.com (X.H.)

2 Hainan Provincial Engineering Research Center for Blumea Balsamifera, Danzhou 571737, China
3 School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China;

txm1209@163.com
4 National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences,

Beijing 100700, China
5 College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;

quliping2018@163.com
* Correspondence: pyxmarx@126.com (Y.P.); huangluqi01@126.com (L.H.); Tel.: +86-898-2330-0268 (Y.P.)
† The author had the same contribution to this work.

Received: 28 November 2018; Accepted: 8 January 2019; Published: 14 January 2019
����������
�������

Abstract: Bufadienolide-like chemicals are mostly composed of the active ingredient of Chansu and
they have anti-inflammatory, tumor-suppressing, and anti-pain activities; however, their mechanism
is unclear. This work used bioinformatics analysis to study this mechanism via gene expression
profiles of bufadienolide-like chemicals: (1) Differentially expressed gene identification combined
with gene set variation analysis, (2) similar small -molecule detection, (3) tissue-specific co-expression
network construction, (4) differentially regulated sub-networks related to breast cancer phenome,
(5) differentially regulated sub-networks with potential cardiotoxicity, and (6) hub gene selection and
their relation to survival probability. The results indicated that bufadienolide-like chemicals usually
had the same target as valproic acid and estradiol, etc. They could disturb the pathways in RNA
splicing, the apoptotic process, cell migration, extracellular matrix organization, adherens junction
organization, synaptic transmission, Wnt signaling, AK-STAT signaling, BMP signaling pathway,
and protein folding. We also investigated the potential cardiotoxicity and found a dysregulated
subnetwork related to membrane depolarization during action potential, retinoic acid receptor
binding, GABA receptor binding, positive regulation of nuclear division, negative regulation of viral
genome replication, and negative regulation of the viral life cycle. These may play important roles in
the cardiotoxicity of bufadienolide-like chemicals. The results may highlight the potential anticancer
mechanism and cardiotoxicity of Chansu, and could also explain the ability of bufadienolide-like
chemicals to be used as hormones and anticancer and vasoprotectives agents.
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1. Introduction

Despite considerable efforts on early diagnosis and treatment in the last decade, breast cancer
remains the most common malignancies for women worldwide, representing ~22% of female
malignancies [1–4]. In addition to early diagnosis, new chemotherapeutic agents and more effective
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therapies are needed to reduce mortality. Traditional Chinese medicine has existed for thousands of
years and can treat cancer. Chansu is one of the most famous traditional Chinese medicines. It has been
used for centuries in various aspects, such as anaesthesia for anesthesia, antitumor, anti-inflammation,
and anti-arrhythmia conditions [5–8]. Chansu is mostly from the glandular secretion and dried product
of Bufo bufo gargarizans Cantor or Bufo melanostictus Schneider [8]. It includes resibufogenin, bufalin,
arenobufagin, cinobufagin, bufotoxin, telocinobufagin, bufotaline, and cinobufotalin [5,6,8] (Figure 1).
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tumor cells apoptosis and modulate hypoxia-inducing factor-1 alpha subunit (HIF-1α). Yeh et al. [10] 
and Yu et al. [11] reported that bufalin and cinobufagin have a potent inhibiting effect on androgen -
dependent and -independent prostate cancer cells, similar to Dong et al. [12], Wang et al. [13], and 
Ko et al. [14] via HepG2 cells, T24 cells, and HeLa cells. 

Immunotherapy, an evolving approach for the management of triple negative breast cancer: Converting 
non-responders to responders. These results demonstrate that Chansu is a potent anticancer agent for a 
range of cancers, but its potential anticancer mechanisms are unclear. Here, the gene set variation 
analysis (GSVA) algorithm [15] was first used to identify differentially expressed genes (DEGs) and 
relative enrichment pathways underlying eight bufadienolide-like chemicals. A series of 
bioinformatics analyses, including gene enrichment analysis, tissue-specific co-expression network 
construction, and differentially-regulated sub-network detection, can relate the findings to the breast 
cancer phenome and hub gene selection. The relation to survival probability and similar small-
molecule detection used the DEGs with relative enrichment pathways (Figure 2). This work shows 
the potential mechanism of bufadienolide-like chemicals on breast cancer, especially differentially 
regulated sub-networks that relate to breast cancer and hub genes disturbed by bufadienolide-like 
chemicals. This work highlights the potential application of bufadienolide-like chemicals on breast 
cancer, especially as a novel agent for cancer therapy. 

Figure 1. The structural formula of the eight bufadienolide-like chemicals.

Over the last decade, many groups have studied the pharmacological activities and antitumor
activity of bufadienolide-like chemicals. For example, Li et al. [9] reported that cinobufagin has
significant cancer-killing capacity for a range of cancers, including HCT116 cells, HT29 cells, A431
cells, PC3 cells, A549 cells, and MCF-7 cells. Mechanistic studies showed that cinobufagin can
induce tumor cells apoptosis and modulate hypoxia-inducing factor-1 alpha subunit (HIF-1α).
Yeh et al. [10] and Yu et al. [11] reported that bufalin and cinobufagin have a potent inhibiting effect on
androgen-dependent and -independent prostate cancer cells, similar to Dong et al. [12], Wang et al. [13],
and Ko et al. [14] via HepG2 cells, T24 cells, and HeLa cells.

Immunotherapy, an evolving approach for the management of triple negative breast cancer:
Converting non-responders to responders. These results demonstrate that Chansu is a potent anticancer
agent for a range of cancers, but its potential anticancer mechanisms are unclear. Here, the gene set
variation analysis (GSVA) algorithm [15] was first used to identify differentially expressed genes
(DEGs) and relative enrichment pathways underlying eight bufadienolide-like chemicals. A series of
bioinformatics analyses, including gene enrichment analysis, tissue-specific co-expression network
construction, and differentially-regulated sub-network detection, can relate the findings to the breast
cancer phenome and hub gene selection. The relation to survival probability and similar small-molecule
detection used the DEGs with relative enrichment pathways (Figure 2). This work shows the potential
mechanism of bufadienolide-like chemicals on breast cancer, especially differentially regulated
sub-networks that relate to breast cancer and hub genes disturbed by bufadienolide-like chemicals. This
work highlights the potential application of bufadienolide-like chemicals on breast cancer, especially
as a novel agent for cancer therapy.
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Figure 2. The workflow to study the potential mechanism of bufadienolides-like chemicals on breast 
cancer via bioinformatics analysis. (A) The experimental design and basic information of this analysis. 
(B) The DEGs’(Differentially expressed genes) identification with the GSVA (Gene set variation 
analysis) algorithm [15]. (C) Similar small-molecule detection with the Comparative Toxicogenomics 
Database (CTD) [16] and connectivity map (CMAP2) [17,18] database. (D) The tissue-specific co-
expression network constructed with the TCSBN (Tissue and cancer specific biological networks) 
database [19]. (E) The differentially expressed subnetworks detected with the UberPheno database 
and PhenomeScape plug [20]. (F) The arrhythmia-related subnetworks detected with the UberPheno 
database and PhenomeScape plug [20]. (G) The expression and survival relation of hub genes 
validated by TCGA (The Cancer Genome Atlas) [21] and the Kaplan-Meier (KM) plotter databases 
[22]. 

2. Results 

2.1. Identification of DEGs 

Based on the differentially expressed genes analysis associated with the gene sets enrichment 
variation analysis strategy, a total of 80 differentially expressed genes (DEGs) involved in the 44 
MSigDB C2 curated gene sets were identified (Figure 3A,B), and the top 20 DEGs’ expression 
heatmap is shown in Figure 3C. Of which, 38 genes involved in the Singh NFE2L2 targets gene sets, 
Chang dominant negative gene sets immortalized by HPV31 and Lin silenced gene sets by tumor 
microenvironment were up-regulated (Tables S1 and S2), including IF16 (interferon-inducible protein 
6), IRF9 (interferon regulatory factor 9), IFIT1 (IFN-induced protein 1 with tetratricopeptide repeats), 
ISG15 (Interferon-stimulated gene 15), BST2 (bone marrow stromal cell antigen 2), OAS3 (2′-5′-
oligoadenylate synthetase 3), OAS1 (2′-5′-oligoadenylate synthetase 1), DDX60 (DEAD box 
polypeptide 60), CYP1A1 (cytochrome P450 1A1), CEACAM6 (carcinoembryonic antigen-related cell 
adhesion molecule 6), keratin genes KRT81, and so on. 

Figure 2. The workflow to study the potential mechanism of bufadienolides-like chemicals on breast
cancer via bioinformatics analysis. (A) The experimental design and basic information of this analysis.
(B) The DEGs’(Differentially expressed genes) identification with the GSVA (Gene set variation analysis)
algorithm [15]. (C) Similar small-molecule detection with the Comparative Toxicogenomics Database
(CTD) [16] and connectivity map (CMAP2) [17,18] database. (D) The tissue-specific co-expression
network constructed with the TCSBN (Tissue and cancer specific biological networks) database [19].
(E) The differentially expressed subnetworks detected with the UberPheno database and PhenomeScape
plug [20]. (F) The arrhythmia-related subnetworks detected with the UberPheno database and
PhenomeScape plug [20]. (G) The expression and survival relation of hub genes validated by TCGA
(The Cancer Genome Atlas) [21] and the Kaplan-Meier (KM) plotter databases [22].

2. Results

2.1. Identification of DEGs

Based on the differentially expressed genes analysis associated with the gene sets enrichment
variation analysis strategy, a total of 80 differentially expressed genes (DEGs) involved in the 44
MSigDB C2 curated gene sets were identified (Figure 3A,B), and the top 20 DEGs’ expression
heatmap is shown in Figure 3C. Of which, 38 genes involved in the Singh NFE2L2 targets gene
sets, Chang dominant negative gene sets immortalized by HPV31 and Lin silenced gene sets by
tumor microenvironment were up-regulated (Tables S1 and S2), including IF16 (interferon-inducible
protein 6), IRF9 (interferon regulatory factor 9), IFIT1 (IFN-induced protein 1 with tetratricopeptide
repeats), ISG15 (Interferon-stimulated gene 15), BST2 (bone marrow stromal cell antigen 2), OAS3
(2′-5′-oligoadenylate synthetase 3), OAS1 (2′-5′-oligoadenylate synthetase 1), DDX60 (DEAD box
polypeptide 60), CYP1A1 (cytochrome P450 1A1), CEACAM6 (carcinoembryonic antigen-related cell
adhesion molecule 6), keratin genes KRT81, and so on.
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of the top 20 DEGs disturbed by bufadienolide-like chemicals. 
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involved in the 41 gene sets were down-regulated (Tables S1 and S2), such as the genes involved in 
the Iizuka (Table S1) liver cancer progression pathway, including PPIF (peptidylprolyl isomerase F), 
TMED2 (transmembrane trafficking protein 2 with emp24 domain), SAFB (scaffold attachment factor 
B), SQLE (squalene epoxidase), PICALM (phosphatidylinositol binding clathrin assembly protein), 
STIP1 (stress-induced phosphoprotein 1), CYB561 (cytochromes b561), CCT2 (chaperonin 2β with 
TCP1 domain); the genes sets involved Thum systolic heart failure pathway, including CCNG2 
(cyclin G2), TMED2 (transmembrane emp24 domain trafficking protein 2), FH (fumarate hydratase), 
TAF9B (ATA-box binding protein associated factor 9b), CCT2 (chaperonin-containing t-complex 
polypeptide 1 beta), transmembrane receptor NOTCH2, PICALM (subfamily A (MS4A), and CCNL2 
(cyclin L2); and also Reactome DNA strand elongation, Reactome regulated proteolysis of P75NTR, 
and other gene sets were downregulated, with logFC form −0.89~−0.27. 

In order to obtain a biological interpretation of those genes in the GO and KEGG pathway 
functional groups, GO and KEGG enrichment analysis were performed with the clueGO plug [23] in 
Cystoscape [24]. Results indicated that those genes that were up-regulated were rich in terms of type 
I interferon signaling response to virus, defense to other organisms, regulation of viral genome 
replication, and 2′-5′-oligoadenylate synthetase activity, and those activated may be because of the 
up-regulation of IRF9, IFI6, IFI27, ISG15, IFIT1, OAS1, and OAS3 (Figure 4A). Further investigation 
with the KEGG pathway enrichment analysis showed those up-regulated genes could cause the 
activation of the IFN-induced pathway, type II interferon signaling pathway, and regulation of 
protein ISGylation by the ISG15 deconjugating enzyme USP18 pathway (Figure 4B). The genes that 
were down-regulated were rich in terms of protein kinase complex, transcription factor TFTC 
complex-1, the SAGA-complex, and cargo loading into vesicle (Figure 4A). Further investigation with 
KEGG pathway enrichment analysis showed those genes could negatively affect the transport of 
fringe-modified NOTCH to the plasma membrane pathway (Figure 4B). 

Figure 3. The differentially expressed genes (DEGs) disturbed by bufadienolide-like chemicals through
the gene set variation analysis (GSVA) algorithm. (A) The differentially expressed gene sets disturbed
by bufadienolide-like chemicals (|logFC| ≥ log2(2) and adjPvalue < 0.001). (B) The DEGs relate to
differentially expressed gene sets (|logFC| ≥ log2(2) and adjPvalue < 0.001). (C) The heatmap of the
top 20 DEGs disturbed by bufadienolide-like chemicals.

Among the differentially expressed genes associated with enrichment gene sets, 42 genes involved
in the 41 gene sets were down-regulated (Tables S1 and S2), such as the genes involved in the Iizuka
(Table S1) liver cancer progression pathway, including PPIF (peptidylprolyl isomerase F), TMED2
(transmembrane trafficking protein 2 with emp24 domain), SAFB (scaffold attachment factor B),
SQLE (squalene epoxidase), PICALM (phosphatidylinositol binding clathrin assembly protein), STIP1
(stress-induced phosphoprotein 1), CYB561 (cytochromes b561), CCT2 (chaperonin 2β with TCP1
domain); the genes sets involved Thum systolic heart failure pathway, including CCNG2 (cyclin
G2), TMED2 (transmembrane emp24 domain trafficking protein 2), FH (fumarate hydratase), TAF9B
(ATA-box binding protein associated factor 9b), CCT2 (chaperonin-containing t-complex polypeptide 1
beta), transmembrane receptor NOTCH2, PICALM (subfamily A (MS4A), and CCNL2 (cyclin L2); and
also Reactome DNA strand elongation, Reactome regulated proteolysis of P75NTR, and other gene
sets were downregulated, with logFC form −0.89~−0.27.

In order to obtain a biological interpretation of those genes in the GO and KEGG pathway
functional groups, GO and KEGG enrichment analysis were performed with the clueGO plug [23]
in Cystoscape [24]. Results indicated that those genes that were up-regulated were rich in terms of
type I interferon signaling response to virus, defense to other organisms, regulation of viral genome
replication, and 2′-5′-oligoadenylate synthetase activity, and those activated may be because of the
up-regulation of IRF9, IFI6, IFI27, ISG15, IFIT1, OAS1, and OAS3 (Figure 4A). Further investigation
with the KEGG pathway enrichment analysis showed those up-regulated genes could cause the
activation of the IFN-induced pathway, type II interferon signaling pathway, and regulation of protein
ISGylation by the ISG15 deconjugating enzyme USP18 pathway (Figure 4B). The genes that were
down-regulated were rich in terms of protein kinase complex, transcription factor TFTC complex-1, the
SAGA-complex, and cargo loading into vesicle (Figure 4A). Further investigation with KEGG pathway
enrichment analysis showed those genes could negatively affect the transport of fringe-modified
NOTCH to the plasma membrane pathway (Figure 4B).
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evidence generated by the String database. (B) Representative biomolecular network of KEGG 
enrichment term, the nodes, and edges also had the same means with Figure 4A. 
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(http://ctdbase.org/) [16] and connectivity map (CMAP2) (https://portals.broadinstitute.org/cmap/) 
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detecting the CTD Database, valproic acid, cyclosporine, and estradiol had the most similar target 
with bufadienolide-like chemicals (Figure 5). Valproic acid, a histone deacetylase inhibitor, which 
once was widely used as an antiepileptic, has recently also shown anti-cancer activity in an vitro/vivo 
model [25]. Estradiol is a sex hormone with anticancer activity, and is also widely used for the 
treatment of breast cancer, especially for postmenopausal women [26–28]. 

Based on the results from the CMAP2 database (https://portals.broadinstitute.org/cmap/) [17,18], 
V03AF, G03GB, C05AX, and C05CX were the top matching drugs with bufadienolide-like chemicals 
(Table 1). V03AF, a type of detoxifying agent for antineoplastic treatment, had an opposing effect on 
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chemicals’ potential value as a novel agent for cancer therapy. G03GB, one type of sex hormone and 
a modulator of the genial system, had the most similar expression profile with bufadienolide-like 
chemicals. This means the bufadienolide-like chemicals also use estradiol, epimestrol and cyclofenil 
in breast cancer. C05AX and C05CX are two types of vasoprotectives agents, indicating that 
bufadienolide-like chemicals also have a potential use as vasoprotectives-like drugs. 

From the evidence from detecting the similar small molecules with the CTD database and 
CMAP2 database, it was indicated that bufadienolide-like chemicals were one kind of steroid with 
the same physiological activity as estradiol and G03GB (ATC code), with potential value for use in 
cancer, especially breast cancer. 

Figure 4. The GO and KEGG enrichment result of DEGs disturbed by bufadienolide-like chemicals.
(A) Representative biomolecular network of GO enrichment terms. The bigger red nodes imply
enrichment of GO terms with up-regulated genes. The bigger blue nodes suggest enrichment of
GO terms with down-regulated genes. The small red nodes imply up-regulated genes. The small
blue nodes are down-regulated genes. Undirected edges imply enrichment, green directed edges
are activated according to the string database. The red directed edges implies suppression from
the evidence generated by the String database. (B) Representative biomolecular network of KEGG
enrichment term, the nodes, and edges also had the same means with Figure 4A.

2.2. Similar Small Molecule Detection

Detection of the similar small molecule with the Comparative Toxicogenomics Database
(CTD) (http://ctdbase.org/) [16] and connectivity map (CMAP2) (https://portals.broadinstitute.
org/cmap/) [17,18] database provides a better understanding the molecular mechanism of
bufadienolide-like chemicals, and its potential value as a novel agent for cancer therapy. Based
on the results with detecting the CTD Database, valproic acid, cyclosporine, and estradiol had the
most similar target with bufadienolide-like chemicals (Figure 5). Valproic acid, a histone deacetylase
inhibitor, which once was widely used as an antiepileptic, has recently also shown anti-cancer activity
in an vitro/vivo model [25]. Estradiol is a sex hormone with anticancer activity, and is also widely
used for the treatment of breast cancer, especially for postmenopausal women [26–28].

Based on the results from the CMAP2 database (https://portals.broadinstitute.org/cmap/) [17,18],
V03AF, G03GB, C05AX, and C05CX were the top matching drugs with bufadienolide-like chemicals
(Table 1). V03AF, a type of detoxifying agent for antineoplastic treatment, had an opposing effect on
the expression of bufadienolide-like chemicals. This result provided evidence for bufadienolide-like
chemicals’ potential value as a novel agent for cancer therapy. G03GB, one type of sex hormone and
a modulator of the genial system, had the most similar expression profile with bufadienolide-like
chemicals. This means the bufadienolide-like chemicals also use estradiol, epimestrol and cyclofenil
in breast cancer. C05AX and C05CX are two types of vasoprotectives agents, indicating that
bufadienolide-like chemicals also have a potential use as vasoprotectives-like drugs.

From the evidence from detecting the similar small molecules with the CTD database and CMAP2
database, it was indicated that bufadienolide-like chemicals were one kind of steroid with the same
physiological activity as estradiol and G03GB (ATC code), with potential value for use in cancer,
especially breast cancer.

http://ctdbase.org/
https://portals.broadinstitute.org/cmap/
https://portals.broadinstitute.org/cmap/
https://portals.broadinstitute.org/cmap/
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small molecule predicted by degree (degree ≥ 30). 

Table 1. Top 20 CMAP2 (connectivity map, https://portals.broadinstitute.org/cmap/) hits correlated 
with bufadienolide-like chemicals’ treatment. 

Rank ATC Code Mean Score Enrichment p-Value Specificity 
1 V03AF −0.471 −0.71 4.45 × 10−3 3.82 × 10−2 
2 G03GB 0.449 0.655 3.29 × 10−2 7.47 × 10−2 
3 C05AX 0.41 0.689 1.95 × 10−2 4.76 × 10−2 
4 C05CX 0.41 0.689 1.95 × 10−2 4.76 × 10−2 
5 D07XC −0.372 −0.661 1.44 × 10−3 8.10 × 10−3 
6 N05BE −0.359 −0.719 1.26 × 10−2 1.22 × 10−2 
7 C08EA 0.292 0.539 1.87 × 10−2 1.45 × 10−1 
8 N05AC 0.259 0.365 2.32 × 10−3 3.90 × 10−1 
9 D06BB −0.252 −0.405 9.39 × 10−3 1.44 × 10−1 
10 D06BX −0.249 −0.72 3.74 × 10−3 1.38 × 10−2 
11 N02BB 0.244 0.404 2.71 × 10−3 1.75 × 10−2 
12 N02CX 0.189 0.481 3.16 × 10−2 4.43 × 10−2 
13 A07EA −0.186 −0.343 6.96 × 10−3 2.55 × 10−2 
14 S02BA −0.167 −0.383 5.03 × 10−3 1.31 × 10−2 
15 B01AC 0.152 0.243 2.71 × 10−2 1.19 × 10−1 
16 S03BA −0.144 −0.366 2.02 × 10−2 4.80 × 10−2 
17 R03BA −0.141 −0.29 1.19 × 10−2 4.00 × 10−2 
18 S01CB −0.136 −0.326 1.21 × 10−2 2.61 × 10−2 
19 R01AD −0.113 −0.266 4.30 × 10−3 4.83 × 10−2 
20 C07AA −0.109 −0.262 1.14 × 10−2 2.22 × 10−1 

2.3. The Tissue Specific Co-Expression Network and Breast Cancer Associated Subnetwork Regulated by 
Bufadienolide-Like Chemicals 

It is clear that most of the genes exert their function by collaborating with other genes in the 
network, which represent rigid molecular machines, cellular structures, or dynamic signaling 
pathways [29]. Here, a breast tissue specific co-expression network with DEGs was generated with 
the TCSBN database (http://inetmodels.com/) [19] through the NetworkAnalyst web server 
(https://www.networkanalyst.ca/) [18]. Results indicated that the co-expression networks consisted 
of 743 nodes and 876 edges (Figure 6 and Table 2). 

Figure 5. Chemicals-gene interaction network for the DEGs disturbed by bufadienolide-like chemicals.
Square nodes represent the DEGs. Circle nodes represent the chemicals predicted by the CTD Database.
The size of the nodes represents the degree. Circle nodes with red represent the similar small molecule
predicted by degree (degree ≥ 30).

Table 1. Top 20 CMAP2 (connectivity map, https://portals.broadinstitute.org/cmap/) hits correlated
with bufadienolide-like chemicals’ treatment.

Rank ATC Code Mean Score Enrichment p-Value Specificity

1 V03AF −0.471 −0.71 4.45 × 10−3 3.82 × 10−2

2 G03GB 0.449 0.655 3.29 × 10−2 7.47 × 10−2

3 C05AX 0.41 0.689 1.95 × 10−2 4.76 × 10−2

4 C05CX 0.41 0.689 1.95 × 10−2 4.76 × 10−2

5 D07XC −0.372 −0.661 1.44 × 10−3 8.10 × 10−3

6 N05BE −0.359 −0.719 1.26 × 10−2 1.22 × 10−2

7 C08EA 0.292 0.539 1.87 × 10−2 1.45 × 10−1

8 N05AC 0.259 0.365 2.32 × 10−3 3.90 × 10−1

9 D06BB −0.252 −0.405 9.39 × 10−3 1.44 × 10−1

10 D06BX −0.249 −0.72 3.74 × 10−3 1.38 × 10−2

11 N02BB 0.244 0.404 2.71 × 10−3 1.75 × 10−2

12 N02CX 0.189 0.481 3.16 × 10−2 4.43 × 10−2

13 A07EA −0.186 −0.343 6.96 × 10−3 2.55 × 10−2

14 S02BA −0.167 −0.383 5.03 × 10−3 1.31 × 10−2

15 B01AC 0.152 0.243 2.71 × 10−2 1.19 × 10−1

16 S03BA −0.144 −0.366 2.02 × 10−2 4.80 × 10−2

17 R03BA −0.141 −0.29 1.19 × 10−2 4.00 × 10−2

18 S01CB −0.136 −0.326 1.21 × 10−2 2.61 × 10−2

19 R01AD −0.113 −0.266 4.30 × 10−3 4.83 × 10−2

20 C07AA −0.109 −0.262 1.14 × 10−2 2.22 × 10−1

2.3. The Tissue Specific Co-Expression Network and Breast Cancer Associated Subnetwork Regulated by
Bufadienolide-Like Chemicals

It is clear that most of the genes exert their function by collaborating with other genes in
the network, which represent rigid molecular machines, cellular structures, or dynamic signaling
pathways [29]. Here, a breast tissue specific co-expression network with DEGs was generated
with the TCSBN database (http://inetmodels.com/) [19] through the NetworkAnalyst web server
(https://www.networkanalyst.ca/) [18]. Results indicated that the co-expression networks consisted
of 743 nodes and 876 edges (Figure 6 and Table 2).

https://portals.broadinstitute.org/cmap/
http://inetmodels.com/
https://www.networkanalyst.ca/
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(Tissue and cancer specific biological networks) database (http://inetmodels.com/) through the
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Table 2. The tissue specific co-expression network regulated by bufadienolide-like chemicals and their
enrichment with GO and KEGG.

Subnetwork
Number Nodes Edges Seeds

KEGG Enrichment GO Enrichment

KEGG Pathway p-Value BP Term p-Value

A 492 558 13 Tight junction 4.19 × 10−4 Establishment or
maintenance of cell polarity 2.83 × 10−4

B 113 128 3 PPAR signaling
pathway 7.75 × 10−6 Triglyceride metabolic

process 1.25 × 10−7

C 46 50 2 mTOR signaling
pathway 9.62 × 10−3 Protein targeting to

membrane 4.93 × 10−67

D 27 86 6 Influenza A 3.04 × 10−10 Defense response to virus 1.24 × 10−22

E 18 17 1 Tuberculosis 2.01 × 10−4 Tuberculosis 2.01 × 10−4

F 11 10 1 N-Glycan
biosynthesis 9.19 × 10−3 Post-translational protein

modification 6.33 × 10−3

G 6 5 1 Terpenoid backbone
biosynthesis 1.72 × 10−4 Coenzyme biosynthetic

process 1.55 × 10−5

H 5 4 1 Notch signaling
pathway 2.98 × 10−2 Gamete generation 1.34 × 10−2

I 4 3 1 Null Null Transcription,
DNA-dependent 1.31 × 10−2

J 4 3 1 Null Null Positive regulation of
translation 1.17 × 10−2

K 4 3 1 Null Null Endoplasmic reticulum
unfolded protein response 6.51 × 10−3

L 4 3 1

Regulation of
cyclin-dependent

protein kinase
activity

1.24 × 10−2
Regulation of

cyclin-dependent protein
kinase activity

1.24 × 10−2

M 3 2 1 Steroid biosynthesis 7.68 × 10−3 Steroid biosynthetic process 2.07 × 10−6

N 3 2 1 Null Null Regulation of transcription,
DNA-dependent 1.84 × 10−2

O 3 2 1 Null Null Intra-Golgi
vesicle-mediated transport 4.47 × 10−3

http://inetmodels.com/
https://www.networkanalyst.ca/
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Furthermore, a functional enrichment analysis with KEGG pathways revealed that the
co-expression networks with DEGs were enriched in pathways related to tight junction, PPAR signaling
pathway, mTOR signaling pathway, influenza A, tuberculosis, N-Glycan biosynthesis, terpenoid
backbone biosynthesis, Notch signaling pathway, regulation of cyclin-dependent protein kinase
activity, and steroid biosynthesis (Table 2). The GO BP term enrichment analysis showed those genes
mostly involved in the establishment or maintenance of cell polarity, triglyceride metabolic process,
protein targeting to membrane, defense response to virus, tuberculosis, post-translational protein
modification, coenzyme biosynthetic process, gamete generation, transcription, DNA-dependent,
positive regulation of translation, endoplasmic reticulum unfolded protein response, regulation of
cyclin-dependent protein kinase activity, steroid biosynthetic process, regulation of the transcription of
DNA-dependent, intra-Golgi vesicle-mediated transport term, and other rigid molecular machines in
the biological process.

Based on the novel differentially regulated sub-networks detection tool, PhenomeScape [20],
which could combine the fold changes of genes into the knowledge of networks and disease phenotypes,
a series of differentially regulated sub-networks associated with phenotypes were identified with the
random walk algorithm. In this research, seven phenotypes related to breast cancer were selected as the
seed phenotypes (Table 5); subsequently, a total of 19 differentially regulated sub-networks enriched
in the breast cancer phenotype related subnetwork were identified (Table 3). The sub-networks
distributed by bufadienolide-like chemicals included RNA splicing (p-value = 2.00 × 10−3), apoptotic
process (p-value = 2.00 × 10−3), extracellular matrix organization (p-value = 1.00 × 10−3), canonical
Wnt signaling pathway (p-value = 2.20× 10−2), synaptic transmission (p-value = 1.40× 10−2), negative
regulation of the JAK-STAT cascade (p-value = 4.20 × 10−2), adherens junction organization (p-value =
3.80 × 10−2), BMP signaling pathway (p-value = 4.10 × 10−2), negative regulation of cell migration
(p-value = 1.30 × 10−2), and activation of signaling protein activity involved in the unfolded protein
response (p-value = 1.90 × 10−2) (Figure 7).

Table 3. Summary of differentially regulated sub-networks disturbed by bufadienolide-like chemicals.

Subnetwork Number No. of Nodes GO-BP Empirical p-Value

A 21 RNA splicing 2.00 × 10−3

B 73 apoptotic process 2.00 × 10−3

C 11 extracellular matrix organization 1.00 × 10−3

D 6 canonical Wnt signaling pathway 2.20 × 10−2

E 7 synaptic transmission 1.40 × 10−2

F 11 negative regulation of JAK-STAT cascade 4.20 × 10−2

G 9 adherens junction organization 3.80 × 10−2

H 9 BMP signaling pathway 4.10 × 10−2

I 6 negative regulation of cell migration 1.30 × 10−2

J 4 activation of signaling protein activity
involved in unfolded protein response 1.90 × 10−2

K 12 drug metabolic process 1.20 × 10−2

L 6 negative regulation of lipid storage 4.50 × 10−2

M 6 xenobiotic metabolic process 1.70 × 10−2

N 8 relaxation of cardiac muscle 4.80 × 10−2

O 5 very long-chain fatty acid metabolic process 1.70 × 10−2

P 4 oligosaccharide metabolic process 3.10 × 10−2

Q 4 collagen catabolic process 2.50 × 10−2

R 4 response to cocaine 2.70 × 10−2

S 4 behavioral response to nicotine 4.20 × 10−2
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Figure 7. The differentially expressed networks regulated by bufadienolide-like chemicals, and
generated by the PhenomeScape plug. Sub-networks linked to breast cancer, RNA splicing (2.00 × 10−3)
(A), apoptotic process (2.00 × 10−3) (B), extracellular matrix organization (1.00 × 10−3) (C), canonical
Wnt signaling pathway (2.20 × 10−2) (D), synaptic transmission (1.40 × 10−2) (E), negative regulation
of JAK-STAT (Janus kinase/signal transducers and activators of transcription) cascade (4.20× 10−2) (F),
adherens junction organization (3.80 × 10−2) (G), BMP signaling pathway (4.10 × 10−2) (H), negative
regulation of cell migration (1.30 × 10−2) (I), and activation of signaling protein activity involved in the
unfolded protein response (1.90 × 10−2) (J). The fold change of the proteins is shown by the node color,
and breast cancer-associated phenotype annotated proteins were used to generate the sub-networks
and are shown with a black border.

The subnetwork A (Figure 7A), related to the RNA splicing function, was the first identified
dysregulation subnetwork. It showed the genes involved in the mRNA splicing spliceosome were
down-regulated, including the serine- and arginine- rich splicing factor members, SRSF4, SRSF5,
and SRSF6, and peroxisome proliferator activated receptor gamma coactivator (PPARGC1A). The
apoptotic process (Figure 7B) could have been dysregulated by bufadienolide-like chemicals, and this
dysregulation was performed with the increased expression of SYT11, PARK2, PYHIN1, APC, RNF40,
SERPINB3, TIAM2, ITSN1, SH3GL2, CASP1, GATA4, ITSN2, and PDE4DIP. Several cancer signaling
pathways, including the Wnt signaling pathway, the JAK-STAT signaling pathway, and the BMP
signaling pathway, also could had been dysregulated by bufadienolide-like chemicals (Figure 7D,F,H).
This suggests that bufadienolide-like chemicals could increase the apoptotic process through a series
of pathways or regulation networks. The subnetwork C (Figure 7C) was mostly related to the
extracellular matrix organization being upregulated, including the genes, TIMP4, MMP3, SPARC, DPT,
and ACAN. Also in this subnetwork, those genes that referred to the regulation of cell migration were
downregulated, including the genes, TNFAIP6, DCN, SPARC, THBS1, and CCL8. This means the
increase of the extracellular matrix may have hindered the migration of the tumor. Also, negative
synaptic transmission, adherens junction organization, and regulation of cell migration was found in
subnetwork E, G, and I (Figure 7E,G,I). Several metabolic processes were also discovered, including
the drug metabolic process, xenobiotic metabolic process, oligosaccharide metabolic process, etc. All
other PhenomeScape networks can be found in Supplementary Figure S1.

Although, there is no evidence to prove the bufadienolide-like chemicals having obvious toxicity
with the CEBS database (https://manticore.niehs.nih.gov/cebssearch/) [30]. In this research, in
order to identify the potential cardiotoxicity of bufadienolide-like chemicals, 11 cardiotoxicity relation
phenotypes (Table 6), including arrhythmia (HP:0011675), atrial fibrillation (HP:0005110), atrial flutter
(HP:0004749), and other phenotypes, were chosen as seed phenotypes of cardiotoxicity with the aim

https://manticore.niehs.nih.gov/cebssearch/
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of searching for the potential dysregulation subnetworks with cardiotoxicity. Results indicated six
subnetwork related to membrane depolarization during the action potential (p-value = 3.70 × 10−3,
Figure 8A), retinoic acid receptor binding (p-value = 2.00 × 10−3, Figure 8B), GABA receptor binding
((p-value = 3.00 × 10−3, Figure 8C), positive regulation of nuclear division (p-value = 5.00 × 10−3,
Figure 8D), negative regulation of viral genome replication (p-value = 3.00 × 10−3, Figure 8E), and
negative regulation of viral life cycle (p-value = 1.00 × 10−3), which were identified as potential
cardiotoxicity subnetworks disturbed by bufadienolide-like chemicals (Table 4 and Figure 8). The
subnetwork related to membrane depolarization may be the key potential cardiotoxic target of
bufadienolide-like chemicals. These were also be observed by several widely used anticancer drugs
with cardiotoxicity. For example, Adriamycin, Gleevec, and Herceptin were observed with a membrane
depolarization appearance during clinical research [31,32].Cancers 2019, 11, x  11 of 19 
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10 hub genes except KLHL35 were increased both in the treatment with bufadienolide-like chemicals 
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Figure 8. The differentially regulated sub-networks with potential cardiotoxicity disturbed by
bufadienolide-like chemicals, generated by the PhenomeScape plug with seeds of 11 cardiotoxicity
phenotypes. (A) Subnetwork related to membrane depolarization during action potential (3.70 × 10−2),
(B) Subnetwork related to retinoic acid receptor binding (2.00 × 10−3), (C) Subnetwork related to
GABA receptor binding (3.00× 10−3), (D) Subnetwork related to positive regulation of nuclear division
(5.00 × 10−3), (E) subnetwork related to negative regulation of viral genome replication (3.00 × 10−3),
and (F) subnetwork related to negative regulation of viral life cycle (1.00 × 10−3).

Table 4. Summary of differentially regulated sub-networks with potential cardiotoxicity disturbed by
bufadienolide-like chemicals.

Subnetwork Number No. of Nodes GO-BP Empirical p-Value

A 21 Membrane depolarization during action potential 3.70 × 10−2

B 19 Retinoic acid receptor binding 2.00 × 10−3

C 9 GABA receptor binding 3.00 × 10−3

D 23 Positive regulation of nuclear division 5.00 × 10−3

E 13 Negative regulation of viral genome replication 3.00 × 10−3

F 6 Negative regulation of viral life cycle 1.00 × 10−3
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Hub genes, mostly the highly connected nodes in the network, were identified by node degree
and the MCC (Maximal clique centrality) algorithm with the Cytoscape plugin, cytoHubba [33]. Based
on the threshold of the degree (degree > 5) and the MCC algorithm, 10 genes with MCC scores
ranging from 126 to 953 were identified as hub genes (Figure 9A,B). Ten hub genes, including three
2′-5′-oligoadenylate synthetase genes, OAS1, OAS2, and OAS3; five interferon-induced genes, ISG15,
IFIT1, IFI6, IFI44, and IFIL44L; and two other genes, including the kelch-like family member 35
(KLHL35) and Golgi Membrane Protein 1 (GOLM1) were identified. These were selected as the hub
genes. Further investigation with TCGA [21] and the Kaplan-Meier databases [22] indicated that the
10 hub genes except KLHL35 were increased both in the treatment with bufadienolide-like chemicals
and the TCGA breast cancer sample (Figure 9C). Six hub genes, including IFIT1, ISG15, IFI6, GOLM5,
KLHL35, and OAS2, were associated with the total survival probability in breast cancer patients
(Figure 9D). Further analysis of the correlation between the hub genes and the total survival time in
breast cancer indicated that the high expression of GOLM5, KLHL35, and OAS2 was associated with a
better survival probability.
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Figure 9. The 10 hub genes and their correlation with the total survival probability in breast
cancer. (A) The 10 hub genes and their MCC (Maximal clique centrality) score. (B) The network
of hub genes. (C) The expression correlation with breast cancer, validated by the TCGA database.
(D) The total survival probability correlation with breast cancer, validated by the Kaplan-Meier (KM)
plotter database.

3. Discussion

Recently, gene expression profile technology, including the microarray and RNA-seq, has been
widely used to detect the potential mechanism of chemicals, however, a central problem still perplexes
researchers on pharmacology and biology; that is, how chemicals disturb pathways and phenotypes
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through genes and their co-expression networks. In this research, with the use of bioinformatics
tools, especially the differentially regulated sub-networks detection tools, PhenomeScape [20], CTD
(http://ctdbase.org/) [16], and CMAP2 (https://portals.broadinstitute.org/cmap/) [17,18] databases,
several dysregulated sub-networks related to the potential anticancer mechanism and cardiotoxicity
were revealed, which was also further verified by the expression correlation and survival probability
correlation with other databases. These results may highlight the potential molecular mechanism and
application of bufadienolide-like chemicals on cancer, especially as a novel agent for breast cancer.

First, during the process of differentially expressed gene identification, in contrast to using
the conventional method of differentially expressed gene selection with significance in statistics,
a non-parametric unsupervised method of gene set variation analysis was used for differentially
expressed gene identification. The results indicated a total of 80 DEGs involved in the 44 MSigDB
C2 curated gene sets were identified (Figure 3A,B). After further analysis with the enrichment of the
GO and KEGG pathway, we found genes that were up-regulated were most rich in their interferon
signaling response to virus, defense to other organisms, regulation of viral genome replication, and
2′-5′-oligoadenylate synthetase activity. KEGG pathway enrichment analysis showed those genes
could activate the IFN-induced pathway, type II interferon signaling pathway, and regulate the
protein ISGylation pathway. However, the genes that were down-regulated were rich in protein
kinase complex, transcription factor TFTC complex-1, SAGA- complex, and cargo loading into vesicle.
KEGG pathway enrichment analysis showed those genes may be involved in negative transport of
fringe-modified NOTCH to the plasma membrane pathway. By comparing the DEGs identification
method with the statistical significance strategy, the number of DEGs enriched in MSigDB C2 curated
gene sets may be much less compared to those DEGS with enrichment in the same biology function or
similar pathway. Also, the same results were proven by the examples of the GSVA package [15].

Second, during the process of similar small molecule detection, CTD (http://ctdbase.org/) [16]
and CMAP2 (http://www.broadinstitute.org/cMAP/) [17,18] databases were used. The results
indicated that the bufadienolide-like chemicals had the same effect as valproic acid and estradiol.
Valproic acid is a histone deacetylase inhibitor, and it was shown to inhibit proliferation via Wnt/β
catenin signaling activation. Estradiol was also proven to have anticancer activity, especially in
postmenopausal women. Also, the evidence from the CTD database (http://ctdbase.org/) indicated
bufadienolide-like chemicals have the potential ability to be used as hormones and anticancer and
vasoprotectives agents.

Third, during the process of co-expression network reconstruction and dysregulated sub-networks
detection, a novel plug of PhenomeScape was used, which could combine the data of gene expression
into the knowledge of protein–protein interaction networks and disease phenotype [20]. During
the analysis with the damaged osteoarthritic cartilage gene expression profile, several significant
sub-networks related to damaged osteoarthritic cartilage were identified: Mitotic cell cycle, Wnt
signaling, apoptosis, and matrix organisation [34,35]. In this research, with the PhenomeScape
tool [20], a total of 19 differentially regulated sub-networks were identified, and 10 sub-networks
were proven to relate to breast cancer by evidence, including RNA splicing, apoptotic process, cell
migration, extracellular matrix organization, adherens junction organization, synaptic transmission,
and so on. Also, with the PhenomeScape tool [20], six dysregulated subnetworks, including the
subnetwork related to membrane depolarization during the action potential, retinoic acid receptor
binding, GABA receptor binding, positive regulation of nuclear division, negative regulation of viral
genome replication, and negative regulation of viral life cycle, were identified. Those dysregulated
subnetworks may play important roles in the cardiotoxicity of bufadienolide-like chemicals.

Hub gene selection and its relation to survival probability indicated that 10 hub genes (except
KLHL35) were increased in both breast cancer and samples treated with bufadienolide-like chemicals.
Further analysis in relation to the total survival probability showed six hub genes, including IFIT1,
ISG15, IFI6, GOLM5, KLHL35, and OAS2, were associated the total survival time and high expression
of GOLM5, KLHL35, and OAS2 was associated with better survival probability.

http://ctdbase.org/
https://portals.broadinstitute.org/cmap/
http://ctdbase.org/
http://www.broadinstitute.org/cMAP/
http://ctdbase.org/
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4. Materials and Methods

4.1. Microarray Data Information

The gene expression profiles of GSE85871 (https://www.ncbi.nlm.nih.gov/gds/), which is a gene
expression profile treated with 102 chemicals from Chinese traditional medicine, and is based on the
Affymetrix GPL571 platform (Affymetrix Human Genome U133A 2.0 Array, Santa Clara, CA, USA),
was submitted by Lv et al. [36].

In this study, the raw data of 4 controls and 14 samples treated with bufadienolide-like chemicals
(1 µM and treatment with 12 h), including resibufogenin, bufalin, arenobufagin, cinobufagin,
bufotoxin, telocinobufagin, bufotaline, and cinobufotali, were downloaded from the GEO database via
GEOquery [37] packages in the R3.5.1 [38] environment.

4.2. Identification of DEGs Associated with Relative Enrichment Pathways

In order to obtain a series of differentially expressed genes (DEGs) with biological interpretation,
a novel R package, GSVA [15], was employed, which allowed the assessment of the DEGs underlying
pathway activity variation by transforming the gene expression profile into the prior knowledge of
the gene set. In accordance with MIAME (Minimum Information About a Microarray Experiment)
standards [39,40], the DEGs disturbed by bufadienolide-like chemicals were identified by a series of
standard flow with the R environment. First, the quality assessments, background correction, and
normalization were preprocessed and normalized with the affy [41] and gcrma [42] packages. Then,
the batch effects were examined and removed with the combat and sva functions in the SVA (Surrogate
Variable Analysis) package [43]. Subsequently, a non-specific probes filtering step was performed with
the nsFilter function in the genefilter package [44], the quality control probes of Affymetrix, probe sets
without Entrez ID annotation, probesets whose associated Entrez ID was duplicated in the annotation,
and the top 20% with smaller variability were first removed. Finally, the GSVA [43], GSEABase [45],
limma [46] package, and c2BroadSets from Molecular Signatures Database (MSigDB) [47,48] were used
to select the DEGs enriched in the relative enrichment pathways.

During the process of DEGs selection with relative enrichment sets, the gene expression profile
was first transformed into the prior knowledge gene sets of c2BroadSets and the enriched gene sets were
selected with the screening criteria of FDR < 0.01. Then, the DEGs enriched in the c2BroadSets gene
sets were selected with the limma [46] package, and the screening criteria were set with FDR < 0.01 and
|logFC| > 1. The DEGs associated with relative enrichment pathways were used for further analysis.

During the process of DEGs identification, the Biobase [49] package and GSVAdata [50] package
were also applied. The results were visualized with the ggplot2 [51], ggpubr [52], pheatmap [53], and
cowplot [54] packages.

4.3. Gene Enrichment Analysis

In order to obtain a comprehensive understanding of those genes involved in the prior knowledge
of gene sets, GO and KEGG enrichment analysis were performed with the clueGO plug [23] in
Cystoscape [24]. The significantly enriched GO terms and KEGG pathways were calculated by the
hypergeometric test [55], and cut-off criteria were set as FDR < 0.05. Another statistical parameter of the
Kappa Score were set as middle stringency, which means the terms in the network were merged with
the middle related terms based on their overlapping genes. The minimum percentage and minimum
genes enriched in GO terms or KEGG pathways were set as 1.0% and 2; also, the term fusion parameter
was also chosen. Other options, including the statistical options, reference options, grouping options,
and visual options, were set with the default setting.

4.4. Similar Small Molecule Detection

In order to detect the similar small molecules with bufadienolide-like chemicals, the DEGs
with up or down were respectively submitted to the CTD (http://ctdbase.org/) [16] and CMAP2

https://www.ncbi.nlm.nih.gov/gds/
http://ctdbase.org/
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(http://www.broadinstitute.org/cMAP/) database [16,17]. During the process of detection of similar
small molecules with the CTD database, the threshold of degree in the degree filter network was set
as 10. During the process of detection of similar small molecules with the connectivity map database,
the enrichment score and p-value were chosen as the similarity index between the gene expression
profile of the query signature and that of chemicals in the CMAP2 database.

Also, the potential toxicity the same as bufadienolide-like chemicals were also detected with
the CEBS database (https://manticore.niehs.nih.gov/cebssearch/) [30], but there was no evidence to
prove the bufadienolide-like chemicals had obvious toxicity.

4.5. Gene Co-Expression Network Analysis and Disease Phenotype Association

To obtain a comprehensive understanding of the potential mechanism of DEGs involved
in breast cancer, co-expression network analysis, phenome association, and survival correlation
analysis were investigated with the NetworkAnalyst database (https://www.networkanalyst.ca/) [56]
and PhenomeScape plug [20] in Cystoscape [24]. Also, other plugs and databases, including
the cytoHubba [33], TCSBN database (http://inetmodels.com/) [19], TCGA database [21] and
Kaplan-Meier (KM) plotter database (http://kmplot.com/) [22], and the Phenomiser (http://compbio.
charite.de/phenomizer/) [57] web tool, were also used for hub gene selection and survival correlation
analysis. First, the breast mammary tissue-specific co-expression networks were investigated with the
TCSBN database (http://inetmodels.com/) through the NetworkAnalyst web server (https://www.
networkanalyst.ca/). The GO and KEGG enrichment terms of networks were also investigated with
the NetworkAnalyst web server (https://www.networkanalyst.ca/). Subsequently, the differentially
regulated sub-networks enriched in genes associated with the breast cancer phenotype were identified
by random sampling (10,000 sub-networks) methods with the PhenomeScape plug and Phenomiser
(http://compbio.charite.de/phenomizer/) web tool. First, through the search with Phenomiser web
tool and the manual of UberPheno ontology [57], 6 breast carcionma phenotypes (Table 5) and 11
cardiotoxicity relation phenotypes (Table 6) were chosen as the potential anticancer mechanism or
potential cardiotoxicity association phenotype. Parameters of the maximum initial sub-network size
of 7 and an empirical p-value threshold of 0.05 were used for filtering the differentially regulated
sub-networks enriched in genes associated with breast cancer or the cardiotoxicity phenotype.

Hub genes, highly interconnected with nodes in the network, are considered functionally
significant in the network. In our study, the top 10 hub genes were defined by the node degree
and MCC algorithm in the Cytoscape plugin, cytoHubba [33]. We used the previously described
workflow that selected the essential proteins from the yeast protein interaction network with the MCC
algorithm [33]. First, the degrees of nodes were computed by the NetworkAnalyzer [58] in Cytoscape.
Then, the nodes with a degree greater than a threshold were selected as potential candidate hub genes,
and the threshold was the maximum integer as 2× ∑

v∈V, Deg(v)>t
Deg(v) > ∑

v∈V,
Deg(v), where v is the

collection of nodes within the network V, Deg(v) is the degree of node v. Last, the top 10 hub genes
were ranked by the MCC algorithm in the cytoHubba plugin. The hub genes common in breast tissue
co-expression networks were chosen as the candidates for further validation with TCGA [21] and the
Kaplan-Meier (KM) plotter database (http://kmplot.com/analysis/) [22].

Table 5. UberPheno phenotype terms selected for identification of the differentially regulated
sub-network with the potential anticancer mechanism of bufadienolide-like chemicals.

Phenotype ID Phenotype Description

HP:0100783 Breast aplasia
HP:0100013 Neoplasm of the breast
HP:0003002 Breast carcionma
HP:0003187 Breast hypoplasia
HP:0000769 Abnormality of the breast
HP:0010619 Fibroma of the breast

http://www.broadinstitute.org/cMAP/
https://manticore.niehs.nih.gov/cebssearch/
https://www.networkanalyst.ca/
http://inetmodels.com/
http://kmplot.com/
http://compbio.charite.de/phenomizer/
http://compbio.charite.de/phenomizer/
http://inetmodels.com/
https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
https://www.networkanalyst.ca/
http://compbio.charite.de/phenomizer/
http://kmplot.com/analysis/
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Table 6. UberPheno phenotype terms selected for identification of the differentially regulated
sub-network with potential cardiotoxicity of bufadienolide-like chemicals.

Phenotype ID Phenotype Description

HP:0011675 Arrhythmia
HP:0005110 Atrial fibrillation
HP:0004749 atrial flutter
HP:0011215 Hemihypsarrhythmia
HP:0002521 Hypsarrhythmia
HP:0040182 Inappropriate sinus tachycardia
HP:0001962 Palpitations
HP:0005115 Supraventricular arrhythmia
HP:0004755 Surpraventricular tachycardia
HP:0004308 Ventricular arrhythmia
HP:0011841 Ventricular flutter

5. Conclusions

In this research, with a serious of bioinformatics analysis, we noticed that the bufadienolide-like
chemicals may perform anticancer activity through RNA splicing, apoptotic process, cell migration,
extracellular matrix organization, adherens junction organization, synaptic transmission, Wnt signaling,
AK-STAT signaling, BMP signaling pathway, and the unfolded protein response (Figure 10A). Also,
further investigation of the potential cardiotoxicity of bufadienolide-like chemicals indicated the
dysregulated subnetwork related to membrane depolarization during the action potential, retinoic acid
receptor binding, GABA receptor binding, positive regulation of nuclear division, negative regulation
of viral genome replication, and negative regulation of viral life cycle may play important roles in
cardiotoxicity (Figure 10B). Additionally, those may highlight the potential molecular mechanism
of bufadienolide-like chemicals on breast cancer, but still, there are several problems with no better
solution, including the renal toxicity of bufadienolide-like chemicals, and the difference of potential
molecular mechanisms among different stem nuclei in bufadienolide-like chemicals was also clearly
illuminated in this research.
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