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Abstract: Metabolic reprogramming is one of the hallmarks of renal cell cancer (RCC). We hypothesized
that altered metabolism of RCC cells results from dysregulation of microRNAs targeting metabolically
relevant genes. Combined large-scale transcriptomic and metabolic analysis of RCC patients tissue
samples revealed a group of microRNAs that contribute to metabolic reprogramming in RCC.
miRNAs expressions correlated with their predicted target genes and with gas chromatography-mass
spectrometry (GC-MS) metabolome profiles of RCC tumors. Assays performed in RCC-derived cell
lines showed that miR-146a-5p and miR-155-5p targeted genes of PPP (the pentose phosphate
pathway) (G6PD and TKT), the TCA (tricarboxylic acid cycle) cycle (SUCLG2), and arginine
metabolism (GATM), respectively. miR-106b-5p and miR-122-5p regulated the NFAT5 osmoregulatory
transcription factor. Altered expressions of G6PD, TKT, SUCLG2, GATM, miR-106b-5p, miR-155-5p,
and miR-342-3p correlated with poor survival of RCC patients. miR-106b-5p, miR-146a-5p, and
miR-342-3p stimulated proliferation of RCC cells. The analysis involving >6000 patients revealed that
miR-34a-5p, miR-106b-5p, miR-146a-5p, and miR-155-5p are PanCancer metabomiRs possibly involved
in global regulation of cancer metabolism. In conclusion, we found that microRNAs upregulated
in renal cancer contribute to disturbed expression of key genes involved in the regulation of RCC
metabolome. miR-146a-5p and miR-155-5p emerge as a key “metabomiRs” that target genes of crucial
metabolic pathways (PPP (the pentose phosphate pathway), TCA cycle, and arginine metabolism).
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1. Introduction

Renal cell cancer (RCC) is the most common subtype of kidney malignancies, affecting 300,000
people annually worldwide [1]. In approximately 25–30% of patients, metastasis is present at diagnosis,
while a further 25% of patients develop metastases at later stages of the disease. Metastatic RCC
(mRCC) is persistently difficult for treatment. Current therapeutic options include tyrosine kinase
receptors inhibitors (TKIs), inhibitors of the mTOR (the mammalian target of rapamycin) pathway,
or recently introduced inhibitors of immune checkpoints. All these treatments, however, prolong
patients’ life by only up to two years [2].

Recent studies provided strong evidence that aberrant cellular metabolism contributes to
development and progression of RCC. Similar to all cancers, RCC is characterized by increased
consumption of glucose with simultaneous enhanced production of lactate under normal oxygen
supply (the Warburg effect). The other metabolic features of RCC include alterations in the TCA (the
tricarboxylic acid cycle) cycle and the pentose-phosphate pathway (PPP) as well as the metabolism of
amino acids and fatty acids [3]. In our previous study we found that disturbances in the metabolism
of succinate, beta-alanine, purines, glucose, and myo-inositol are linked with poor survival of RCC
patients [4]. Remarkably, apart from changes in levels of intracellular metabolites in RCC tumors, we
found significant alterations in expressions of genes encoding key metabolic pathways. The causes of
these alterations remain unknown.

In the current study, we hypothesized that disturbed expression of metabolic genes in RCC could
be caused by microRNAs (miRs). These short, non-coding RNAs interact with microRNA response
elements (MREs) located in 3′UTRs of target transcripts and either trigger their degradation or attenuate
translation, thereby contributing to the regulation of gene expression. microRNAs influence cancer
development and progression by changing the expressions of oncogenes and tumor suppressors as
well as genes involved in key signaling pathways. Remarkably, one microRNA can regulate multiple
target genes, while one gene can be commonly regulated by several microRNAs [5]. We and others
showed that disturbed expression of microRNAs in renal cancer contributes to altered expression of
genes regulating proliferation, migration, invasion, and apoptosis [6,7].

Here, we hypothesized that altered expression of genes involved in metabolic regulation in
RCC could result from dysregulation of their targeting microRNAs. We verified our hypothesis by
comprehensively analyzing expressions of nearly 100 microRNAs predicted to target altered metabolic
genes in a large group of RCC patients, in order to identify and validate miRNAs that can act as
regulators of the RCC metabolome. Remarkably, we show that metabolically relevant microRNAs affect
proliferation of the RCC cells and contribute to the poor survival of RCC patients. To our knowledge,
this is the first study addressing the role of microRNAs in global regulation of genes affecting renal
cancer metabolome.

2. Results

2.1. The Expression of miRs Predicted to Target Metabolic Genes Is Altered in Renal Tumors

In our previous study, we identified a group of genes encoding metabolic enzymes for which
altered expression was associated with changed metabolic profiles of RCC tumors [4]. Here, to validate
the results of that study, we selected 20 genes based on their possible effects on patient survival,
the number of predicted targeting miRNAs, and the fold changes in their expression (Table S1),
and analyzed their expression in an independent group of 60 RCC-control tissue pairs (Figure 1A).
This analysis confirmed altered expression of 19 genes encoding enzymes involved in the regulation of
RCC metabolome (Table 1).
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Figure 1. The expressions of microRNAs in relation to their predicted metabolically relevant gene 
targets. (A) The scheme of analysis of miRNAs predicted to regulated RCC metabolome. (B) 
Correlations between the expressions of metabolic genes and their predicted regulatory microRNAs, 
selected for functional analysis. Upper panel shows correlation coefficients. Green: r Spearman < −0.5; 
orange: r Spearman > 0.5. Lower panel: p values. Yellow: p < 0.05. Full data of correlation analysis are 
given in Table S3. N = 60 of RCC tumor samples and n = 60 of control tissue samples. (C) Altered 
expression of metabolic genes correlates with poor survival of RCC patients. Kaplan–Meier plots were 
generated using OncoLnc tool and KIRC (Kidney Renal Clear Cell Carcinoma) cohort of TCGA (The 
Cancer Genome Atlas) data. Patients were classified into Low and High expression groups basing on 
median mRNA expression (the expression profiles in two groups of patients are given in Figure S1). 
N = 260. 

Based on the results of bioinformatic analysis and the selection criteria described in the Methods 
Section and File S1, we selected 90 microRNAs (Table S2) predicted to regulate 19 metabolic genes 

Figure 1. The expressions of microRNAs in relation to their predicted metabolically relevant gene targets.
(A) The scheme of analysis of miRNAs predicted to regulated RCC metabolome. (B) Correlations
between the expressions of metabolic genes and their predicted regulatory microRNAs, selected for
functional analysis. Upper panel shows correlation coefficients. Green: r Spearman < −0.5; orange:
r Spearman > 0.5. Lower panel: p values. Yellow: p < 0.05. Full data of correlation analysis are given in
Table S3. N = 60 of RCC tumor samples and n = 60 of control tissue samples. (C) Altered expression of
metabolic genes correlates with poor survival of RCC patients. Kaplan–Meier plots were generated
using OncoLnc tool and KIRC (Kidney Renal Clear Cell Carcinoma) cohort of TCGA (The Cancer
Genome Atlas) data. Patients were classified into Low and High expression groups basing on median
mRNA expression (the expression profiles in two groups of patients are given in Figure S1). N = 260.
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Based on the results of bioinformatic analysis and the selection criteria described in the
Methods Section and File S1, we selected 90 microRNAs (Table S2) predicted to regulate 19 metabolic
genes and analyzed their expression in 35 matched-pairs of ccRCC (clear cell Renal Cell Carcinoma)
tumors and non-tumorous kidney samples. The expression of 48 microRNAs was statistically significantly
different in RCC tumors when compared to controls (p < 0.05; threshold of expression change: 30%)
(Table S2). Next, we performed validation analysis, using an independent group of 60 matched-pairs
of ccRCC tumors and control samples, and confirmed altered expression of 22 microRNAs (Table 1).
microRNAs for which expression was most increased included: miR-122-5p (+107.7-fold), miR-210-3p
(+10.2-fold) and miR-34a-5p (+3.1-fold).

Table 1. The expressions of genes involved in the regulation of cell metabolism and their predicted
regulatory miRNAs are altered in RCC tumor tissues.

A. Expression of Metabolic Genes in RCC

Gene FC p Value

Increased expression in tumors

1. ADA +5.77 <0.0001
2. IL4I1 +4.20 <0.0001
3. HK3 +3.96 <0.0001
4. PYCR1 +1.56 <0.0001

Decreased expression in tumors

5. PAH −70.47 <0.0001
6. ALDH6A1 −21.41 <0.0001
7. CMKT2 −18.36 <0.0001
8. ALDH4A1 −14.72 <0.0001
9. GATM −12.99 <0.0001
10. DPYS −10.83 <0.0001
11. G6PC −10.83 <0.0001
12. PCCA −6.87 <0.0001
13. GPT −6.62 <0.0001
14. GDA −6.37 <0.0001
15. ALDH5A1 −5.54 <0.0001
16. SUCLG2 −5.35 <0.0001
17. ARG2 −4.45 <0.0001
18. GOT1 −3.68 <0.0001
19. PHOSPHO1 −1.35 =0.0215

B. Expression of miRNAs Predicted to Regulate Metabolic Genes in RCC

MicroRNA FC p Value

Increased expression in tumors

1. miR-122-5p +107.7 <0.0001
2. miR-210-3p +10.2 <0.0001
3. miR-155-5p +8.3 <0.0001
4. miR-34a-5p +3.1 <0.0001
5. miR-146a-5p +2.1 <0.0001
6. miR-106b-5p +2.1 <0.0001
7. miR-342-3p +1.9 <0.0001
8. miR-454-3p +1.6 <0.0001
9. miR-28-5p +1.5 <0.0001
10. miR-126-3p +1.5 <0.0001
11. miR-340-5p +1.5 <0.0001
12. miR-20-5p +1.4 <0.0001

Decreased expression in tumors

13. miR-129-1-3p −17.0 <0.0001
14. miR-129-2-3p −6.6 <0.0001
15. miR-200b-3p −4.3 <0.0001
16. miR-370-3p −2.6 <0.0001
17. miR-20b-5p −2.4 <0.0001
18. miR-133a-3p −2.2 0.0262
19. miR-154-5p −2.1 <0.0001
20. miR-135b-5p −2.0 0.0003
21. miR-27b-3p −1.6 <0.0001
22. miR-543 −1.5 0.0337

(A) The expression of metabolic genes. (B) The expressions of microRNAs predicted to target metabolic genes.
FC: fold change (the ratio between median expressions in tumor and control tissue samples); threshold = 1.3. n = 60
(RCC tumor samples), n = 60 (paired-matched control samples). Statistical analysis was performed using Wilcoxon
matched-pairs signed rank test. MicroRNAs selected for functional analysis are bolded.
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Since the negative correlation between expression of miRNAs and target genes is a potential
indicator of their functional association [8], we next checked whether the expressions of miRNAs
correlated with the expressions of the metabolic genes. To this end, we constructed correlation matrix
(Table S3) and searched for miRNAs of which expressions correlated with the highest number of
target genes. This analysis revealed that top microRNAs for which expressions negatively correlated
with genes expressions (r Spearman < −0.5, p < 0.05) included miR-34a-5p (9 correlating genes),
miR-106b-5p (11 correlating genes), miR-146a-5p (8 correlating genes), miR-155-5p (11 correlating
genes), and miR-342-3p (10 correlating genes). These five miRNAs were next selected for functional
analysis of their impact on RCC cells. In addition, we also selected miR-122-5p, which was the top
upregulated miRNA in RCC tumors. The correlations between miR-122-5p and metabolic genes were
weaker, but still statistically significant (r Spearman = −0.35 to −0.49, p < 0.05) (Figure 1B). Remarkably,
altered expression of all metabolic genes, predicted as targets of the selected miRNAs, correlated with
poor survival of RCC patients, suggesting their potential link with the progression of the disease
(Figure 1C).

Basing on the assumption that the miRNAs the most strongly correlating with metabolic genes
could have the greatest impact on cellular metabolism, we next evaluated the effects of the five
miRNAs (miR-34a-5p, miR-106b-5p, miR-122-5p, miR-146a-5p, and miR-155-5p) on mRNA expression
of metabolic genes (Figure 2A) that were predicted as possible targets for specific miRNAs (Table S1).
For each miRNA, we analyzed only the expression of transcripts of which 3′UTRs possessed potential
binding sites for this specific miRNA as indicated by the bioinformatic analysis. Transfections of miRNA
mimics in two RCC-derived cell lines resulted in downregulation of GATM mRNA by miR-155-5p,
GDA by miR-106b-5p and miR-146a-5p, and SUCLG2 by miR-146a-5p and miR-155-5p. In addition,
miR-155-5p statistically significantly suppressed the expressions of GDA and PCCA in only one of
the analyzed cell lines. In Caki-2 cells, the expression of ALDH5A1 was stimulated by miR-122-5p
and miR-146a-5p, while the expression of ALDH6A1 was stimulated by miR-106b-5p and miR-122-5p.
miR-342-3p concomitantly increased the expression of PCCA in both analyzed cell lines (Figure 2A).

We subsequently evaluated the effects of miRNAs on protein expressions of metabolic genes.
Firstly, we checked whether miRNAs could interact with sequences predicted as miRNA response
elements (MREs) in target transcripts. To this end, the predicted binding sites were cloned into luciferase
reporter system, which was co-transfected into RCC cells with miRNA mimics or non-targeting control
oligonucleotides (Figure 2B). We found that miR-155-5p significantly suppressed luciferase activity
under control of MREs cloned from GATM and SUCLG2 sequences, while miR-106b-5p and miR-146a-5p
decreased luciferase activity of two MREs cloned from GDA. Remarkably, no changes in luciferase
activity were found when miRNA mimics were co-transfected with the reporter constructs with
mutated MREs of GATM, SUCLG2, and GDA (Figure S2). We also observed miR-155-5p-mediated
suppression of luciferase activity under control of MRE cloned from PCCA; however, this effect was
not specific as indicated by experiments with mutated binding sequences (Figure S2). In accordance
with the effect of miR-146a-5p on ALDH5A1 mRNA (Figure 2A), luciferase activity was also increased
when MRE cloned from ALDH5A1 was treated with miR-146a-5p mimic (Figure 2B). However, miRNA
mimics did not affect the activity of empty reporter vector (Figure S2).

Finally, we analyzed the effects of miRNA mimics on the endogenous expression of proteins
encoded by metabolic genes (Figure 2C). The expression of GATM was dramatically reduced by
transfection with miR-155-5p in Caki-2 cells but not in KIJ265T cells (Figure S3). The expressions of
ALDH5A1, ALDH6A1, and GDA proteins were not changed by transfection of the miRNA mimics
(Western blots for these proteins are shown in Figure S3). Antibodies against PCCA gave non-specific
signals and were, therefore, discarded from the analysis (Figure S3).
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Figure 2. miRNA-mediated regulation of expressions of metabolically relevant genes. (A) The effects 
of miRNAs on mRNA expressions of metabolic genes predicted as potential miRNAs’ targets. Caki-2 
and KIJ265T cell lines were transfected using miRNA mimics or non-targeting scrambled control 
oligonucleotides and expression of target genes was evaluated using qPCR (quantitative real-time 
PCR). The plots show results of three independent biological experiments (exception: GDA expression 
in KIJ265T cells): for most miRNAs (except for miR-106b-5p) results of two independent experiments 
are shown; the expression of GDA in KIJ265T cell line was on the border of detection limit). Statistical 
analysis was performed using one-way ANOVA with Dunnett’s Multiple Comparison Test, with 
exception of analysis of GATM and GOT1 for which t-test was used * p < 0.05, ** p < 0.01, ***p < 0.001. 
(B) The effects of miRNAs on the activity of luciferase reporter gene under control of cloned miRNA 
binding sites predicted in metabolic genes. Caki-2 cells were co-transfected with reporter plasmid 
bearing MRE (miRNA response element) for a given microRNA, and either microRNA mimic or non-
targeting scrambled control oligonucleotides. The plots show results of three independent biological 
experiments. Statistical analysis was performed using Students t-test. (C) The effects of miR-155-5p 
on protein expressions of GATM in Caki-2 cells. Upper panel: Representative photographs of Western 
blots. Lower panel: Results of densitometric scanning of Western blots. The plot shows mean 
expression of GATM protein in three independent biological experiments performed in two-three 
replicates. * p < 0.05. 
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Figure 2. miRNA-mediated regulation of expressions of metabolically relevant genes. (A) The effects
of miRNAs on mRNA expressions of metabolic genes predicted as potential miRNAs’ targets. Caki-2
and KIJ265T cell lines were transfected using miRNA mimics or non-targeting scrambled control
oligonucleotides and expression of target genes was evaluated using qPCR (quantitative real-time
PCR). The plots show results of three independent biological experiments (exception: GDA expression
in KIJ265T cells): for most miRNAs (except for miR-106b-5p) results of two independent experiments
are shown; the expression of GDA in KIJ265T cell line was on the border of detection limit). Statistical
analysis was performed using one-way ANOVA with Dunnett’s Multiple Comparison Test, with
exception of analysis of GATM and GOT1 for which t-test was used * p < 0.05, ** p < 0.01, ***p < 0.001.
(B) The effects of miRNAs on the activity of luciferase reporter gene under control of cloned miRNA
binding sites predicted in metabolic genes. Caki-2 cells were co-transfected with reporter plasmid
bearing MRE (miRNA response element) for a given microRNA, and either microRNA mimic or
non-targeting scrambled control oligonucleotides. The plots show results of three independent
biological experiments. Statistical analysis was performed using Students t-test. (C) The effects of
miR-155-5p on protein expressions of GATM in Caki-2 cells. Upper panel: Representative photographs
of Western blots. Lower panel: Results of densitometric scanning of Western blots. The plot shows
mean expression of GATM protein in three independent biological experiments performed in two-three
replicates. * p < 0.05.

2.2. Metabolic miRNAs Affect Proliferation of RCC Cells and Correlate with Poor Survival of RCC Patients

Given the above-described findings, we next looked for potential associations between altered
expression of miRNAs targeting metabolic genes and survival of RCC patients. Analysis of publicly
available TCGA data revealed that high expression of miR-106b-5p, miR-155-5p, and miR-342-3p
correlated with poor survival of RCC patients (Figure 3A). There was no statistically significant
correlation between the expressions of miR-34a-5p, miR-122-5p, and miR-146a-5p and survival of
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patients. We subsequently analyzed the effects of metabolic miRNAs on the proliferation of RCC cells.
Transfection of miR-106b-5p, miR-146a-5p, and miR-342-3p concomitantly stimulated proliferation in
both analyzed RCC cell lines. The proliferation of cells transfected with miR-122-5p and miR-155-5p
was also increased, although without statistical significance (Figure 3B).

These results indicate that altered expression of metabolically-relevant miRNAs could possibly
contribute to cancer progression and shorten the survival time of RCC patients.
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analysis was done using repeated measures ANOVA with Dunnett‘s Multiple Comparison post-test. 
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cells functioning. Secondly, miR-146a-5p is the first miRNA for which functional interaction with 
TCA cycle was recently provided in vivo [9] and alterations of TCA cycle are a characteristic feature 
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Figure 3. MicroRNAs effects on survival of RCC patients and proliferation of RCC cells. (A) Kaplan–Meier
plots of RCC patients generated using OncoLnc tool and KIRC cohort of TCGA data. Patients were
classified into Low and High expression groups basing on median miRNA expression data, which are
shown on the graphs below the K-M plots. **** p < 0.0001; analysis was done using Mann–Whitney
test. (B) The effects of microRNAs on proliferation of Caki-2 and KIJ265T cells. The plots show results
of BrdU assay performed in three independent biological experiments. Statistical analysis was done
using repeated measures ANOVA with Dunnett‘s Multiple Comparison post-test. * p < 0.05, ** p < 0.01,
*** p < 0.001.
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2.3. MiR-146a-5p is a Global Regulator of Key Metabolic Pathways in RCC

Next, we asked whether one specific miRNA could globally affect RCC metabolism. To answer
this question, we implemented microarray analysis of RCC cells transfected with miR-146a-5p mimic or
non-targeting control oligonucleotide. miR-146a-5p was selected for two reasons: firstly, it significantly
stimulated proliferation of RCC cells (Figure 3B), indicating genuine reprogramming of cells functioning.
Secondly, miR-146a-5p is the first miRNA for which functional interaction with TCA cycle was recently
provided in vivo [9] and alterations of TCA cycle are a characteristic feature of RCC tumors [3].
The principal component analysis (PCA) and hierarchical clustering of RCC cells transfected with
a miR-146a-5p mimic or non-targeting control oligonucleotide proved robustness of the obtained
datasets and clear distinctiveness of compared groups (KIJ265T cell line transfected with miR-146a-5p
mimic and transfected with non-targeting control oligonucleotide) (Figure 4A,B).Cancers 2019, 11, 1825 9 of 23 
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expressed genes generated using TAC 4.0. (C) Top pathways affected by miR-146a-5p transfection in 
RCC cells. The plot shows results of IPA Core Analysis performed on the genes affected by 
transfection of miR-146a-5p mimic (shown in Table S4). The overrepresented pathways are listed 
according to the –log (p value) (blue bars) (left y-axis). The threshold line (green) represents p value = 
0.05. The ratio of the number of genes found in each pathway and the total number of genes in the 
pathway is shown in orange (right y-axis). PPP pathway is shown with arrows. (D) The expressions 
of genes involved in the pentose phosphate pathway (G6PD, TKT) are upregulated in RCC cells 
transfected with miR-146a-5p mimic. The effect of miR-146a-5p was analyzed in three independent 
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Figure 4. The effects of miR-146a-5p transfection in RCC cells. (A) Principal component analysis
(PCA) of transcriptome data obtained from KIJ265T cell line transfected with miR-146a-5p mimic
or non-targeting control oligonucleotide (Cont. (B) Hierarchical clustering based on differentially
expressed genes generated using TAC 4.0. (C) Top pathways affected by miR-146a-5p transfection in
RCC cells. The plot shows results of IPA Core Analysis performed on the genes affected by transfection
of miR-146a-5p mimic (shown in Table S4). The overrepresented pathways are listed according to the
–log (p value) (blue bars) (left y-axis). The threshold line (green) represents p value = 0.05. The ratio of
the number of genes found in each pathway and the total number of genes in the pathway is shown in
orange (right y-axis). PPP pathway is shown with arrows. (D) The expressions of genes involved in the
pentose phosphate pathway (G6PD, TKT) are upregulated in RCC cells transfected with miR-146a-5p
mimic. The effect of miR-146a-5p was analyzed in three independent biological experiments performed
in triplicate. Statistical analysis was performed using t-test. * p < 0.05. ** p < 0.01. (E) The expression of
G6PD and TKT in RCC tumors classified according to TNM system [1]. T1 (n = 30): tumors classified as
Stages I and II (tumors limited to the kidney, with no signs of metastasis); T2 (n = 30): tumors classified
as Stages III and IV (tumors which invade veins and neighboring structures as well as tumors with
metastasis in lymph nodes or distant organs). Statistical analysis was performed using Mann–Whitney
test. ** p < 0.01. (F) High expressions of G6PD and TKT correlate with poor survival of RCC patients.
Kaplan–Meier plots of RCC patients were generated using OncoLnc tool and KIRC cohort of TCGA
data. Patients were classified into Low and High expression groups basing on median gene expression
data. (G) miR-146a-5p transfection increases creatinine levels in RCC cells. Left panel: The plot shows
results of GC-MS analysis of RCC cells transfected with miR-146a-5p mimic or non-targeting control
oligonucleotide. Middle panel: The expression of adrenomedullin (ADM) is increased in KIJ265T
RCC cells transfected with miR-146a-5p mimic. Right panel: The expression of ADM is increased in
RCC tumors (T, n = 250) when compared with control kidney samples (C, n = 72). The analysis was
performed using publicly available transcriptomic data of TCGA consortium (KIRC cohort). Statistical
analysis was performed using t-test. * p < 0.05. ** p < 0.01. **** p < 0.0001.

Transcriptome Analysis Console (TAC) software evaluation revealed the altered expression of
955 genes, including 810 up-regulated in 145-down-regulated transcripts (Table S4). TAC analysis
revealed that miR-146a-5p affected the expressions of genes involved in the TCA cycle; the OXPHOS
system in mitochondria; the pentose phosphate pathway (PPP); metabolism of amino acids, nucleotides,
and glutathione; adipogenesis; fatty acids beta-oxidation; trans-sulfuration; and one-carbon metabolism
(Table 2).

Both TAC (Table S5) and Ingenuity Pathway Analysis (Figure 4C) revealed that the pentose
phosphate pathway was among the most altered metabolic pathways in miR-146a-5p transfected
cells. qPCR validation confirmed that miR-146a-5p transfection induced expression of G6PD and
TKT, two key genes encoding PPP enzymes (Figure 4D). The expression of TKT was higher in
more advanced RCC tumors than in less advanced lesions. For G6PD, no statistically significant
expression changes were observed (Figure 4E). Remarkably, high TKT and G6PD expressions in
tumors significantly correlated with poor survival rates of RCC patients (Figure 4F), which may
partially reflect the pro-proliferative effects of their stimulator, miR-146-5p. To analyze the impact of
miR-146a-5p on metabolic profile of RCC cells, we performed GC-MS analysis of RCC cells transfected
with the miR-146a-5p mimic. This analysis revealed increased levels of creatinine in KIJ265T cells
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transfected with miR-146a-5p when compared with those transfected with a non-targeting control
oligonucleotide (Figure 4G). Interestingly, microarray analysis (Table S4) and qPCR validation in
KIJ265T cells (Figure 4G) indicated that miR-146a-5p transfection caused upregulation of ADM,
a gene encoding adrenomedullin which contributes to creatinine clearance [10–12], suggesting cellular
response to increased creatinine levels. In Caki-2 cells, the expression of ADM was not statistically
significantly changed following miR-146a-5p (Figure 4G). In accordance, GC-MS analysis revealed that
creatinine levels were not statistically significantly changed in Caki-2 cells transfected with miR-146a-5p
(not shown).

Table 2. miR-146a-5p affects expression of genes involved in key metabolic pathways. The table shows
selected DEGs in RCC cells transfected with miR-146a-5p mimic, compared to cells transfected with
non-targeting control oligonucleotide with functions in different metabolic pathways identified by
biological pathway analysis with WikiPathways included in TAC 4.0.

Symbol Entrez Gene Description Metabolic Pathway Fold
Change p-Value

ACO2 aconitase 2 TCA cycle, Amino acid metabolism,
Metabolic reprogramming in colon cancer 1.53 3.40 × 10−3

AHCY Adenosylhomocysteinase Trans-sulfuration pathway; Trans-sulfuration and one carbon
metabolism 1.76 6.00 × 10−4

ALDH1A1 aldehyde dehydrogenase 1 family
member A1 Tryptophan metabolism 2.2 5.00 × 10−4

CANT1 calcium activated nucleotidase 1 Pyrimidine metabolism 1.53 1.14 × 10−2

CBS/CBSL cystathionine-beta-synthase
Amino acid metabolism; Trans-sulfuration pathway;
Trans-sulfuration and one carbon metabolism;
One carbon metabolism and related pathways

1.57 2.00 × 10−4

CEBPD CCAAT enhancer binding protein
delta Adipogenesis 1.58 4.50 × 10−3

CHDH choline dehydrogenase One carbon metabolism and related pathways 1.63 4.50 × 10−3

CKB creatine kinase B Trans-sulfuration; Urea cycle and metabolism of amino groups 1.58 5.13 × 10−2

CPT2 carnitine palmitoyltransferase 2 Fatty Acids Beta Oxidation 1.61 2.20 × 10−3

DHODH dihydroorotate dehydrogenase
(quinone) Pyrimidine metabolism 1.88 1.00 × 10−4

DNMT3B DNA methyltransferase 3 beta Trans-sulfuration; Trans-sulfuration and one carbon
metabolism; One carbon metabolism and related pathways 1.5 6.20 × 10−3

E2F1 E2F transcription factor 1 Adipogenesis 1.82 9.00 × 10−4

E2F4 E2F transcription factor 4 Adipogenesis 2.01 8.00 × 10−4

ECHS1 enoyl-CoA hydratase, short chain 1 Fatty Acid Biosynthesis; Fatty Acid Beta oxidation;
Tryptophan metabolism 1.55 1.29 × 10−2

ECSIT ECSIT signalling integrator Mitochondrial complex I assembly model OXPHOS system 1.61 3.60 × 10−3

ENTPD4 ectonucleoside triphosphate
diphosphohydrolase 4 Pyrimidine metabolism 1.58 3.42 × 10−1

ESRRA estrogen related receptor alpha Energy metabolism 1.69 1.00 × 10−4

G6PD glucose-6-phosphate
dehydrogenase

Pentose Phosphate Pathway; Metabolic reprogramming in
colon cancer; Glutathione metabolism 1.64 6.00 × 10−4

GK glycerol kinase Fatty Acids Beta Oxidation -1.75 4.30 × 10−3

GPX4 glutathione peroxidase 4 One carbon metabolism and related pathways;
Glutathion metabolism 1.82 3.40 × 10−3

H6PD
hexose-6-phosphate
dehydrogenase/glucose
1-dehydrogenase

Pentose Phosphate Pathway 1.72 4.40 × 10−3

IDH2 isocitrate dehydrogenase
(NADP (+)) 2, mitochondrial TCA cycle; Metabolic reprogramming in colon cancer 1.91 9.25 × 10−5

LMNA lamin A/C Adipogenesis 1.77 8.90 × 10−3

LPIN3 lipin 3 Adipogenesis 2.13 2.30 × 10−3

MEF2D myocyte enhancer factor 2D Adipogenesis; Energy metabolism 1.7 1.83 × 10−2

MYBBP1A MYB binding protein 1a Energy metabolism 1.77 6.00 × 10−4
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Table 2. Cont.

Symbol Entrez Gene Description Metabolic Pathway Fold
Change p-Value

NDUFAF8 NADH:ubiquinone oxidoreductase
complex assembly factor 8 Electron Transport Chain (OXPHOS system in mitochondria) 1.55 8.00 × 10−4

NDUFB7 NADH:ubiquinone oxidoreductase
subunit B7

Electron Transport Chain (OXPHOS system in mitochondria);
Mitochondrial complex I assembly model OXPHOS system 1.64 3.67 × 10−2

NDUFS3 NADH:ubiquinone oxidoreductase
core subunit S3

Electron Transport Chain (OXPHOS system in mitochondria);
Mitochondrial complex I assembly model OXPHOS system 1.52 9.00 × 10−4

PGAM5
PGAM family member 5,
mitochondrial serine/threonine
protein phosphatase

Metabolic reprogramming in colon cancer 1.52 1.20 × 10−2

PGLS 6-phosphogluconolactonase Pentose Phosphate Pathway 1.53 6.40 × 10−3

PYCR2 pyrroline-5-carboxylate reductase 2 Metabolic reprogramming in colon cancer 1.5 6.00 × 10−3

RAPGEF3 Rap guanine nucleotide exchange
factor 3 Integration of energy metabolism 1.58 4.00 × 10−4

SDHA succinate dehydrogenase complex
flavoprotein subunit A Amino acid metablism; TCA cycle 1.52 2.60 × 10−2

SEMA6B semaphorin 6B TCA cycle 1.5 1.60 × 10−3

SHPK sedoheptulokinase Pentose Phosphate Pathway 1.63 4.00 × 10−4

SOCS3 suppressor of cytokine signaling 3 Adipogenesis 1.53 1.28 × 10−2

STK11 serine/threonine kinase 11 Integration of energy metabolism 1.69 6.00 × 10−4

TKT Transketolase Pentose Phosphate Pathway;
Metabolic reprogramming in colon cancer 1.56 2.00 × 10−3

2.4. Metabolically-Relevant miRNAs Regulate the Expression of NFAT5

The fact that miR-146a-5p influenced the level of only one metabolite (creatinine) suggested
that the combined action of several microRNAs may be required for reprogramming of cancer cell
metabolism. In the search for such possible cooperative effects of miRNAs on RCC metabolism,
we analyzed correlations between the expression of the 22 initially identified miRNAs and the levels of
54 metabolites in RCC tissue samples (Table S6). Strikingly, we found that miR-34a-5p, miR-106b-5,
miR-122-5p, miR-146a-5p, and miR-155-5p were among the miRNAs with the highest number of
correlating metabolites (Table S6). Furthermore, we found that expression of these microRNAs
commonly correlated with similar metabolites. In particular, we found strong negative correlations
(r Spearman ≤ −0.4, p < 0.001) between the expressions of all five microRNAs and the levels of
myo-inositol (Figure 5A).

On the basis of these observations, we searched for the possible target genes that could mediate
cooperative actions of miRNAs associated with metabolic changes in RCC tumors. To this end,
we next selected miRNAs whose expression was most strongly negatively (r Spearman < −0.5)
correlated with myo-inositol levels (Table S6), and searched for their potential target genes using the
miRsystem platform that incorporates seven independent prediction algorithms [13]. Remarkably,
we found NFAT5 as the top gene, predicted to be commonly co-regulated by five out of seven analyzed
microRNA: miR-106b-5p, miR-122-5p, miR-146a-5p, miR-155-5p, and miR-210-3p (Figure 5B and
Table S7). Furthermore, we found that NFAT5 expression in renal tumors is decreased (Figure 5C),
which fits the profile of increased expression of the predicted targeting microRNAs. We also found
strong negative correlations between the expression of NFAT5 and the four predicted miRNAs in RCC
tumor samples (Figure 5C) and other types of cancer (File S2). These results suggest that NFAT5 could
indeed be a common target of the miRNAs that affect myo-inositol levels in tumor tissues. Transfection
with mimics of miR-106b-5p and miR-122-5p suppressed the expression of NFAT5 in RCC cell line
(Figure 5D). NFAT5 is an osmoprotective transcription factor that controls expression of genes that
counteract signals inducing cell shrinkage during osmotic stress. The key NFAT5 targets are SLC5A3
(a myo-inositol transporter), SLC6A6 (a beta-alanine transporter), AKR1B1 (aldose reductase; catalyzes
reduction of glucose to sorbitol), SLC14A2 (a urea transporter), and HSPA1B (a chaperone protecting
cells against apoptosis induced by urea [14]. The expressions of most of these genes were decreased in
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renal tumors (Figure 5E). The only exception was AKR1B1 for which expression was unaltered. Taken
together, these results indicate that miRNA-mediated changes in NFAT5 expression could contribute
to changed levels of osmolytes (e.g., myo-inositol) via altered expression of the proteins responsible for
their transport in RCC cells.
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Figure 5. Osmoregulatory NFAT5 as a target of metabolically-relevant miRNAs in renal cancer.
(A) Correlations between the expressions of microRNAs and metabolite levels in tissue samples from
70 control and RCC samples. Upper panel: Correlation coefficients. Orange: r Spearman > 0.3; green:
r Spearman < −0.3. Lower panel: p values; yellow: p < 0.05. Full data of correlation analysis is given
in Table S6. (B) The potential binding sites of miRNAs in NFAT5 3′UTR, predicted by TargetScan.
(C) Upper panel: The expression of NFAT5 is decreased in RCC tumors (TCGA cohort: T, n = 250;
this study cohort: T, n = 60) when compared with control kidney samples (TCGA cohort: C, n = 72;
this study cohort: C, n = 60). Statistical analysis was performed using t-test. **** < 0.0001. Lower panel:
Negative correlations between the expressions of NFAT5 and the predicted microRNAs. Correlation
analysis was performed using StarBase v2.0. on KIRC cohort of RCC patients (n = 300). For miR-210-3p,
no data were available. (D) The expression of NFAT5 mRNA is suppressed by miR-106b-5p and
miR-122-5p in RCC cell line. Caki-2 cells were transfected with mimics of the respective microRNAs or
non-targeting scrambled oligonucleotides. The plots show the results of three independent biological
experiments. Statistical analysis was performed using repeated measures ANOVA with Dunnett’s
Multiple Comparison post-test. * p < 0.05, ** p < 0.01. (E) The expression of NFAT5 target genes
is decreased in RCC tumors (T, n = 250) when compared with control kidney samples (N, n = 72).
The analysis was performed using publicly available transcriptomic data of TCGA consortium (KIRC
cohort). Statistical analysis was performed using Students t-test. **** < 0.0001.
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2.5. MiR-34a-5p, miR-106b-5p, miR-146a-5p and miR-155-5p Are PanCancer MetabomiRs

On the basis of the collected data presented above, we hypothesized that miRNAs identified in
our study could be involved in global regulation of cancer metabolism. To this end, we searched for
possible correlations between the expression of miR-34a-5p, miR-122-5p, miR-146a-5p, miR-155-5p,
and miR-342-3p and their predicted target genes in the transcriptomes of 14 types of cancers in more
than 6000 samples (Tables S8 and S9). Next, we selected miRNA targets of which expressions correlated
in at least ten cancer types and performed PANTHER Functional Classification Test to find biological
processes annotated to the analyzed genes (Figure 6A). Strikingly, “metabolic process” emerged at the
top of annotated processes for most miRNAs targets. The only exception was miR-122-5p for which
no gene targets were found which correlated in at least 10 cancer types. These results indicated that
miR-34a-5p, miR-106b-5p, miR-146a-5p, and miR-155-5p could represent PanCancer metabo-miRs,
involved in global regulation of cellular metabolism in cancer cells.

Cancers 2019, 11, 1825 15 of 23 

 

 
Figure 6. microRNA-mediated regulation of cancer metabolism. (A) Functional annotation of genes 
predicted as targets of microRNAs identified in our study in PanCancer analysis encompassing 14 
cancer types and >6000 patients. Only genes for which expression correlated with a given microRNA 
in at least 10 cancer types were selected for the analysis. The list of genes is provided in Table S7. The 
plots show results of PANTHER Functional classification analysis according to GO Biological 
processes annotated to the predicted genes. (B) The model showing microRNAs affecting key 
metabolic pathways in RCC cells: miR-146a-5p upregulates key PPP genes (G6PD and TKT), thereby 
contributing to enhanced cancer cell proliferation; miR-155-5p suppresses the expressions of gene 
involved arginine metabolism (GATM); and miR-106b-5p and miR-122-5p may possibly counteract 
cell swelling induced by enhanced lactate production, by suppressing the expression of NFAT5, 
which governs the activity of genes encoding proteins transporting osmolytes (e.g., myo-inositol). 
Abbreviations: GA3P, glyceraldehyde-3-phosphate; 2OG, 2-oxoglutarate. Glycolysis is shown with 
blue arrows. 

3. Discussion 

In this paper, we present a group of microRNAs that regulate genes involved in key metabolic 
pathways and contribute to enhanced proliferation of renal cancer cells. We show that microRNAs 
can affect the RCC metabolome both directly (e.g., miR-155-5p targeting GATM) and indirectly, by 
cooperative regulation of the expression of NFAT5, a transcription factor governing the expression 
of transporters that control osmolality. We also show that miR-146a-5p globally affects the expression 
of genes involved in key metabolic pathways in RCC such as those associated with the PPP. Finally, 
the results of PanCancer analysis indicate that miR-34a-5p, miR-106b-5p, miR-146a-5p, miR-155-5p, 
and miR-342-3p may be involved in global regulation of metabolism in cancers of various origins. 

Upregulation of the pentose phosphate pathway (PPP) is one of the key features of the 
dysregulated metabolism of RCC cells [15]. It enables efficient production of NADPH, utilized as a 
reducing agent contributing to redox homeostasis of cancer cells, and ribose-5-phosphate, required 
to support the high rates of nucleotide synthesis during intensive malignant proliferation [16] (Figure 
6B). G6PD is a rate-limiting enzyme of the PPP and its inhibition attenuates survival of RCC cells [17]. 
We found that miR-146a-5p stimulated the expression of G6PD and TKT, the genes encoding two key 
enzymes of the oxidative and non-oxidative PPP branches, respectively. Interestingly, it was shown 

Figure 6. microRNA-mediated regulation of cancer metabolism. (A) Functional annotation of genes
predicted as targets of microRNAs identified in our study in PanCancer analysis encompassing 14 cancer
types and >6000 patients. Only genes for which expression correlated with a given microRNA in at least
10 cancer types were selected for the analysis. The list of genes is provided in Table S7. The plots show
results of PANTHER Functional classification analysis according to GO Biological processes annotated to
the predicted genes. (B) The model showing microRNAs affecting key metabolic pathways in RCC cells:
miR-146a-5p upregulates key PPP genes (G6PD and TKT), thereby contributing to enhanced cancer cell
proliferation; miR-155-5p suppresses the expressions of gene involved arginine metabolism (GATM);
and miR-106b-5p and miR-122-5p may possibly counteract cell swelling induced by enhanced lactate
production, by suppressing the expression of NFAT5, which governs the activity of genes encoding
proteins transporting osmolytes (e.g., myo-inositol). Abbreviations: GA3P, glyceraldehyde-3-phosphate;
2OG, 2-oxoglutarate. Glycolysis is shown with blue arrows.
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3. Discussion

In this paper, we present a group of microRNAs that regulate genes involved in key metabolic
pathways and contribute to enhanced proliferation of renal cancer cells. We show that microRNAs
can affect the RCC metabolome both directly (e.g., miR-155-5p targeting GATM) and indirectly,
by cooperative regulation of the expression of NFAT5, a transcription factor governing the expression
of transporters that control osmolality. We also show that miR-146a-5p globally affects the expression
of genes involved in key metabolic pathways in RCC such as those associated with the PPP. Finally, the
results of PanCancer analysis indicate that miR-34a-5p, miR-106b-5p, miR-146a-5p, miR-155-5p, and
miR-342-3p may be involved in global regulation of metabolism in cancers of various origins.

Upregulation of the pentose phosphate pathway (PPP) is one of the key features of the dysregulated
metabolism of RCC cells [15]. It enables efficient production of NADPH, utilized as a reducing agent
contributing to redox homeostasis of cancer cells, and ribose-5-phosphate, required to support the
high rates of nucleotide synthesis during intensive malignant proliferation [16] (Figure 6B). G6PD is a
rate-limiting enzyme of the PPP and its inhibition attenuates survival of RCC cells [17]. We found that
miR-146a-5p stimulated the expression of G6PD and TKT, the genes encoding two key enzymes of the
oxidative and non-oxidative PPP branches, respectively. Interestingly, it was shown that transketolase
(TKT) activity correlates with creatinine levels in uremic patients [18], which may possibly partially
explain the observation that creatinine levels increased following miR-146a-5p transfection. Remarkably,
other reports also demonstrated that creatinine concentrations can be affected by miRNAs [19,20].
Most metabolic genes affected by miR-146a-5p transfection exhibited upregulated gene expression
(Table 2). This suggests that miR-146a-5p-mediated transcriptomic effects were not direct. Possible
mediatory mechanisms may include activation of transcription regulators (e.g., E2F4 and NCOR2),
mRNA processing factors or the suppression of inhibitory microRNAs (e.g., miR-29a) (Table S3).
However, the exact mechanisms mediating miR-146a-5p-induced upregulation of gene expression
remains to be delineated in the future.

GATM (AGAT) encodes glycine amidinotransferase, a mitochondrial enzyme that catalyzes the
transfer of a guanido group from L-arginine to glycine, resulting in guanidinoacetic acid, which is a
substrate for creatine synthesis. Suppressed expression of GATM in RCC tumors [4] is in line with
recent findings of decreased excretion of guanidinoacetate (GAA) in RCC patients [21]. Interestingly,
several studies have demonstrated that creatine inhibits growth of tumor cells both in vitro and
in vivo [22–24]. The exact mechanism by which creatine attenuates cancer growth is unknown;
however, possible mechanisms include inhibition of glycolysis or generation of acidosis [25]. It may
thus be hypothesized that miR-155-5p-mediated downregulation of GATM in RCC cells may lead
to a reduction of intracellular creatine pool, thereby preventing its anticancer activities. A possible
tumor-suppressive role of GATM is supported by the fact that its low expression correlates with
poor survival rates of RCC patients (Figure 1C). By contrast, high expression of miR-155-5p, which
downregulates GATM, correlates with poor prognosis for RCC patients (Figure 3). We did not see
the suppression of GATM protein by miR-155-5p in KIJ265T cells (Figure S3). This observation is in
agreement with previous studies that showed that miR-155 regulates gene expression in a cell-type
specific manner [26,27].

Intensive proliferation and metabolic activation of cells lead to osmotic stress which results from
enhanced consumption of metabolites that function as intracellular osmolytes, such as myo-inositol
or amino acids [28]. Our results suggest that enhanced expression of microRNAs, in particular
miR-106b-5p and miR-122-5p, may contribute to osmotic stress by inhibiting the expression of
NFAT5, a transcription factor that regulates gene expression in response to osmotic challenge [14,29].
Mammalian cells exposed to hypertonic environment respond by releasing water, and activating
NFAT5, which in turn leads to accumulation of intracellular organic osmolytes, i.e., betaine, taurine, and
myo-inositol [29]. NFAT5 is also involved in the regulation of cell survival, migration, proliferation and
angiogenesis [29]. Furthermore, the possible role of NFAT5 in cancer is supported by the fact that genes
encoding proteins involved in the transport of osmoregulators are markers of the cancer phenotype [30].
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NFAT5 plays different functions during cancer development and progression. In melanoma cells,
it stimulates invasion [31], while in thymoma it promotes T cells proliferation and activation [32].
In hepatocellular carcinoma, NFAT5 functions as a tumor suppressor and promotes apoptosis with
concomitant inhibition of cell cycle progression [33]. NFAT5 expression is regulated by multiple
microRNAs, including miR-211 in melanoma [31]; miR-641 in glioma [34]; miR-1b, miR-106a, and
miR-363-3p in differentiating Th17 cells [35]; miR-22 in colon cancer [36]; and miR-568 during Treg cells
activation [37]. Furthermore, NFAT5 is a target of a group of osmoresponsive miRNAs that regulate its
expression during osmoadaptation in mice [38]. During cell growth, NFAT5 regulates cell volume [28],
which is influenced by constant changes in extracellular and intracellular osmolality. Changes in
cell volume may affect concentrations of key signaling molecules, thereby influencing proliferation,
migration, and cell death [39]. Persistent changes in cell volume can lead to necrotic volume increase
(NVI) and finally to cell death [40]. The key molecular features of RCC pathology are metabolic
reprogramming associated with enhanced lactate production and activation of hypoxia-induced
signaling pathways [3]. Remarkably, both intracellular lactate accumulation and hypoxia can stimulate
cell swelling [40–42]. Depletion of intracellular myo-inositol is a well-known mechanism that counteracts
cell swelling [43,44]. Reduction of myo-inositol levels in the kidney may result from its reduced uptake
by transporting proteins such as SLC5A3 [45]. It may thus be hypothesized that microRNA-induced
changes in expression of NFAT5 and the resulting reduced expression of myo-inositol transporter may
represent a mechanism which protects RCC cells against cell swelling-induced death.

Our study took advantage of the publicly available data of the PanCancer project [46]. This initiative
of the TCGA consortium aims to analyze similarities and differences between different tumor types
and tissue sites of origin. Since its launch in 2012, the PanCancer project has resulted in plethora of
novel findings, including the importance of cell-of-origin in tumor pathology [47], development of
clinical outcome endpoints recommended for 33 cancer types [48], new clustering of tumor types
that may be implemented in future clinical trials [49], information on potential targets for new
combinations therapies [50], and the collection of digitalized histopathological sections from more than
11,000 patients [51] that are already used for creation of new bioinformatic diagnostic tools. Since it was
recently revealed that PanCancer metabolic profiling allows for prediction of responses to therapy [52],
we hope that the results of our study will bring the basis for future research focused on finding better
therapeutic options of RCC patients.

4. Materials and Methods

4.1. Tissue Samples

Ninety-five RCC tumor tissue samples and 95 matched-paired non-tumorous control kidney
samples (190 tissue samples in total) were from the local Tissue Bank stored at −80

◦

C at the Department
of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education. Collection of
tissue samples was performed under approval of the Bioethical Committee of Centre of Postgraduate
Medical Education (No. 18/PB/2012 and No. 75/PB-A/2014), with written informed consent obtained
from patients.

4.2. Cell Lines

Caki-2 cell line was purchased from ATCC (Manassas, VA, USA). KIJ-265T cell line was a kind gift
of Dr. John A. Copland and Mayo Foundation for Medical Education and Research (Rochester, MN,
USA). Both cell lines were cultured in accordance with providers’ instructions.

4.3. Transfections

The cells were seeded on 12-well, 6-well or 60-mm plates in complete medium and cultured for
24 h. Transfections were performed as described previously [6] using miRCURY LNA microRNA
mimics/inhibitors or control oligonucleotides provided in Table S10.
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4.4. Isolations of RNA and Proteins, Reverse Transcription

They were performed as previously described [6]. qPCR array analysis using Custom Panel
(Roche Diagnostics, Mannheim, Germany) and Pick&Mix microRNA PCR Panels (Exiqon, Vedbaek,
Denmark) were performed as previously [4,6]. Primers and probes for qPCR reactions are given
in Tables S11 and S12. The expression of microRNAs in tissue samples was normalized against
miR-103a-3p, for which stable expression was confirmed (Figure S4).

4.5. Cloning of miRNA Targets Sites and Luciferase Assays

They were performed using pmiRGLO reporter vector as provided in our previous study [6].
Sequences of oligonucleotides used for cloning of miRNA target sites are provided in Table S13.

4.6. Western Blots

WB were performed as in a previous study [53]. Details on antibodies and dilutions are given in
Table S14.

4.7. Analysis of Proliferation

Proliferation of RCC cells was analyzed using BrdU assay (Roche Diagnostics, Mannheim,
Germany) and an earlier described procedure [53].

4.8. Transcriptomic Analysis

For transcriptomic analysis, we used RNA isolated from four independent wells of a 12-well plate,
transfected with miR-146a-5p mimic, and four independent wells of a 12-well plate, transfected with
non-targeting control oligonucleotide. Microarray analysis was performed using Affymetrix Gene
Atlas System according to the manufacturer’s instructions. Briefly, 150 ng of total RNA that passed
initial quality control screen (2100 Bioanalyzer, Agilent, Santa Clara, CA, USA) was used for target
preparation using the GeneChip™WT PLUS Reagent Kit (ThermoFisher Scientific, Waltham, MA,
USA). Prepared samples were hybridized to the Affymetrix™ HuGene 2.1 ST Array Strips (Affymetrix,
Santa Clara, CA, USA). Arrays after washing and staining, were scanned in Gene Atlas Imaging Station
(Affymetrix) with .CEL files as data output. Data analysis was performed using Transcriptome Analysis
Console (TAC) Software 4.0 (ThermoFisher) and Ingenuity Pathway Analysis Software (IPA, QIAGEN
Bioinformatics, Hilden, Germany). After importing Human Gene 2.1 ST .CEL files into TAC 4.0, the
array data were normalized by the RMA method. The probe summarization and the microarray quality
control were done with TAC 4.0 according to the manufacturer’s instructions. In the next step, TAC 4.0
one-way ANOVA was utilized to determine differentially expressed genes (DEGs) between treatment
and control: KIJ265T cell line transfected with miR-146a-5p mimic or transfected with non-targeting
control oligonucleotide, respectively. To minimize the variability originating from different sample
preparation dates in a comparison analysis, TAC 4.0 batch effect was applied. The criteria for selecting
DEGs were fold change ≤ −1.5 or fold change ≥ 1.5 and p value ≤ 0.05. Further bioinformatic analyses
were performed with TAC 4.0 and Ingenuity Pathway Analysis Software (IPA, Qiagen Bioinformatics).
The results of microarray analysis were validated using qPCR. To validate microarrays experiments,
transfections with miR-146a-5p and non-targeting control oligonucleotides were repeated three times
on independent days. Each day, transfections were performed using three wells of a 12-well plate for
miR-146a-5p mimic and three wells of a 12-well plate for control oligonucleotide.

4.9. Metabolomic Analysis

Cells were cultured in medium without phenol red. Then, 72 h after transfection, cells were
washed five times with PBS and metabolites were extracted with 1 mL of 1:3 methanol: MTBE extraction
buffer containing internal standards (500 ng of 1,2-diheptadecanoyl-sn-glycero-3-phosphocholine
(Avanti Polar Lipids, 850360P) and 500 ng of 13C sorbitol. Metabolite profiling was performed using a



Cancers 2019, 11, 1825 17 of 21

gas chromatography mass spectrometer (GC-MS) as earlier described [4]. To measure cellular proteins,
the cell residues were resuspended in 0.1 M NaOH containing 0.125% Triton X-100 [54].

4.10. Bioinformatics Analysis

Prediction of microRNAs targeting genes involved in metabolic pathways was performed using
miRSystem (http://mirsystem.cgm.ntu.edu.tw/microrna.org [13]), TargetScan [55] and literature search
according to the criteria described in File S1. miRsystem parameters were defined to include validated
genes greater than or equal to 3 and O/E ratio greater than or equal to 2. Survival analysis was
performed using OncoLnc tool (f http://www.oncolnc.org) [56] and SurvExpress (http://bioinformatica.
mty.itesm.mx:8080/Biomatec/SurvivaX.jsp) [57] using KIRC cohorts of TCGA transcriptomic data.
The expressions of ADM, NFAT5 and its target genes were analyzed using FireBrowse RESTful API
visual interface (http://firebrowse.org/api/api-docs, api version: 1.1.38) on KIRC cohort data. Analysis
of correlations between NFAT5 and miRNAs was performed using StarBase v2.0. on PanCancer data
involving 14 types of cancer [58].

4.11. Statistical Analysis

Data distribution was analyzed using Shapiro–Wilk test. Statistical significance of two groups
of data was analyzed using t-test, Wilcoxon matched-pairs signed rank test or Mann–Whitney test.
Correlations were analyzed using Spearman r or Pearson r, depending on data distribution. Analysis
of more than two groups of data was performed using one-way ANOVA with Dunnett’s Multiple
Comparison Test. p < 0.05 was considered statistically significant. Statistical analyses were done using
GraphPad Prism 5.00 for Windows.

5. Conclusions

We found that increased expression of microRNAs in renal cancer contributes to disturbed
expression of key genes involved in the regulation of RCC metabolome. The correlations between
microRNAs expression and the profiles of RCC metabolites suggest that changes in expression of
small non-coding microRNAs may contribute to the metabolic reprogramming and osmoregulation in
renal tumors. In particular, miR-146a-5p and miR-155-5p emerge as a key “metabomiRs” that target
genes of crucial metabolic pathways (PPP, TCA cycle, arginine metabolism) in RCC, while enhanced
expression of miR-106b-5p may contribute to dysregulation of osmotic control in renal cancer cells.
The fact that altered expressions of miR-106b-5p, miR-155-5p, and miR-342-3p correlate with poor
survival of RCC patients strengthens their significance as oncogenic microRNAs in RCC. Finally, the
results of our study indicate that miR-34a-5p, miR-106b-5p, miR-146a-5p, miR-155-5p, and miR-342-3p
are PanCancer metabomiRs that may be involved in global regulation of cancer metabolism.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/12/1825/s1:
Table S1: Selection of 20 genes for validation analysis performed in this study. Table S2: Preliminary analysis of
expression of 90 microRNAs predicted to target genes involved in metabolic pathways in RCC tumor tissues.
Table S3: Analysis of correlations between the expressions of miRNAs and their predicted target genes. Table S4:
The results of microarray analysis of KIJ265T cells transfected with miR-146a-5p mimic or non-targeting control
oligonucleotide. (XLSX). Table S5: Pathways enriched in KIJ265T cells transfected with miR-146a-5p mimic
compared to cells transfected with control oligonucleotide. Table S6: Analysis of correlations between the
expressions of miRNAs and levels of metabolites in RCC tissue samples. Table S7: The search for genes commonly
targeted by miRNAs for which expressions correlated with myo-inositol levels in RCC tissue samples. Table S8:
PanCancer analysis of correlations between the expression of microRNAs and their target genes. Table S9: Analysis
of correlations between the expressions of microRNAs and their predicted target genes. Table S10: microRNA
mimics, inhibitors, and control oligonucleotides used for transfections. Table S11: qPCR primers. (DOCX).
Table S12: microRNA LNA primers used in the study. Table S13: Oligonucleotides used for cloning of miRNA
target sites. (DOCX). Table S14: Antibodies used in Western blots. (DOCX). Figure S1: The expression profiles of
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(n = 130) and “High” (n = 130) expression groups. Figure S2: The activity of luciferase reporter system under
control of mutated MREs cloned from metabolic genes. Figure S3: Western blot analysis of proteins encoded
by metabolic genes in RCC cells transfected with predicted miRNA mimics or scrambled non-targeting control
oligonucleotide. Figure S4: The expression of miR-103a-3p in tissue samples. File S1: Criteria used for selection of
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with expression of the predicted regulatory miRNAs in cancers.
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