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Abstract: In conducting medical research, a system which can objectively predict the future trends
of the given research field is awaited. This study aims to establish a novel and versatile algorithm
that predicts the latest trends in neuro-oncology. Seventy-nine neuro-oncological research fields
were selected with computational sorting methods such as text-mining analyses. Thirty journals that
represent the recent trends in neuro-oncology were also selected. As a novel concept, the annual
impact (AI) of each year was calculated for each journal and field (number of articles published in
the journal × impact factor of the journal). The AI index (AII) for the year was defined as the sum
of the AIs of the 30 journals. The AII trends of the 79 fields from 2008 to 2017 were subjected to
machine learning predicting analyses. The accuracy of the predictions was validated using actual
past data. With this algorithm, the latest trends in neuro-oncology were predicted. As a result,
the linear prediction model achieved relatively good accuracy. The predicted hottest fields in recent
neuro-oncology included some interesting emerging fields such as microenvironment and anti-mitosis.
This algorithm may be an effective and versatile tool for prediction of future trends in a particular
medical field.

Keywords: impact factor; machine learning; neuro-oncology; regression analysis; trend prediction;
text-mining

1. Introduction

In science, new research fields and methods are continuously evolving. The design and conduct of
cutting-edge research mandate a keen perception of the current trends and future directions of the field.
However, proper assessment of a large number of related literatures and information in a timely
fashion would not necessarily be easy. A systematic review would be one solution; it prioritizes
an overwhelmingly large number of research studies by their level of importance to retrieve the
key information in a specific research field [1,2]. However, it will never be free from bias, given the
nature of a study which involves manual data gathering. For that reason, a systematic review will not
always be used for the decision-making process of researchers. Computer data mining is superior in
coverage and objectivity for trend analysis in a specific research field. Attempts have already been
made in various medical fields to predict future trends by machine learning analyses. In such studies,
regression formulas are created from the obtained data to do so, but the prediction accuracy is yet to
be satisfactory [3–5].
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The field of neuro-oncology has undergone rapid progress in recent years. Treatment with tumor
treating (TT) [6], glioma classification based on the tumor’s genomic abnormalities [7], and epigenetic
dysregulation during the process of tumor initiation and progression [8] are some of the emerging
fields. For any physician and researcher, appreciation of ‘hot topics’ in neuro-oncology is key to
successful, future collaborative work.

We developed a novel algorithm, named Mining Integrated Navigation and Estimation Research
Via Articles (MINERVA), which makes use of text mining and machine learning of a large amount
of data extracted from the literature (Figure 1). In this study, the MINERVA algorithm was used to
predict 20 neuro-oncology fields that are expected to make great leaps in 2019.
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Figure 1. Conceptual diagram of Mining Integrated Navigation and Estimation Research Via Articles
(MINERVA) algorithm. Based on the input data of subject fields of interest (SFI) and subject journals
of interest (SJI), MINERVA will analyze the trends using PubMed database. By switching the input
keywords, MINERVA can analyze the trends of any medical field.

2. Results

2.1. Data Collection for Analysis

2.1.1. Subject Fields of Interest

To analyze the trends of several research fields, the fields to be analyzed were first determined.
Using the PubMed database (https://www.ncbi.nlm.nih.gov/pubmed/), all brain tumor-related
articles published in 2017 were identified. Text-mining word frequency analysis was performed on
text data of these articles and abstracts of neuro-oncological conferences. As a result, 79 keywords
that seemed to represent recent trends in neuro-oncology were extracted as subject fields of interest
(SFI) (Table 1).

2.1.2. Subject Journals of Interest

Thirty subject journals of interest (SJI) (Table 1) that can be representative of trends in
neuro-oncology were determined. They included 15 highest impact factor (IF) journals among
1935 journals that published at least one neuro-oncological article in 2017 and 15 journals with
the largest number of published articles in 2017. Impact factors were obtained from the 2017 Journal
Citation Reports [9].

https://www.ncbi.nlm.nih.gov/pubmed/
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Table 1. Seventy-nine keywords of SFI and 30 journals of SJI.

SFI SJI

1p/19q lymphoma Cancer cell

2-HG medulloblastoma Cancer research

acute myeloid
leukemia melanoma Cell

anaplastic astrocytoma meningioma Cell stem cell

anaplastic
oligodendroglioma metabolism Child’s nervous system

angiogenesis and
invasion metastasis Immunity

anti-mitotic methylation International journal of radiation oncology, biology, physics

ATRX methyltransferase JAMA

bevacizumab MGMT Journal of clinical neuroscience

biomarker microenvironment Journal of clinical oncology

BRAF midline Journal of neuro-oncology

castleman MRI Journal of neurosurgery

cell biology neuro-imaging Lancet

cell signal neurotoxicity Lancet oncology

chemotherapy next generation sequencing Medicine

cholangiocarcinoma oligodendroglioma Molecular neurobiology

complications p53 Nature

craniopharyngioma palliative care Nature genetics

diffuse astrocytoma PD-1 Nature medicine

diffuse midline glioma pediatric Nature methods

DIPG pilocytic astrocytoma Nature reviews cancer

drug resistance PNET Neuro-oncology

EGFR progression Neurosurgery

ependymoma quality of life Oncology letters

epidemiology radio Oncotarget

epigenetics recurrent PloS one

epithelioid schwannoma Science

genetics single cell Scientific reports

germ cell tumor spinal The New England journal of medicine

glioblastoma STAT World neurosurgery

glioneuronal stem cell 30 journals of interest

H3K9 targeted therapy Abbreviations: 2-HG = 2-hydroxyglutarate.
ATRX = alpha-thalassemia/mental retardation
syndrome, nondeletion type, x-linked. BRAF = B-Raf.
DIPG = diffuse intrinsic pontine glioma.
EGFR = epidermal growth factor receptor.
IDH = isocitrate dehydrogenase.
MGMT = O6-methylguanine DNA methyltransferase.
MRI = magnetic resonance imaging.
PD-1 = programmed death-1. PNET = primitive
neuroectodermal tumor. STAT = signal transducer and
activator of transcription. TET2 = ten-eleven
translocation 2. TT = tumor treating.
WHO = world health organization.

hemangioblastoma temozolomide

histone TET2

IDH thalamic

immunology translational

inhibitor TT

K27M tumor models

leptomeningeal WHO

low-grade glioma

79 fields of interest
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2.1.3. Annual Impact and Annual Impact Index

A system to objectively and sequentially evaluate the frequency and importance of SFI within the
SJI is necessary. Therefore, the novel concepts of annual impact (AI) and annual impact index (AII)
were employed in the current study. The AI of a certain subject field in a certain subject journal of
a certain year was calculated according to the following formula:

AI = N × IF,

where N is the number of articles related to the subject field published in the subject journal in
the year. The AII value of a certain subject field of a certain year was calculated according to the
following formula:

AII = AI1 + AI2 + AI3 + · · ·+ AI28 + AI29 + AI30,

where AI1 to AI30 are the AIs of each subject journal in that year. There were 30 journals in SJI,
so numbers from 1 to 30 were assigned. In other words, the AII value of a certain subject field of
a certain year is the sum of the AIs of each of the 30 journals for the year. Data of the number of articles
that matched each condition were collected using PubMed. For example, the number of articles on
“pilocytic astrocytoma” published in Nature in 2015 was obtained by entering the following command
in the PubMed search window, and the number was 6.

((pilocytic astrocytoma) AND “Nature” [Journal]) AND (“2015” [Date-Publication]: “2015”
[Date-Publication]).

Since the IF of Nature is 40.137, the AI of “pilocytic astrocytoma” in Nature in 2015 was calculated
as follows.

AI = N × IF = 6 × 40.137 = 240.822

Besides Nature, 25 journals contained articles on “pilocytic astrocytoma” in 2015. For example,
there were two articles in the Journal of the American Medical Association (AI = 2 × 44.405 = 88.81) and
one in Science (AI = 1 × 37.205 = 37.205). Thus, the AII of “pilocytic astrocytoma” in 2015 was 4068.629,
as calculated by aggregating the 25 AIs according to the above mathematical rule.

2.2. Trend Predictions of Neuro-Oncology

2.2.1. Mathematical Analyses

A total of 79 SFI fields were analyzed using a comparison of the rate of change of AII (∆-AII).
In other words, ∆-AII is one year’s AII change rate compared with the previous year. The ∆-AIIs of
all 79 SFI fields were tracked for 10 years from 2008 to 2017. Three types of mathematical regression
analyses based on the least-square method (linear prediction, quadratic polynomial, and cubic
polynomial) were performed to predict trends in neuro-oncology in 2019. Regarding the prediction of
the top 20 subject fields, we tried to predict the rankings for 1–3 years after collection of the data and
also examined the accuracy rate of each.

2.2.2. Accuracy of the Predictions by Multiple Regression Analyses

Regression analytic graphs are illustrated in Figure 2a, with “single cell” and “IDH” as examples.
Predictions did not necessarily match between linear prediction, quadratic polynomial and cubic
polynomial methods. Relatively accurate prediction was possible with the linear prediction method.
With an accuracy of 70.6%, we were able to predict the ∆-AII of the following year of the data
collection range within an error of 1.0-fold (Table 2). This means that the latest trends of about 56 out
of 79 fields can be predicted with high accuracy. In addition, we were able to predict the top 20 fields
with a high ∆-AII of 2 years after the data collection period with an accuracy of 38.3% (binomial
test, p = 0.018), using linear prediction. Figure 3a shows the details of prediction. This method can
constantly achieve a high-match rate of predictions. Interestingly, this method predicted a same field
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as highest expected field every year, “PD-1”. Although “PD-1” had never actually been ranked as
highest, it had ranked in top 20 fields every year. “Cholangiocarcinoma”, which seems to have little
relation to brain tumor, had been ranked sometimes. However, cholangiocarcinoma is known to have
isocitrate dehydrogenase (IDH) mutation, and it had been frequently discussed with gliomas. On the
other hand, the accuracy of quadratic polynomial with the same condition was 30.0% (binomial test,
p = 0.241) (Figure 3b). This method achieved a high match rate in particular years, but as a whole
was not such an accurate method. The results obtained with other analytical methods are shown
in Table 2. Regarding the accuracy of B, C, and D, given that the coincidence match rate was 25.3%
(20/79 = 0.253), most analytical methods tended to have higher predictive accuracy than by sheer
coincidence, and some methods had statistical significance. Accuracy D of linear prediction was not
statistically significant, but the p-value was 0.06. As a result of comprehensive judgment of these
accuracy data, we concluded that linear prediction can be the most reliable prediction method.Cancers 2019, 11, x 5 of 11 
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Figure 2. (a) Regression analytic graphs are exemplified. Left side shows the result of “single cell”,
and the right shows “IDH”. The vertical axis is the fold value of ∆-AII. The upper row is the result of
linear prediction, the middle is quadratic polynomial and the lower is cubic polynomial. The circles are
actual measured values and the triangles are predicted values. (b) Regression analytic predictions of
“CRISPR”, “Cas 9” and “RNA-guided”. The vertical axis is the fold value of ∆-AII. The analyzed AII is
the sum of these three keywords’ AII. Other arrangements are the same as Figure 2a.

Table 2. Accuracy of the predictions by multiple regression analyses.

Regression Analyses Accuracy A Accuracy B Accuracy C Accuracy D

Linear prediction 70.6% 25.0% * 38.3% ** 37.5% *

Quadratic polynomial 54.4% 15.0% * 30.0% * 45.0% ****

Cubic polynomial 34.8% 28.8% * 36.7% *** 20.0% *

Accuracy A: The accuracy of prediction of the ∆-AII of the following year of data collection range within an error of
1.0-fold. B: The accuracy of prediction of the top 20 high ∆-AII fields of the following year of data collection range.
C: The accuracy of prediction of the top 20 high ∆-AII fields of 2 years after data collection range. D: The accuracy of
prediction of the top 20 high ∆-AII fields of 3 years after data collection range. Binominal test: * p > 0.05, ** p = 0.018,
*** p = 0.034, **** p = 0.005.
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Figure 3. (a) The details of prediction with linear prediction using 5 years. The AII dataset to predict
the top 20 fields with high ∆-AII of 2 years after the data collection period. Predicted top 20 fields
with high ∆-AII are enumerated in left columns in order of expected ∆-AII scores. Right columns are
the year’s actual top 20 fields with high ∆-AII in order of actual ∆-AII scores. Fields matching the
prediction are connected by lines. The accumulated accuracy means Accuracy C of linear prediction of
Table 2. (b) The details of prediction with quadratic polynomial. Other analytical conditions are the
same as Figure 3a. Fields matching the prediction are connected by lines. The accumulated accuracy
means accuracy C of quadratic polynomial of Table 2.

2.2.3. The Top 20 Hottest Fields of Neuro-Oncology in 2019

Based on the policy above, the top 20 hottest fields of neuro-oncology in 2019 were predicted
using the linear prediction method and using the data of ∆-AII for the period of 2013–2017 (Table 3).
The predicted rank was ordered by predicted ∆-AII scores. In the predicted fields, there are many
emerging fields such as “microenvironment” and “anti-mitotic”, as well as some important fields already
widely recognized, such as “immunology” and “epigenetics”. “Epigenetics”, “microenvironment”,
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“neurotoxicity”, “palliative care”, “anti-mitotic”, “angiogenesis and invasion”, “EGFR”, “lymphoma”,
“TT” and “translational” had been repeatedly ranked in the top 20 fields in 2016–2018 with this method,
in both predicted and actual fields (Figure 3a). Those four fields at the beginning, “epigenetics”,
“microenvironment”, “neurotoxicity”, and “palliative care”, appeared a total of four times, which
was the most frequent. This may reinforce the hopeful prospectivity of those fields in another form
different from the predicted rank of 2019.

Table 3. Top 20 hottest fields of neuro-oncology in 2019.

Predicted Rank Fields

1 anti-mitotic

2 anaplastic
oligodendroglioma

3 oligodendroglioma
4 TT
5 STAT
6 neurotoxicity
7 angiogenesis and invasion
8 radio
9 translational
10 cell biology
11 quality of life
12 palliative care
13 immunology
14 low-grade glioma
15 microenvironment
16 epigenetics
17 WHO
18 lymphoma
19 EGFR
20 biomarker

2.2.4. Prediction of Milestone Discoveries in Other Fields

The current study focused on neuro-oncology, but the MINERVA algorithm can potentially be
used to predict trends in any field by changing the input keywords. Meanwhile, the discovery of the
CRISPR-Cas9 gene editing system in 2012 was a recent milestone in the field of medical biology [10].
We retrospectively assessed the ability of the MINERVA algorithm to predict its discovery in advance
with the use of only three keywords for SFI: “CRISPR” “Cas 9” and “RNA-guided”. Then the following
15 journals dealing with cell engineering and genetics, or general science with the highest IFs were
selected for SJI: Nature Reviews—Molecular Cell Biology, Nature Biotechnology, Nature Reviews—Genetics,
Nature, Science, Cell, Nature Genetics, Nature Reviews—Microbiology, Cell—Stem Cell, Nature Cell Biology,
Cell Research, Trends in Cell Biology, Cell Host & Microbe, Annual Review of Cell and Developmental Biology,
and Molecular Cell. The AII data since 2000 were collected. As a result, a marked increase in the
sum of the three keywords’ ∆-AII was predicted in 2008 by all three analytic models (Figure 2b).
This means the possibility that an important discovery in the fields related to “CRISPR”, “Cas 9” and
“RNA-guided” after 2009 could have been predicted as early as 2008. Individual keywords “CRISPR”,
“Cas 9” and “RNA-guided” had been broadly used in the fields of archaea and genetics. However,
by analyzing these three keywords together, it can be related to the trend of the CRISPR-Cas9 gene
editing system. This prediction result indicates the good versatility of the MINERVA algorithm.

3. Discussion

In clinical and basic research, it is important to grasp the current status of the research field
to predict future trends. This type of evaluation is often performed by the individual’s impression
based on notable journals, conferences, and lectures. Scientific reporters have many similar personal
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impressions and tend to have subjective bias in their evaluations. The current study suggested that the
MINERVA algorithm can be used to grasp current trends and predict at least some future trends in
a specific research field. Notably, the MINERVA algorithm is characterized by its wide applicability;
it can analyze any medical field simply by changing the selected keywords of SFI and SJI, whether it is
another central nervous system disorder such as cerebrovascular disease or basic science, exemplified
by our results regarding the CRISPR-Cas9 gene editing system.

Among the 20 fields predicted by the MINERVA algorithm, there were several fields of particular
interest. Regarding the “anti-mitotic” field, the AII value was 25.353-fold greater than the value of the
previous year in 2014. Likewise, the AII value of “TT” in 2015 also increased by 5.412-fold, so it would
be reasonable to understand that the “anti-mitotic” field was paid attention to as the mechanism of
the TT field [6]. Actually, an article about NovoTTF (Novocure, St. Heliar, Jersey) was responsible
for the rapid increase in the “anti-mitotic” field in 2014 [11]. “Immunology” and “microenvironment”
were ranked. Recently, many high-IF articles related to microenvironment and glioma have been
published [12–15]. Tumor microenvironment is a concept related to micro cellular signals, receptors,
structures, angiogenesis, molecules, etc. In particular, immunosurveillance systems are deeply
related to tumor microenvironment, and many articles have recently been published which focus
on immunology and microenvironment [13,15,16]. Considering that the word “microenvironment”
appeared 146 times in the official abstracts of the Annual Meeting of the Society for Neuro-Oncology
(SNO-2017, San Francisco, CA, USA) [17], we can see how this field has recently gained attention of
neuro-oncologists. With respect to the field “epigenetics,” the discovery of mutation to the IDH1 and
IDH2 genes in gliomas [18] has determined the prosperity of subsequent glioma and epigenetic studies.
Even now, after 10 years have passed, important articles on gliomas and methylation as well as other
epigenetic systems continue to be published [19–21]. It strongly suggests the importance of the field.
The field “lymphoma” was a relatively unexpected result because there were relatively few titles in
SNO-2017 pertaining to this subject. However, in 2015, seven articles including research on new drugs
were published in high-IF journals [22–28], which seems to have contributed to its popularity.

As regards limitations to the current study, even though multiple regression analyses were
performed, the prediction accuracy was not perfect. The prediction results of linear prediction,
quadratic polynomial, and cubic polynomial are not always concordant (Figure 2a,b). In order to
improve accuracy, advanced machine learning by artificial intelligence, such as deep learning, should
be considered in future studies. In keyword selection, SFI and SJI are selected as objectively and
extensively as possible, but it would be desirable to conduct analyses with a much larger number of
keywords in SFI and SJI. In addition, compiling similar words in the current study is a work involving
human intervention, which may have contained some degree of subjectivity. Natural language
processing may achieve more objectivity in this process.

4. Material and Methods

4.1. Choosing the Subject Fields of Interest

With all brain tumor-related articles published in 2017, the MEDLINE information of all the
articles was extracted as text data. Only Other Terms (OTs), but not medical subject headings (MeSHs),
were subjected to word frequency analysis, because MsSHs are basically broad terms, so it was difficult
to choose keywords that only appear in a specific field of brain tumors, whereas OTs include many
keywords specific to the field of neuro-oncology, such as signal transducer and activator of transcription
(STAT), IDH, and TT. For the extracted OT text data, text-mining word frequency analysis was
performed using a publicly available program (https://textmining.userlocal.jp/) to select frequently
used keywords. Next, 28 abstract categories of SNO-2017 were registered as 28 keywords [17].
Word frequency analysis of the English presentation titles of the SNO-2017 and the English symposium
presentation titles of the Annual Meeting of the Japan Society of Brain Tumor Pathology (JSBTP-2017,
Utsunomiya, Tochigi, Japan) was also performed and frequently cited keywords were extracted.

https://textmining.userlocal.jp/


Cancers 2019, 11, 178 9 of 12

In addition to these objectively extracted keywords, some keywords of brain tumor names were added
manually to investigate the trends. Many synonyms and similar words that appeared as keywords in
each data source were checked manually and then integrated into one keyword. We also manually
excluded relatively vague keywords (e.g., survival, malignancy, etc.) that were judged as not suitable
for tracking a specific research field of neuro-oncology. According to this method, 79 keywords that
seemed to represent recent trends in neuro-oncology were extracted as SFI.

4.2. Data Collection with PubMed

Python 3.7.0 (https://www.python.org) was used to collect a large amount of journal data
with PubMed. In addition, regarding the searching keywords, such as “genetics”, “single cell”, etc.,
which may lead to the identification of many other articles not related to neuro-oncology, the search
was conducted by adding the term “brain tumor” as a keyword. By doing so, the directionality of the
keywords was increased. About the possibility of retrieving the same article with multiple keywords,
even if one article was found to be a related article of more than one keyword, we considered that it
was not particularly problematic and did not affect the trend analysis of each subject field.

4.3. Mathematical Background of ∆-AII

The rule that ∆-AII is used for the analysis was adopted because inequality arises simply by
comparing the AII values themselves. Each keyword has a difference in the “breadth” the word
covers, and the “advantage” caused by the research scale to date. Such inequities need to be corrected.
For example, the AII value of “epigenetics” in 2012 and 2013 were 15.760 and 88.141, respectively,
and the ∆-AII for the period of 2012–2013 was calculated as 88.141/15.760 = 5.593. On the other
hand, the ∆-AII of 2012–2013 of “glioblastoma” was similarly calculated as 3972.712/3298.539 = 1.204.
Although the AII value was much higher for “glioblastoma”, “epigenetics” was judged as having
more momentum than “glioblastoma” over this two-year period. In addition, when the AII value of
a certain subject field is zero, it is not possible to calculate the rate of change. In such a case, 1.081 was
substituted for zero. This number is the same score of one article of SJI’s lowest IF journal, “Child’s
nervous system”.

4.4. Accuracy Validation of the Predictions

We validated the accuracy of the predictions by the three regression analyses using actual past
data. Specifically, the ∆-AII data over a period of 5 years (year 1–5) were analyzed to predict the ∆-AII
of the following year (year 6), which was then compared with the actual ∆-AII of year 6. We also
rearranged the SFI fields in order of the predicted ∆-AII to determine the top 20 subject fields for each
year. Similarly, the accuracy rate was calculated using the actual past data. Based on these analyses,
we determined which regression method was most reliable for prediction.

4.5. Statistical Analyses

All statistical analyses were performed using JMP Pro 13 software (SAS Institute Inc., Cary,
NC, USA) and R 3.4.1 [29]. The level of significance was set at a p-value of 0.05.

5. Conclusions

The current study highlights some evolving fields in clinical practice as well as research in
neuro-oncology. In the upcoming few years, molecular biological approaches will become far more
popular in neuro-oncological research. The fields of tumor microenvironment and epigenetics, both of
which are closely related to many research fields like tumor immunology, will be more extensively
discussed in the context of pathological mechanisms. In clinical practice, fine-grained treatments
that emphasize the patient’s quality of life would be desirable, reflecting the current social situations.

https://www.python.org
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New therapeutic drugs, devices and techniques are constantly appearing. Clinicians and researchers
are encouraged to remain keen on grasping the latest trends.

The MINERVA algorithm may provide useful data of current and future trends in the field of
neuro-oncology. Moreover, it could potentially be applied to any medical research field by changing
keywords. However, the accuracy of future prediction has room for improvement. A larger-scale system
that takes into consideration more complex factors, such as deep learning by artificial intelligence,
might be one future direction for better prediction.
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