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Abstract: Early-stage treatment improves prognosis of lung cancer and two large randomized
controlled trials have shown that early detection with low-dose computed tomography (LDCT)
reduces mortality. Despite this, lung cancer screening (LCS) remains challenging. In the context of a
global shortage of radiologists, the high rate of false-positive LDCT results in overloading of existing
lung cancer clinics and multidisciplinary teams. Thus, to provide patients with earlier access to
life-saving surgical interventions, there is an urgent need to improve LDCT-based LCS and especially
to reduce the false-positive rate that plagues the current detection technology. In this context, LCS
can be improved in three ways: (1) by refining selection criteria (risk factor assessment), (2) by using
Computer Aided Diagnosis (CAD) to make it easier to interpret chest CTs, and (3) by using biological
blood signatures for early cancer detection, to both spot the optimal target population and help
classify lung nodules. These three main ways of improving LCS are discussed in this review.
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1. Introduction

Lung cancer (LC) is the leading cause of death from cancer, but early-stage treatment improves LC
prognosis. The National Lung Screening Trial (NLST) demonstrated that annual LC screening (LCS)
with low-dose computed tomography (LDCT) reduced mortality by 20% compared to controls [1]
(Table 1). More recently, the Dutch–Belgian NELSON lung cancer screening trial presented in
September 2018 at the International Association for the Study of Lung Cancer (IASLC) 19th World
Conference on Lung Cancer (WCLC) in Toronto, Canada, showed reduced mortality by more than 25%
in the LDCT arm compared to the control arm [2] (Table 1). Based on the NLST results, the United
States Preventive Services Task Force (UPSTF) issued recommendations for LCS of people meeting the
NLST criteria. The Centers for Medicare & Medicaid Services (CMS) decided to provide coverage for
LCS in smokers aged 55 to 77 years with more than a 30-pack-years smoking history and who had not
quit within the last 15 years [3,4]. Low-dose computed tomography is now the cornerstone of LCS in
North America and Australia. Given the confirmatory results of the NELSON screening trial [2], it can
be assumed that LDCT screening will be approved in Europe and that health authorities will very soon
provide coverage for LDCT-based LCS [5,6], as for breast cancer (mammography) and colon cancer
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(colonoscopy). However, despite Medicare and Medicaid coverage, the take-up of LCS in the US
remains very low (i.e., below 4%) [7–9]. The reasons for such a low take-up of LCS include: (1) patients
not wanting screening (fatalism mentality in the elderly, stigma associated with LC, poor lifestyle
choice); (2) patients’ awareness (i.e., less than breast cancer screening); (3) physicians not referring
(difficult recall of smoking history, controversies among primary care societies, controversies among
health agencies); and (4) a high false-positive rate requiring cumbersome follow-up [8–10]. Among
these reasons, some are related to the practicality of LCS. In this respect, the need for repeated imaging
and downstream diagnostic evaluations related to a high false-positive rate of LDCT (ranging from 26
to 58%) [1,7] is responsible for needless anxiety of patients and their family. In the Veterans Health
Affairs (VHA) study, up to 52% of the screened patients who did not have LC required downstream
diagnostic procedures [7].

Table 1. Summary of the National Lung Screening Trial (NLST) and the NELSON trials.

NLST NELSON

Country USA BE/NL

Enrollment 2002–2004 2003–NR

Number of Centers 33 4

Number of screens 3
Screening planned at years 1, 2 and 3 1, 2 and 4

Comparison LDCT vs. Xray LDCT vs. usual care

Population
Age 55–74 50–69 (50–75)
Smoking (pack-years) ≥30 >15 *
Sex both (male 59%) men º (male 84%)
Years since quit ≤15 ≤10
Patients Screened, n 26,722 vs. 26,732 7907 vs. 7915
Planned follow-up, y >7 10

Nodule Size warranting
Follow-up 2011
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The global shortage of radiologists facing a growing and aging population in Europe will quickly
overload existing LC clinics and multidisciplinary teams. In addition, the high rate of false-positive
results will lead to cumbersome follow-up and surveillance of incidental pulmonary nodules. Thus,
there is urgent need to improve LDCT-based LCS, and especially to reduce the false-positive rate that
plagues the current detection technology, to provide patients earlier access to life-saving intervention.

2. Lung Cancer Screening Can Be Improved

Lung cancer screening can be improved in several ways: (1) refine selection criteria (risk factor
assessment); (2) use Computer-Aided Diagnosis (CAD) to make it easier to interpret chest CTs; (3) use
biomarkers to detect early-stage LC, to spot the optimal target population or to help classify lung
nodules; and (4) use highly sensitive bronchoscopic techniques to enhance the detection rate of central
airway lesions.
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2.1. Refine Selection Criteria to Improve the Effectiveness and Efficiency of Lung Cancer Screening

The following terms must be defined here: 1) screening effectiveness, which is the number
needed to screen (NNS) per LC death prevented, and 2) screening efficiency, which is the number of
false-positive results and downstream diagnostic procedures per LC death prevented (a surrogate of
harm-to-benefit ratio).

Risk-based selection improved LCS effectiveness by 17% as compared to UPSTF screening
criteria [11]. A similar conclusion was drawn by Caverly et al., who relied on the Bach risk model [12,13]
in the VHA study and found an NNS per LC death prevented ranging from 687 in the highest risk
quintile to 6903 in the lowest risk quintile [12]. Risk-based selection can also improve the LCS efficiency.
In the VHA study, although the harm (overall rates of false positives requiring tracking or requiring
downstream evaluations) did not differ between low- and high-risk quintiles, LCS was much more
efficient in the high-risk quintile [7,12].

2.2. Use Computer Aided Diagnosis for Low-Dose Computed Tomography Interpretation to Facilitate Lung
Cancer Screening and Lessen the False-Positive Rate

The interpretation of LDCT may be difficult in the setting of LCS. The simple algorithm design
should be based on two questions surrounding the key lesion detected with LDCT (i.e., lung nodule):
(1) “Does this individual have a nodule?” If the answer is “no”, then he/she will be given an
appointment for the next screening round; (2) if the answer is yes, then the second question is
“Is this nodule cancerous?” Depending on its features, the nodule will be classified as malignant (M),
benign (B), or indeterminate (I) (Figure 1). Figure 2 exemplifies the range of difficulties encountered by
physicians of LC clinics in the setting of LCS. Lung cancer screening takes time when relying on LDCT
alone. Indeed, most decision-making algorithms for lung nodules advocate a repeat CT to study the
volume-doubling time (VDT), a datum which, combined with the morphology of the nodule, has the
most determinant weight to decide whether or not to go to invasive procedures including surgery [14].
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To exemplify the stress and anxiety generated by the discovery of a lung nodule, one can look at
the VHA experience in which 56% of the nonmalignant nodules required tracking and took an average
of more than a year for the patient to be reassured (or not) of the nature of their nodule.

Deep convolutional neural networks (CNNs) have been successfully developed in the field
of medical image analysis over the past five years and can be specifically trained for lung nodule
detection and reduction of false positivity. CAD systems for LCS involve two steps: (1) detection of
pulmonary nodules (which often includes lung segmentation, nodule detection, and segmentation);
and (2) diagnosis of their malignancy based on the analysis of a set of features, such as volume, shape,
VDT, and density gradient of each nodule (Figure 3). Currently, there are many studies about the first
step, but few about the second step [15,16]. Convolutional neural networks are trained on publicly
available databases (Table 2) and then tested on different datasets.
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Table 2. Publicly available databases for lung cancer screening.

Kaggle Luna16 NLST COPDG Gene LTRC

Number 1397 888 >1000 >1000 >1000

Date 2002–2004 to
2009 Start 2008

Available
without

registration
Yes Yes No No No

COPD * cases Yes Yes

Ground truth

Cancer/no
cancer one year

after the CT
scan

x, y, z
coordinates

and diameter of
nodules

Image data Yes Yes Yes Yes Yes

Cohort level “high-risk
patient”

Age 55–74
>30 years
smoking
history

<15 years since
quitting

Age 45–80
>10 pack-years

smoking
history

“Most donor
subjects have

interstitial
fibrotic lung

disease or
COPD”

Average age 60

Individual
level

Questionnaire:
living

condition,
family history.

Cancer
diagnosis:

location/tumor
size

Subject
phenotype:

living
condition,

gender, medical
history,

comorbidities,
physical

characteristics
. . .

Clinical and
pathological
diagnoses,
pulmonary

function tests,
living

condition,
exercises tests

. . .

Biological data Lung tissues SNP genotype Blood and lung
tissues

* Chronic obstructive pulmonary disease (COPD); CT: computed tomography; SNP: single
nucleotide polymorphisms.

Training databases include: (1) chest CTs with annotated nodules, such as the Lung Nodule
Analysis 2016 (LUNA16) dataset, which is a collection of 888 axial CT scans of the patients’ chest
cavities taken from the Lung Image Database Consortium image collection (LIDC/IDRI) database [17];
in total, 1186 nodules were annotated across 601 patients; and (2) chest CTs labeled as “with cancer” if
the associated patient was diagnosed with cancer within one year of the scan, and “without cancer”
otherwise. Once trained, the CNN output provided a probability of malignancy between 0 and 1
(Figure 4).
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The 2017 Kaggle Data Science Bowl was a critical milestone in support of the National Cancer
Institute Cancer Moonshot by convening the data science and medical communities to develop LCS
algorithms [18]. Using a dataset of 2101 high-resolution lung scans provided by the National Cancer
Institute and labeled as “with” or “without cancer”, the 1972 competing teams have developed
algorithms to accurately determine when lesions in the lungs were cancerous. Liao et al. won this 2017
Data Science Bowl by proposing the first volumetric end-to-end 3D CNN for 3D lung nodule detection
and characterization with an AUC of 87% on the blinded test set [19].

2.3. Use Blood Biomarkers in the Setting of Lung Cancer Screening

Different tumor-derived components can be detected and isolated from blood samples, including
circulating tumor cells (CTCs), circulating cell-free tumor DNA (cftDNA), cell-free tumor RNA
(cftRNA), exosomes, and tumor-educated platelets (TEP) [20,21] (Figure 5). These components can be
used as biomarkers: (1) to detect early stage LC; (2) to spot the optimal target population for LCS; or
(3) to help classify indeterminate lung nodules.
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2.3.1. Biomarkers to Detect Early-Stage Lung Cancer

We previously showed that in high-risk patients (i.e., Chronic Obstructive Pulmonary Disease
(COPD) and heavy smokers), circulating tumor cells (CTCs) detected with the isolation by size of
epithelial tumor cell (ISET) technique (RARECELLS, Paris, France) could be detected in patients with
COPD without clinically detectable LC up to four years before LC was identified on LDCT [22]. The
CTCs detected had a heterogeneous expression of epithelial and mesenchymal markers, and some
specific antigens (such as TTF1), which were similar to the corresponding phenotype of the lung
tumor [23]. No CTCs were detected in control smoking and nonsmoking healthy individuals. From
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these preliminary results, we demonstrated for the first time that in high-risk patients, CTCs can be
detected very early in the course of LC. We therefore launched a national prospective cohort study (the
AIR study) to assess the role of CTCs in LCS in a high-risk population, that is, patients with COPD,
heavy smokers, and >55-year-old patients (NCT02500693) [24].

In addition to CTCs, a more or less complex signature of the plasma microRNA (miRNA) has
been shown to be associated with localized or metastatic LC [25–27]. More recently, studies have been
performed on populations with a high risk of developing LC but without a known cancer. In particular,
Sozzi et al. identified a signature of plasma microRNAs that showed an excellent predictive value
for LC in a high-risk population [28]. In this latter study, the authors showed that the addition of a
24-microRNA signature classifier (MSC) to LDCT could raise LC detection sensitivity to 98% [28].

Montani et al. identified an LC-predictive signature of 13 microRNAs for high-risk individuals
with a sensitivity of 77.8% and a negative predictive value greater than 99%, similar to LDCT test
performance, suggesting the eventuality to use first miRNA tests in this population of patients [29].

In addition to CTC and miRNA, Cohen et al. described the CancerSEEK test, which utilizes
combined assays for genetic alterations (mutation present in plasma circulating tumor DNA) and
protein biomarkers. Not only does this test have the capacity to identify the presence of stage I to
III cancers of the ovary, liver, stomach, pancreas, esophagus, colo-rectum, lung, or breast, but also to
localize the organ of origin of these cancers [30].

Although still exploratory, gene expression profiling in the respiratory epithelium may help assess
LC risk in the setting of detection of early-stage LC. Indeed, there is some evidence that nontumor
adjacent cells share some molecular characteristics with tumor cells. In this context, it has been
recently demonstrated that most genetic alterations expressed in smoker patients are not only found in
bronchial but also in the nasal epithelium [31]. Thus, LC-associated gene expression assessment in
nontumor respiratory epithelium may represent a promising field of development to optimize LC risk
evaluation and, thus, to better understand its pathogenesis [31].

2.3.2. Biomarkers to Identify High-Risk Individuals and to Spot the Optimal Target Population for
Lung Cancer Screening

Several markers were investigated in large prospective LCS programs, such as the Continuous
Observation of Smoking Subjects (COSMOS) and the Multicenter Italian Lung Detection (MILD) trial; in
interventional programs, such as the Carotene and Retinol Efficacy Trial (CARET); and in observational
cohorts, such as the European Prospective Investigation into Cancer and Nutrition (EPIC) and the
Northern Sweden Health and Disease Study (NSHDS) [28,29,32]. The miRNA signature [28,29] and
serum proteins [32] were evaluated and performed well in determining a risk score for developing LC.

Other investigations, such as methylation of free plasma DNA, are potential options for identifying
individuals at high risk of developing LC [33–38] but still need to be evaluated in validation studies.

2.3.3. Biomarkers to Help Classify Indeterminate Lung Nodules

Appropriate management of indeterminate lung nodules is one of the key factors of success in
LCS implementation. Several biological signatures have been studied or are under investigation to
help classify indeterminate lung nodules. Among them, plasma protein biomarkers combined with
clinical risk factors (age, smoking history, nodule diameter, nodule edge characteristics, and nodule
location) in an “integrated classifier” performed well in identifying benign nodules among nodules
classified as indeterminate [39].

The presence of serum antibodies to a panel of seven LC-associated antigens distinguished
malignant from benign nodules in a prospective registry [40]. In this study, patients harboring a
4–20 mm lung nodule with a positive antibodies panel test (EarlyCDT-Lung Test, (ECLS), Oncimmune,
De Sotto, MO, USA) had a twofold increased relative risk to develop an LC than patients with a
negative test [40]. A combined strategy using ECLS test and risk model integration showed a high
specificity (>92%) and a positive predictive value of >70% for LC detection. The capacity of this
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tumor-associated antigen test, combined with LDCT, to reduce the incidence of late-stage LC at
presentation is presently being investigated in a randomized controlled trial [41]. This interventional
study includes 12,000 Scottish patients, aged 50–75 years, current or former smokers (with at least 20
pack-years or with less than 20 pack-years plus a family history of LC), tested with ECLS, X-ray chest,
and CT scan, and with a follow-up of 24 months [41].

Other immune biological signatures, such as C4d-specific antibodies, have been investigated to
diagnose indeterminate lung nodules and showed equivocal results [42].

Finally, a prespecified miRNA signature showed its ability to distinguish LC from the large
majority of benign LDCT-detected pulmonary nodules. The combination of MSC/LDCT could reduce
LC false-positive rate detection fivefold (19.7% vs. 3.7% for LDCT and MSC/LDCT, respectively) [28].

2.4. Highly Sensitive Bronchoscopic Techniques to Enhance the Detection Rate of Central Airway Lesions

Low-dose computed tomography has a very low detection rate for central airway lesions that are
more commonly squamous cell carcinomas (SqCC) and for preinvasive lesions. Therefore, enhancing
LDCT detection rate using bronchoscopic techniques, such as autofluorescence bronchoscopy (AFB),
narrow band imaging, or high magnification bronchovideoscopy, can be promising [43]. Some authors
have incorporated endoscopic techniques in LCS strategies. McWilliams et al. showed promising
results when combining sputum atypia with LDCT and AFB [44,45]. The benefit of combining AFB
with LDCT in LCS was not confirmed in the large-scale trial performed by Tremblay et al. [46] in which
AFB detected too few CT-occult cancers, and thus failed to show any benefit in high-LC-risk patient
screening. Furthermore, due to the decreasing incidence of SqCC, and its precursors, that is, dysplasias
and SqCC in situ, relative to adenocarcinoma, and in the absence of a clear survival benefit to detecting
precancerous central airway lesions, AFB does not seem to have a place in today’s LCS strategies [47].

3. Deep Learning for Early Cancer Detection

As yet, in the setting of early cancer diagnosis, deep learning has essentially been applied to chest
imaging interpretation. However, the complexity of the approach of deep learning techniques can
now be considered, as soon as one simultaneously analyzes parameters that appear to be completely
independent. For instance, when developing their CancerSEEK test, Cohen et al. used supervised
machine learning to predict the underlying cancer type. The input algorithm took into account the
circulating tumor DNA (ctDNA) and protein biomarker levels as well as the gender of the patient [29].

4. Conclusions

It can be reasonably assumed that very soon, European health authorities will provide coverage
for LDCT-based LCS. This, added to the global shortage of radiologists, will result in a large number
of anxious patients with “indeterminate lung nodules” overloading lung clinics, waiting for repeat
chest imaging and invasive tests to obtain a definite answer.

In this context, we strongly believe that there is room for using, as a first reading approach, a
CNN-driven LDCT with a predefined detection threshold to label all “nodule-free” examinations as
reassuring, and then to incorporate the trilogy of chest imaging, risk factors, and biological signatures
into machine learning algorithms to classify the nodules that have been detected according to the level
of suspicion. For health care professionals, CNNs are often considered as a black box. Thus, to avoid
this pitfall, one will also have to demystify the decision tree and to report on the respective weight of
each clinical, radiological, and biological input that led to nodule classification (Figure 6).
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