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Abstract: Angiogenesis—the sprouting and growth of new blood vessels from the existing
vasculature—is an important contributor to tumor development, since it facilitates the supply of
oxygen and nutrients to cancer cells. Endothelial cells are critically affected during the angiogenic
process as their proliferation, motility, and morphology are modulated by pro-angiogenic and
environmental factors associated with tumor tissues and cancer cells. Recent in vivo and in vitro
studies have revealed that the gap junctions of endothelial cells also participate in the promotion of
angiogenesis. Pro-angiogenic factors modulate gap junction function and connexin expression in
endothelial cells, whereas endothelial connexins are involved in angiogenic tube formation and in the
cell migration of endothelial cells. Several mechanisms, including gap junction function-dependent or
-independent pathways, have been proposed. In particular, connexins might have the potential
to regulate cell mechanics such as cell morphology, cell migration, and cellular stiffness that
are dynamically changed during the angiogenic processes. Here, we review the implication for
endothelial gap junctions and cellular mechanics in vascular angiogenesis.
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1. Introduction

Vasculogenesis leads to the creation of the heart and the first primitive vascular plexus inside
the embryo and its surrounding membranes, as can be observed in yolk sac circulation. In contrast,
angiogenesis is the physiological process of neovascular formation from pre-existing blood vessels
during adult tissue homeostasis and tumorigenesis [1], and is responsible for the remodeling and
expansion of the vascular network. Angiogenesis is a multi-step process that includes degradation
of the basement membrane, vascular destabilization, angiogenic sprouting, endothelial tip cell
migration, endothelial stalk cell proliferation, lumen formation by endothelial cells, and vascular
stabilization [2]. Vascular endothelial cells covering the lumen of the blood vessel play a leading role in
angiogenesis. In response to these pro-angiogenic and environmental factors, endothelial cells initiate
angiogenic processes [3,4], which can be categorized as vascular sprouting [5], cell proliferation [6],
cell migration [7], tube formation [8], and vascular stabilization [9]. Notably, during these
angiogenic processes, endothelial cells dynamically alter cell mechanics, and physiological components
determined by cytoskeletal rearrangement [10], focal adhesion formation [11], and contractile force [12],
have also been observed.
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The vascular network, which supplies oxygen and nutrition, is necessary for tumor growth and
cancer cell proliferation. Anti-tumor angiogenic therapy has shown some promise in the treatment of
several cancers [13]. Although current anti-angiogenic therapies reduce the density of tumor blood
vessels and tumor size, they might create a hypoxic and acidic tumor microenvironment in tumor
tissues, which could induce cancer cells to become more aggressive and metastatic [14,15]. Moreover,
it has been reported that tumor vascular normalization facilitates drug and immune cell delivery,
resulting in decreased tumor size and reduced metastasis [16]. New anti-cancer therapies that target
tumor angiogenesis focus on controlling aberrant angiogenesis and vascular normalization [17,18].
A better understanding of angiogenesis is needed to achieve high efficacy in anti-cancer therapies.

Gap junctions consist of connexin (Cx) family protein, which has four transmembrane domains
and two extracellular loop domains [19,20]. The amino and carboxyl terminal of Cx protein are located
on the cytoplasmic side of the membrane. The C-terminal domains are highly variable among the
family members and have several phosphorylation sites that transmit signals in order to control the
opening and closing of channels [21,22]. The hexameric Cx forms a hemichannel (connexon) that docks
to another connexon on the adjacent cell via extracellular domains resulting in the formation of gap
junction channel [19,20]. Gap junction channels directly connect each cytoplasm of adjacent cells, and in
this manner contribute to both electrical and biochemical coupling. Electrical coupling plays a role in
the generation of highly synchronized electrical activity [23]. In contrast, biochemical coupling allows
for the intercellular movement of small molecules and metabolites [24]. Thus, gap junction intercellular
communication is essential for the transfer and synchronization of the intracellular environment
between adjacent cells. It is though that the gap junction-mediated transfer and synchronization of
intracellular mediators such as ions, amino acids, small metabolites, and secondary messengers are
essential in orchestrating multicellular responses [24]. In addition, the C-terminal domain of Cx protein
interacts with several intracellular proteins such as signaling molecules [25], cytoskeletal proteins [26],
and cell junctional proteins [27], indicating the possibility that gap junctions and Cx proteins mediate
the regulation of cell mechanics and mechanotransduction.

Post-translational modification of Cxs carboxyl terminal residues play an important role in the
regulation of the Cx protein life cycle to include oligomerization, trafficking, gap junction formation,
gating function, and internalization [28–30]. Cx43 is phosphorylated soon after synthesis and
phosphorylation changes as it traffics to the plasma membrane, ultimately forming gap junction
structures [28,31]. Cx43-serin364 (S364) phosphorylation and Cx43-S325/S328/S330 phosphorylation
increase gap junction assembly and stability, resulting in the enhancement of gap junction intercellular
communication [32,33]. Cx43-S368 phosphorylation by protein kinase C decreases gap junction
communication in vascular wall cells [34,35]. Furthermore, Cx43-S255/S279/S282 phosphorylation by
mitogen-activated protein kinase also reduces gap junction communication by inhibiting the channels
from opening [36,37]. In addition to phosphorylation, other modifications to Cxs, such as nitrosylation
and ubiquitination, have been reported [29,38]. The ubiquitin proteasome system might contribute
to the internalization of gap junctions and degradation of Cxs [29]. It has been reported that Cx43
is probably polyubiqutinated and that the proteasomal inhibitor induces increased and prolonged
Cx43 expression [39]. Inhibition of Cx43 and ubiquitin proteasome-related proteins alters the Cx43
and ZO-1 interaction, leading to an increase in gap junctions at membranes [40]. These studies thereby
suggest that the life cycle of gap junctions and Cx hemichannels is tightly regulated by a balance of
post-translational modifications to Cx protein.

Endothelial cells play a critical role in regulating vascular inflammation [41], blood
coagulation [41,42], leukocyte adhesion and extravasation [43], and angiogenesis [44]. Thus,
endothelial cell dysfunction is a conceivable cause of the onset of cardiovascular diseases [42].
Endothelial cells predominantly express three Cxs: Cx37, Cx40, and Cx43 [45,46]. In addition, Cx32
and Cx45 are also detected in endothelial cells [47,48]. Interestingly, endothelial cells dynamically
regulate gap junction function and Cx expression in response to pro-inflammatory stimuli [46,49,50].
Conversely, alteration of gap junction function and Cx expression in endothelial cells can impact
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multiple endothelial cell functions under physiological and pathological conditions [46,51,52]. More
than a decade of research on gap junctions in endothelial cells and angiogenesis has produced evidence
of the interplay between endothelial Cxs and angiogenesis. Recent studies have indicated that gap
junctions and Cxs in endothelial cells contribute to several important steps in angiogenesis such as
sprouting, migration, tube formation, and cellular stiffness, all of which are implicated in cellular
mechanics. Here, we mainly focus on gap junctions and Cxs in endothelial cells and will discuss the
implications of cellular mechanics for vascular angiogenesis.

2. Endothelial Cx Expression and Its Role in Vascular Diseases

Cx expression pattern in endothelial cells is dependent upon vessel type, be it arteries,
veins, or lymphatic vessels. Cx37 and Cx40 are co-expressed in the arterial endothelial cells of
healthy vessels [53,54], whereas Cx43 has been characteristically observed in endothelial cells of the
microvasculature and at branch points of arteries subject to turbulent blood flow [54,55]. Cx32, Cx37
and Cx40 are abundantly presented in venous endothelial cells [47,56,57]. Cx43 is mainly located in the
medial layer of arteries and is detected in rat and human veins at low levels [56,57]. In vitro studies
have demonstrated Cx32, Cx37, Cx40, and Cx43 expression in both cultured human vein and artery
endothelial cells [58–60]. It has been known that alterations to Cx expression and gap junction function
in endothelial cells upon pro-inflammatory stimuli is closely correlated with endothelial cell activation.
Indeed, pro-inflammatory tumor necrosis factor-α reduces gap junction function in endothelial cells
at an early phase (4 h) and then decreases the expression of Cx32, Cx37 and Cx40, but not Cx43
during the late phase (24 h) [50,61]. Lipopolysaccharide, an important activator of inflammation in
endothelial cells via toll-like receptor 4, also induces serine-dephosphorylation of Cx40 [62] and reduces
gap junction function between microvascular endothelial cells [62]. In addition, lipopolysaccharide
diminishes gap junction intercellular communication between microvascular endothelial cells through
tyrosine phosphorylation of Cx43 [63]. Pro-coagulant factor thrombin, which is a major trigger of
thrombus formation and increased vascular endothelial permeabilization, induces rapid and acute
internalization of Cx43-mediated gap junctions in primary pulmonary artery endothelial cells [64].
However, opposite effect, whereby thrombin induces Cx43 expression and gap junction function
associated with disruption of the endothelial barrier has also been reported [65]. In this way, although
different phenotypes have been observed, these results demonstrate the dynamic regulation of gap
junction function and Cx expression in endothelial cells upon pro-inflammatory stimuli at both the
post-translational modification and transcriptional level.

Several studies have shown that aberrant gap junction function and Cx expression in endothelial
cells contributes to the promotion of endothelial dysfunction and vascular inflammatory diseases such
as atherosclerosis. For example, Cx37 and Cx40 are found at lower levels during the early stage of
atherosclerosis [46], while deletion of Cx40 from endothelial cells in mice, as well as the dysfunction
of Cx37, can promote the development of atherosclerosis by enhancing both monocyte adhesion
and transmigration [51,66]. Moreover, Cx37-deficient mice enhance the expression of a number of
pro-inflammatory genes involved in advanced atherosclerosis [67]. Cx43 is increased in the early
stage of atherosclerosis [46], whereas reduced expression of Cx43 by smooth muscle cells inhibits the
formation of atherosclerotic lesions [68]. Furthermore, endothelium-specific deletion of Cx43 modulates
renin secretion, thereby inducing hypertension [69]. A Cx43 mutation in patients with cardiac infarction
has been identified as a risk factor [70]. We have previously shown not only that reduced Cx32
expression in human umbilical vein endothelial cells (HUVECs) facilitates pro-inflammatory cytokines
expression upon inflammation [61], but also that Cx32-deficient mice experience enhanced activation
of vascular inflammation and blood coagulation in a model of sepsis [61,71]. It has been reported that
ageing-related downregulation of Cx43 in atrial tissues in old guinea pigs facilitates the development
of atrial fibrillation [72]. Taken together, these studies suggest that abnormalities in gap junction
function and Cx expression may act as a trigger for various endothelial dysfunctions, leading to the
development of atherosclerosis and vascular inflammatory diseases [49].
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3. Alterations of Gap Junction Function and Cx Expression in Endothelial Cells in Response to
Pro-Angiogenic Stimuli

Pro-angiogenic factors that are released from tumor tissues and cancer cells [73,74], are also
been thought to modulate the gap junction function and Cx expression of endothelial cells [75]
(Figure 1). Vascular endothelial growth factor (VEGF), which plays a central role in both
vasculogenesis and angiogenesis [76], has implicated in diverse physiologic processes including
tumor angiogenesis [77,78], diabetic retinopathy [79], wound healing [80], and tissue repair following
ischemic injury [81]. VEGF-induced VEGF-receptor 2 (VEGF-R2) activation of endothelial cells in
existing vasculature is primarily an initial step of angiogenesis, which then leads to sprouting, cell
proliferation, and cell migration of endothelial cell [82]. In in vitro model experiments, VEGF-induced
c-Src tyrosine kinase and mitogen-activated protein kinase activation results in the rapid disruption of
gap junction function in endothelial cells [75], and increases the paracellular endothelial permeability
associated with reduction in cell-cell junctions [83]. Furthermore, it has been reported that the
VEGF-induced disruption of gap junction function correlates with the rapid internalization of Cx43 and
Cx43 tyrosine phosphorylation in rat coronary capillary endothelium [84,85]. Therefore, pro-angiogenic
VEGF stimulation negatively modulates gap junction function and Cx expression in endothelial cells
as a consequence of angiogenesis-related signaling.

In addition to VEGF, basic fibroblast growth factor (bFGF) and hypoxia are well known as
a pro-angiogenic factor and a conducive environment. It has been reported that microvascular
endothelial cells facilitate gap junction function and Cx43 expression in response to bFGF
stimulation [86]. Stimulation with bFGF not only increases Cx43 mRNA expression but also facilitates
Cx43 localization at the cell-cell interface [86]. The hypoxia conditions observed in tumor tissue activate
hypoxia-inducible factor (HIF) pathways and induces the expression of a number of pro-angiogenic
genes in cancer cells [73]. In the case of endothelial cells, hypoxia upregulates Notch ligand Dll4
expression and promotes activation of Notch signaling, which is an essential pathway for vascular
development and stabilization [87,88]. The upregulation of Cx40 expression has been reported under
hypoxia-mediated Notch signaling in endothelial cells [88]. One recent study has shown that a
Notch-Cx37-p27 axis promotes endothelial cell cycle arrest, leading to vascular regeneration under
shear stress [27]. These results suggest that endothelial Cx and Notch signaling might coordinate the
appropriate endothelial cell proliferation and angiogenesis.
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Figure 1. Alteration of gap junction function and Cx expression in endothelial cells (ECs) in response
to pro-angiogenic stimuli. Vascular endothelial growth factor (VEGF), secreted by cancer cells, is an
essential initiator of angiogenesis [82]. Endothelial cells induce internalization and disruption of gap



Cancers 2019, 11, 237 5 of 16

junctions (GJs) formed by Cx43 under VEGF-VEGF-R2 signaling [75,84,85]. The impairment of
Cx43 increases proangiogenic plasminogen activator inhibitor-1 (PAI-1) [89] and von Willebrand
factor (VWF) [90]. Hypoxic conditions in tumor tissue activate Notch and hypoxia-inducible factors
(HIFs) in endothelial cells [73,87,88]. Notch signaling including the nuclear translocation of the notch
protein intracellular domain (NICD) induces endothelial cell function and cell mechanics involved
in angiogenesis. HIF pathways play an important role in the induction of angiogenic-related genes
expression in endothelial cells [73]. Both signaling pathways result in angiogenesis becoming associated
with upregulation of Cx37 and Cx40 in endothelial cells [27,88].

Endothelial gap junction function and Cx expression are assuredly regulated by pro-angiogenic
and environmental factors. It has also been reported that Cx expression and gap junction function in
tumor cells [91], myocadiac cells [92], and mesenchymal stem cells [93] are tightly linked to VEGF
expression in these cells. For example, Cx43 knock-down in tumor cell lines increased VEGF expression
and enhanced the proliferation of endothelial cells [91]. Recent studies have shown Cx43 to be present
in exosomes [94], which are extracellular small vesicles that carry various bioactive molecules, such as
enzymes, metabolites, eicosanoids, and small RNAs. Shimaoka and colleagues have summarized the
biological role of Cxs in exosomes [95]. It is interesting to speculate that the anti-angiogenic microRNAs
in exosomes, which are instantaneously delivered via Cx channels, might inhibit the promotion of
angiogenesis by cancer cells [96]. Thus, in order to understand the role of gap junctions and Cxs in
angiogenesis, it is first necessary to elucidate the basic biology of gap junction and Cx in these types of
cells at the interplay of angiogenesis and tumor development.

4. The Impact of Endothelial Cxs on Vascular Endothelial Angiogenesis

Several groups have investigated the impact of Cxs on the development of the cardiovascular
system, which is closely related to angiogenesis. Mutations in the gene for Cx43 (GJA1) were found to
cause a hypoplastic left-heart syndrome [97]. Cx43-deficient mice, which die at birth from congenital
heart malformations, have shown a reduction in the distal branching complexity and length of their
coronary arteries [98]. In Cx40-deficient mice, cardiac malformations have also been observed [99].
Additionally, both endothelial Cx40- and Cx37-knockout mice develop severe abnormalities of the
vascular function and structure [100]. Recently, loss of endothelial Cx40 was found to lead to a
reduction in vascular growth and capillary density in the neovascularization of the mouse neonatal
retina [101]. We have also demonstrated that aortic vascular tissue from Cx32-deficient mice exhibits
suppressed vascular sprouting of endothelial cells [59]. Cx37 knock-out mice enhance vasculogenesis
and remodeling allowing improvement from an ischemic hindlimb injury [102]. These studies indicate
the contribution of endothelial Cxs to angiogenesis under physiological or pathological conditions.

Some reports have shown the relevance of endothelial Cxs expression and vascular angiogenic
potential in endothelial cells using in vitro angiogenesis assay. Knockdown of Cx43 using specific
siRNAs reduces tube formation and cell proliferation of human aortic endothelial cells [103].
The downregulation of Cx43 increases angiogenesis-related factors [103], such as plasminogen activator
inhibitor-1 [89] and von Willebrand factor [90]. In addition, alterations in endothelial Cx43 expression
in mice inversely correlate with VE-cadherin expression and microvessel permeability [104], which is
induced by acute inflammation and pathologies associated with angiogenesis. These include tumors,
wounds, and chronic inflammatory diseases. Such studies suggest that endothelial Cxs might directly
and/or indirectly contribute to angiogenesis through the modification of endothelial cell function.
Knockdown of Cx37, Cx40, or Cx43 using siRNAs has been shown to suppress endothelial angiogenesis
including the branching of HUVECs, elongation of cell length, and tube formation by an in vitro
Matrigel assay [105]. In gain-of-function experiments utilizing stable Cx-transfectants, we have
demonstrated that increased expression of Cx32 markedly enhances tube length and the number of
branching EA. hy926 cells [106], which are an endothelial cell line derived by fusing HUVECs with a
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human lung carcinoma A549 cell during Matrigel tube formation [59]. On the other hand, Cx37- or
Cx43-transfected EA. hy926 cells impair tube length and the number of branching [59].

While these studies have provided extensive evidence that endothelial Cx expression modulates
angiogenesis, the specific impact of each Cx on angiogenesis remains unclear. Notably it is believed
that any endothelial Cx expression may modify the expression of other Cxs [59,105,107]. Indeed, Cx43
siRNA induces increased expression of both Cx37 and Cx40 in aortic endothelial cells. In HUVECs,
Cx43 siRNA does not alter the expression of other Cxs, whereas Cx40 siRNA and Cx37 siRNA reduce
Cx43 and Cx40 expression, respectively [105]. In addition, Cx32-transfected EA. hy926 cells reduce
Cx43 expression and have exhibited highly angiogenic potential, such as in tube formation and
branching [59]. Although gain-of function and loss-of function assays have yet to be experimentally
tested, there is evidence that alterations in Cx expression patterns and their relevant network of
Cx expression may elicit different endothelial cell phenotypes during angiogenic processes. Several
mechanisms by which specific Cxs regulate inflammation, coagulation, cell migration, and proliferation,
have been proposed. Thus, the possibility has been suggested that novel predominant Cxs resulting
from target Cx manipulation might influence angiogenesis on behalf of these manipulated Cxs.
This interrelated Cx regulatory network has made it difficult to understand the specific role of each
endothelial Cx in angiogenesis.

5. Endothelial Cx-Dependent Regulation of Cell Migration in Angiogenesis

Endothelial cells dynamically alter cell mechanics such as cell morphology, cell proliferation,
and cell migration during angiogenesis [108,109]. Endothelial cell activation by pro-angiogenic factors
allows tip cells to extend filamentous actin (F-actin)-rich filopodial protrusions that migrate toward the
required site [2,3,110]. Tip cells are the leading cells of the sprouts and guide the ensuing stalk cells,
which proliferate in order to elongate the sprout [4]. Fine tuning of migrating tip cells and proliferating
stalk cells is crucial for angiogenesis [4]. Notably, endothelial Cxs have been increasingly implicated
in the control of endothelial cell migration. We have shown impaired cell migration of endothelial
cells both in an in vitro wound healing assay (via blocking Cx32 in endothelial cells) and in an in vivo
Matrigel plaque implant assay in Cx32-deficient mice [59]. Other groups have reported that gap
junction intercellular communication and Cx43 expression are increased in the region of cell migration
and at the wound edge by using a wounded monolayer repair assay [111]. In a wound assay, Cx43
expression in immortalized endothelial cells was positively associated with cell migration and wound
closure [112]. Cx43-specific siRNA markedly suppresses cell migration of endothelial progenitor cells,
as demonstrated by a Transwell chamber migration assay, which allowed cells to migrate through
the filter membrane upon being stimulated with pro-angiogenic factors [113]. Although endothelial
Cx-dependent regulation of cell migration has been experimentally tested, it remains to be seen
whether this mechanism functions in the same manner under physiological condition. In addition
to endothelial cells, several types of cells such as leukocytes, epithelial cells, and tumor cells also
regulate their migration via gap junction channel dependent and independent function (reviewed
by Matsuuchi [114] and Kameritsch [115]). Both gap junction mediated cell-cell interactions and
hemichannel functions are involved in the regulation of cell migration in a number of cell types
(Figure 2). These studies proposed the concept of gap junction- and Cx-mediated cell migration and
provided an overall better understanding of endothelial cell migration [114,115].

The intracellular domain of Cx protein interacts with other proteins to aid the structural stability
of cell-cell junctions sustained by cytoskeletal scaffolds [24]. Due to the ubiquitous distribution of
Cx43, many studies have focused on Cx43 and its interacting proteins [116]. The carboxyl tail of
Cx43 does indeed interact with several cytoskeletal proteins such as F-actin [117], α-/β-tubulins [118],
cadherins [119], and cortactin [120]. For example, the membrane expression of N-cadherin or of
ZO-1 is dominantly localized in the existing site of the Cx43 protein [119]. The interaction of Cx43
with the cadherin family may be important not only for the mechanics of cell migration, but also for
the generation of intracellular signaling. Interaction of Cx43 and cadherins coordinates activation
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of Rho GTPases, which promote cell motility and invasion [121,122]. Moreover, Rac1 in migrating
cell is dominantly found in actin-rich structures, which in conjunction with E-cadherin, is believed
responsible for generating the traction forces of germ cells in vivo [123]. As the intracellular carboxyl
tail of Cx43 has a number of interaction partners, the transfection of a mutant Cx43 lacking the
intracellular carboxyl tail impairs cell migration [124]. Cx43 deficiency causes impaired polarization
due to the non-directional alignment of the microtubule organizing center. This results not only in a
loss of directionality of cell migration, but also in impaired development of coronary arteries, as can
be observed in Cx43 deficient mice. An epicardial cell that expresses the Cx43 mutant, but which
lacks a tubulin-binding site in the carboxyl tail, exhibits a phenotypic pattern similar to a cell lacking
Cx43 [124]. These suggest that the interaction between Cx43 and cytoskeletal protein may coordinate
cellular mechanics and behavior.
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Figure 2. Endothelial Cx-dependent regulation of cell migration in angiogenesis. Gap junctions
and Cxs regulate cell migration via channel function dependent and independent pathways.
(a) Extracellular ATP released by Cx-hemichannels activates P2Y receptors, which trigger cell
migration [48]. (b) Gap junction-mediated propagation of calcium waves is required for collective
cell migration. (c) The interaction of Cx and gap junction with cytoskeletal proteins or intracellular
proteins orchestrates cytoskeletal rearrangement and cell migration [24,116].

6. Potential Role of Endothelial Cellular Stiffness in Cell Migration

The interaction between Cx and cytoskeletal proteins contributes to the regulation of cellular
stiffness which is defined as the physical property of a cell to resist deformation in the response to
any applied force. A contraction force generated by the actomyosin cytoskeleton and F-actin has been
inseparably linked to the regulation of cellular stiffness [125,126]. Activation of the Rho-actomyosin
signaling pathway enhances the formation of actin bundles, stress fibers, and tensile actomyosin
structures [127], all of which correlate with cellular stiffness [128,129]. Thus, interplay between
endothelial Cxs and the Rho family has been implicated in the regulation of cellular stiffness. We have
found that proinflammatory stimulation increased the endothelial cellular stiffness associated with
impaired gap junction function, cytoskeletal remodeling, and focal adhesion formation [130]. Moreover,
blockade of gap junctions induces the cellular stiffening associated with focal adhesion formation
and cytoskeletal rearrangement and prolongs tumor necrosis factor-α-induced endothelial cellular
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stiffening [130]. This study has provided the first evidence that endothelial gap junction contributes to
the regulation of endothelial cellular stiffness via interaction with cytoskeletal rearrangements.

It is thought that endothelial cellular stiffness may be a determinant factor of leukocyte adhesion
to endothelium [131]. In general, leukocytes sense the stiffness of the extracellular substrate via
integrin-ligand interactions and adhere more strongly to stiff substrates [132]. Endothelial cells
materially work as a substrate during leukocyte adhesion and migration. Leukocyte integrins assume
both selective and cohesive adhesion via binding to distinct endothelial adhesion receptors such
as the intercellular adhesion molecule 1 (ICAM-1) [125]. More recently, van Buul and colleagues
have demonstrated that endothelial stiffening helps stabilize ICAM-1 adhesome in order to promote
leukocyte spreading [133]. Integrins increase the binding avidity to ligands, which correlates with
endothelial cellular stiffness. In addition, the integrin-focal adhesion complex generates contractile
forces in cells and transduces these forces into a mechanosignaling complex [131,134]. These suggested
the possible mechanism which regulates leukocyte adhesion and activation via physical endothelial
cellular stiffness [135].

In addition to leukocytes, endothelial cells themselves have been shown to modulate their
own migration, proliferation, and morphological changes in response to extracellular substrate
stiffness [136,137]. In the case of lymphatic vessel formation, a soft extracellular matrix might control
lymphangiogenesis through the induction of GATA2 expression and its related genes, which are
involved in cell migration and lymphangiogenesis, including VEGF-R3 and Cx37 [138]. Thus, it is
possible that stiffening endothelial cells in the existing vasculature are favorable to the recruitment of
pro-angiogenic tip cells and stalk cells at the sprouting spots (Figure 3). Of note, VEGF-induced
cytoskeletal rearrangement and impaired gap junction function might be supposed to increase
endothelial cell stiffness. Stiff endothelial cells may recruit endothelial progenitor cells and support the
cell proliferation and elongation of stalk cells. Taken together, a series of studies makes the case that
gap junction-mediated endothelial cell stiffening may facilitate the angiogenic process of endothelial
cell recruitment by activating a mechanosensing and transduction pathway.
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Figure 3. Potential role of endothelial cellular stiffness in cell migration. VEGF induces gap junction
(GJ) reduction and the sprouting of endothelial cells may result in the stiffening of endothelial cells
(ECs) during the sprout initiation phase. Stiff endothelial cells can work as a substrate for attached
surrounding cells, whereas, provide a favorable environment for the recruitment of endothelial
progenitor cells (EPCs), and then also support adjacent stalk cell proliferation and elongation.

7. Conclusions and Future Perspectives

We are beginning to understand that gap junction and Cx in endothelial cells might serve as
a connection center between biological function and cell mechanics in the context of angiogenesis.
In this review, we provided an overview of the endothelial gap junction function and Cxs expression
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found under pro-angiogenic conditions and the functional role of endothelial gap junctions and
Cxs in cell mechanics during the angiogenic process. Although several studies have demonstrated
gap junction-/Cx-dependent regulation of angiogenesis, these mechanisms are still speculative and
controversial. Notably, analysis of alterations to gap junction functionality and Cx expression patterns
in pro-angiogenic stimuli in neovasculature are needed in order to properly characterize these de
novo blood vessels involved in tumor angiogenesis. The involvement of gap junction and Cx in
the regulation of cellular stiffness and cellular mechanics via their interaction with intracellular
molecules has been shown; however, the dual roles of Cx as a mechanosensor and mechonotransducer
remain unclear. Cellular stiffness- and mechanics-based mechanisms hold promise of helping us
better understand the physiological and pathological components of angiogenesis and endothelial
cell functionality. Additionally, gap junction- and Cx-mediated cell-cell interactions in a number of
other cell types such as vascular smooth muscle cells, pericytes, fibroblasts, macrophages, and tumor
cells also contribute to tumor angiogenesis through the expression of pro-angiogenic factors. Thus,
further studies on the basic biology of gap junctions and Cxs in these type cells are needed for further
elucidation, with a particular emphasis on the interplay of angiogenesis and tumor development.
We speculate that gap junction and Cx targeting approaches may be relevant to the development of
new treatments for cancer patients.
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