Supplementary Materials: Phosphorylation-Dependent Intra-Domain Interaction of the Cx37 Carboxyl-Terminus Controls Cell Survival

Nicole L. Jacobsen, Tasha K. Pontifex, Paul R. Langlais, and Janis M. Burt

Figure S1. Cell density and cell-cell contact increase as a function of time post-plating in the absence of Cx37 expression (dox -). iRin37 cells plated at an initial density of 3,125 cells/cm² imaged at 3, 12 and 15 days. Scale bar applies to all images: 30µm.

Figure S2. Cx37-S321A and Cx37-S275A do not induce death when expressed in iRin cells. **(A)** Expression of Cx37-S321A induces potent growth arrest at low density. **(B)** iRin37-S275A cells proliferate after a short period of growth arrest (days 0-3), little or no cell death occurs.

Figure S3. Activated caspase 3 is detected in non-adherent, dying cells expressing Cx37-S321D, -S328D, -S328A or -S275D. (**A**,**B**) Activated caspase 3 was not detected in the adherent

(Ad; still living) or non-adherent (NA; dying) Cx37-WT expressing cells. (**C**,**D**) Activated caspase 3 was detected in dying, NA cells but not in the adherent cells. In the Cx37-WT and -S321D blots adherent (Ad) and non-adherent (NA) cells were collected from non-induced cells (dox-) and cells induced with dox for 12, 24, 36, 48, 60 and 72 hours. (**E**,**F**) In S328D, S328A, S275D blots, Ad and NA cells were collected from cells induced for 3 or 6 days. For all blots, the left lane shows molecular mass markers (M) with the 40 and 20 kDa bands marked; the second lane (+) contains the positive control for activated caspase 3. Solid triangle shows the position of uncleaved caspase 3 and the open triangle shows the position of activated (cleaved) caspase 3.

Figure 4. Schematic of strategy used to generate the Cx37-dM construct. The plasmid containing the mid-tail (aa 273-317) deletion was made in a 3-step amplification process. **(A,B)** aa 1-272 and 318-323 were linked with primers I & II and full length Cx37 in pTre2-Hygro plasmid. **(C,D)** aa 269-272 were linked to aa 318-333 plus V5 tag and *NheI* restriction site were linked with primers III & IV, **(E,F)** PCR products from steps 1 and 2 were combined using primers I & IV (E) to make the contiguous Cx37-dM (F; containing aa 1-272 + 318-333) + V5 and the 5' *BamHI* and 3' *NheI* restriction sites. The resulting plasmid was directionally cloned into *BamHI* and *NheI* sites in pTRE2h.

Table S1. Significance of differences in HCh P_o between Cx37-WT and (de)phospho-mimicking mutants. P values for the comparison of P_o for the isoform in the left column to remaining columns for each group; e.g. closed state probability of WT HChs is not different from S321D but significantly greater than the closed state probability of S328A. * indicates p < 0.0001; ns indicates not significant.

WT	S321D	S328D	S328A	S275D
Closed	ns	ns	>, *	ns
All open states	ns	ns	<,*	ns
100-300 pS	ns	ns	<,*	ns
300-500 pS	<, 0.0054	ns	<, 0.045	ns
500-800 pS	>, 0.0025	ns	ns	ns
>800 pS	ns	<,*	<, *	ns
	S321D	S328D	S328A	S275D
	Closed	ns	>, *	ns
	All open states	ns	<, *	<, *
	100-300 pS	ns	<,*	>, 0.0034
	300-500 pS	ns	ns	>, 0.0233
	500-800 pS	ns	<, *	<, 0.0004
	>800 pS	<, *	>, *	ns
		S328D	S328A	S275D
		Closed	>, *	ns
		All open states	<, *	ns
		100-300 pS	<, *	ns
		300-500 pS	<, 0.0424	ns
		500-800 pS	ns	ns
		>800 pS	ns	>, *
			S328A	S275D
			Closed	<, *
			All open states	>, *
			100-300 pS	>, *
			300-500 pS	>, 0.0164
			500-800 pS	ns
			>800 pS	>, *

Table S2. List of primers used to generate Cx37 mutants.

Construct/mutation	Primer sequence 5' to 3'			
1-272 + <mark>318-323</mark>	F (I): CGCCTGGAGACGCCATTCC (plasmid sequence)			
	R (II): GCTAGGGGACTTTCCCTCGCCCATGGGGAG			
269-272 + <mark>318-333</mark> + V5	F (III): ATGGGCGAGGGAAAGTCCCCTAGCCGCCCC			
	R (IV): CTAGCTAGCCTACGTAGAATCGAGACCGAGGAGAGGGGTTAGGGATAGGCTTACC			
	CACATACTGCTTCTT (stop codon/restriction site)			
dM +V5	F (I): CGCCTGGAGACGCCATTCC			
	R (IV): CTAGCTAGCCTACGTAGAATCGAGACCGAGGAGAGGGTTAGGGATAGGCTTACC			
	CACATACTGCTTCTT			
	F (I): CGCCTGGAGACGCCATTCC			
dE +V5	R: CTAGCTAGCCTACGTAGAATCGAGACCGAGGAGAGGGTTAGGGATAGGCTTACC			
	CTTTCGGCCACCCTG			
S310A S221A	F: CCATGGGCGAGGGAAAGGCACCAGCCCGCCCCAACAGCTCTGC			
5515A, 552IA	R: GCAGAGCTGTTGGGGGCGGGCTGGTGCCTTTCCCTCGCCCATGG			
S325A, S328A	F: CGAGGGAAAGGCCCCTGCCCGCCCCAACGCCTCTGCAGCCAAGAAGCA			
	R: TGCTTCTTGGCTGCAGAGGCGTTGGGGGCGGGCAGGGGCCTTTCCCTCG			
S210D S221D	F: CCCATGGGCGAGGGAAAGGATCCAGACCGCCCCAACAGCTCTGC			
5519D, 5521D	R: GCAGAGCTGTTGGGGGCGGTCTGGATCCTTTCCCTCGCCCATGGG			
S325D, S328D	F: CGAGGGAAAGGACCCTGACCGCCCAACGACTCTGCAGACAAGAAGCA			

R: TGCTTCTTGTCTGCAGAGTCGTTGGGGCGGTCAGGGTCCTTTCCCTCG			
	F: GGGACCCTCTGCCCCACCGTGTC		
5275A	R: GACACGGTGGGGCAGAGGGTCCC		
62024	F: GAGAGACTGACCGCTTCCAGACTCCC		
5502A	R: GGGAGGTCTGGAAGCGGTCAGTCTCTC		
COREA	F: CCTACAACGGGCTCGCTTCCACTGAGCAGAAC		
5205A	R: GTTCTGCTCAGTGGAAGCGAGCCCGTTGTAGG		
C201 A	F: GAAAGTCCCCTGCACGCCCCAACAG		
5521A	R: CTGTTGGGGCGTGCAGGGGACTTTC		
COZED	F: CATGGGCGAGGGACCCTCTGATCCACCGTGTCCCACCTAC		
52750	R: GTAGGTGGGACACGGTGGATCAGAGGGTCCCTCGCCCATG		
C202D	F: CACAGAGGAGAGACTGACCGACTCCAGACCTCCCCATTTG		
5502D	R: CAAATGGGGGAGGTCTGGAGTCGGTCAGTCTCTCTCTGTG		
CONED	F: CCTACAACGGGCTCGACTCCACTGAGCAGAAC		
5205D	R: GTTCTGCTCAGTGGAGTCGAGCCCGTTGTAGG		
C201D	F: GCCGAAAGTCCCCTGATCGCCCCAACAGCTC		
532ID	R: GAGCTGTTGGGGGGGATCAGGGGACTTTCGGC		