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Abstract: Ghrelin is a peptide hormone, originally identified from the stomach, that functions
as an endogenous ligand of the growth hormone secretagogue receptor (GHSR) and promotes
growth hormone (GH) release and food intake. Increasing reports point out ghrelin’s role in cancer
progression. We previously characterized ghrelin’s prognostic significance in the clear cell subtype
of renal cell carcinoma (ccRCC), and its pro-metastatic ability via Snail-dependent cell migration.
However, ghrelin’s activity in promoting cell invasion remains obscure. In this study, an Ingenuity
Pathway Analysis (IPA)-based investigation of differentially expressed genes in Cancer Cell Line
Encyclopedia (CCLE) dataset indicated the potential association of Aurora A with ghrelin in ccRCC
metastasis. In addition, a significant correlation between ghrelin and Aurora A expression level in
15 ccRCC cell line was confirmed by variant probes. ccRCC patients with high ghrelin and Aurora A
status were clinically associated with poor outcome. We further observed that ghrelin upregulated
Aurora A at the protein and RNA levels and that ghrelin-induced ccRCC in vitro invasion and
in vivo metastasis occurred in an Aurora A-dependent manner. Furthermore, MMP1, 2, 9 and
10 expressions are associated with poor outcome. In particular, MMP10 is significantly upregulated
and required for the ghrelin-Aurora A axis to promote ccRCC invasion. The results of this study
indicated a novel signaling mechanism in ccRCC metastasis.
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1. Introduction

Cancer metastasis is one of the leading causes of cancer mortality. Approximately 30% of patients
with renal cell carcinoma (RCC) present with metastatic disease [1]. Ghrelin, a peptide hormone,
has been reported to promote cancer metastasis and is clinically associated with poor survival in various
types of cancers [2]. However, ghrelin’s function in RCC remains largely unknown. We previously
characterized its impact on cancer biology other than physiological role, and found that ghrelin
increased clear cell type RCC (ccRCC) migration [3]. In ccRCC, immunohistochemical analysis of
ghrelin indicated that ghrelin expression was increased in cancer tissues compared to normal adjacent
tissues. In addition, ghrelin expression in RCC patients was associated with poor outcomes and with
lymph node and distant metastasis. Furthermore, we found, for the first time, that ghrelin increased
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Snail protein levels and its promoter binding activity, leading to the E-cadherin downregulation,
subsequently contributing to RCC migration [3]. Importantly, cancer metastasis is a complicated
process with the involvement of multiple factors and genetic events which modulate several steps for
initiating metastasis including tumor invasion at the primary site [4]. However, the mechanism of
ghrelin-mediated RCC invasion has not yet been elucidated.

Aurora A (STK15/BTAK/hARK1/Aurora-2), a member of the serine/threonine Aurora kinase
family, plays an important role in ensuring genetic stability in cell division. Aurora A is essential for
mitotic spindle formation and accurate chromosome segregation [5]. Overexpression of Aurora A can
induce centrosome amplification, aneuploidy and transformation of p53-deficient mammalian cells [6].
Recently, Aurora A was reported to associate with lymph node invasion in patients with breast cancer
and renal cell carcinoma [7,8]. In an experimental metastasis model, breast cancer cells with Aurora A
overexpression exhibited significant invasion to lung tissue in vivo [7]. Moreover, forced-expression
of Aurora A increased the migration of laryngeal squamous cancer cells (LSCC), whereas stable
knockdown of Aurora A inhibited cell migration in esophageal squamous cell carcinoma (ESCC) and
breast cancer [7,9,10]. In addition, the pro-invasion function of Aurora A is likely to increase matrix
metalloproteinase (MMP) expression in cancer cells [11]. These reports indicate a pivotal role and
requirement of Aurora A in cancer cell invasion. However, the link between Aurora A and ccRCC
metastasis and the signaling mechanism with regard to altered Aurora A function remains obscure.

The results from our clinical study indicate the correlation of the ghrelin-Aurora A axis with
ccRCC invasion. To date, the issue of ghrelin-dependent regulation toward Aurora A in ccRCC has not
been addressed. In this study, we aimed to investigate whether Aurora A is altered and required for
ghrelin-induced ccRCC metastasis.

2. Results

2.1. The Analysis of the Cancer Cell Line Encyclopedia (CCLE) Dataset Via Ingenuity Pathway Analysis (IPA)
Indicates that Aurora A Is Potentially Involved in Ghrelin-Mediated ccRCC Metastasis

We first comprehensively examined the impact of high ghrelin expression in ccRCC progression
by a genome-wide analysis of differential gene expression in the Cancer Cell Line Encyclopedia
(CCLE) [12,13]. 15 ccRCC cell lines were separated into high and low ghrelin groups based on
the ranking determined by normalized expression level (GSE36133, Figure 1A). The differentially
expressed genes between the two groups were selected (Table S1, threshold: > 1.5 fold change and
p < 0.05) for further analysis using the IPA.
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Figure 1. The analysis of Cancer Cell Line Encyclopedia (CCLE) dataset via Ingenuity Pathway 
Analysis (IPA) points out Aurora A is potentially involved in ghrelin-mediated ccRCC 
metastasis. (A) RCC cell lines and relative ghrelin expressions retrieved from CCLE dataset 
were listed. (B) 15 ccRCC cell lines were separated into high and low ghrelin groups. The 
differentially expressed genes between two groups were identified (threshold: >1.5 fold change 
and p < 0.05). Canonical pathway analysis was performed to rank the matched (A) Diseases 
and Disorders and (C) Molecular and Cellular Function in IPA database. (D) Statistical P values 
and log2 transformed expressions of Aurora A (AURKA) and its interactive network were 
shown. The red and green circles represent upregulation and downregulation, respectively. 

Figure 1. The analysis of Cancer Cell Line Encyclopedia (CCLE) dataset via Ingenuity Pathway Analysis
(IPA) points out Aurora A is potentially involved in ghrelin-mediated ccRCC metastasis. (A) RCC
cell lines and relative ghrelin expressions retrieved from CCLE dataset were listed. (B) 15 ccRCC cell
lines were separated into high and low ghrelin groups. The differentially expressed genes between
two groups were identified (threshold: >1.5 fold change and p < 0.05). Canonical pathway analysis
was performed to rank the matched (A) Diseases and Disorders and (C) Molecular and Cellular
Function in IPA database. (D) Statistical P values and log2 transformed expressions of Aurora A
(AURKA) and its interactive network were shown. The red and green circles represent upregulation
and downregulation, respectively.
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Canonical pathway analysis was performed to identify Diseases and Disorders (Figure 1B) and
Molecular and Cellular Function (Figure 1C) according to the matched differentially expressed genes
in IPA database. The results revealed the association of high ghrelin expression with cancer and
cellular movement (ranked top 1, Figure 1B,C). Furthermore, Aurora A was one of upregulated targets
identified in high ghrelin group. The oncogenic role of Aurora A has been reported. However, little is
known about its function in RCC progression. In addition, Aurora A’s interactive network had also
been explored based on clinical data that MMP2 and VEGF were also increased in high ghrelin group
(Figure 1D), indicating the potential value of studying ghrelin-Aurora A axis in RCC.

2.2. Aurora A Correlates with Poor Outcome in the ccRCC Cohort

To explore the clinical relevance of Aurora A expression in ccRCC patients, a cohort of 562 clear
cell-type cases from The Cancer Genome Atlas (TCGA) was analyzed [14]. The Kaplan–Meier plot
showed the correlation of high Aurora A expression with poor overall survival (p = 0.001, Figure 2A).
We confirmed the previously identified ghrelin as a poor prognostic marker in the same cohort
(Figure 2B). The combination of ghrelin with Aurora A status showed the prognostic power in
predicting poor RCC survival (p < 0.001, Figure 2C). A disease-free survival analysis also revealed the
association of ghrelin and Aurora A with poor outcome (Figure 2D,E). In addition, univariate and
multivariate Cox regression analysis further indicated that high Aurora A level was a significant and
independent predictor for high hazard ratios (Table 1). These results show the prognostic value of
Aurora A for ccRCC patients.
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Figure 2. ccRCC patients with high ghrelin and Aurora A expression status correlates with poor
outcome. Kaplan–Meier plot of cancer patients divided into high and low expression of Aurora A (A)
and Ghrelin (B) were shown. (C) Kaplan–Meier plot of combining Aurora A and Ghrelin expression
levels was analyzed. Data of 562 clear cell type RCC cases were retrieved from TCGA (KIRC gene
expression (IlluminaHiSeq) dataset). The dataset showed the gene level transcription estimates, as in
log2(x + 1) transformed RSEM normalized count. Subgroup was determined according to the ranking
in expression level of indicated genes. (D) ccRCC patients of high GHRL (D) or AURKA (E) expression
level correlates with poor disease-free survival. Data was analyzed using dataset (Wuttig Wirth Renal
Kidney GSE22541), and was retrieved from the SurvExpress database.

Table 1. Cox univariate and multivariate regression analysis of TNM prognostic factors and Aurora A
expression for overall survival in 562 renal cell carcinoma patients.

Variable Comparison
Univariate Multivariate

HR (95% CI) p HR (95% CI) p

T T1-T2; T3-T4 3.422 (2.488–4.708) <0.001 2.555 (1.599–4.083) <0.001
N N0; N1-N3 2.618 (1.39–4.929) 0.003 1.356 (0.698–2.632) 0.369
M M0; M1 4.429 (3.208–6.115) <0.001 2.707 (1.665–4.399) <0.001

Aurora A Low; High 1.731 (1.268–2.363) 0.001 1.645 (1.086–2.491) 0.019

Note: Cox proportional hazards regression was used to test independent prognostic contribution of Aurora A after
accounting of other potentially important covariates. Abbreviation: HR, hazard ratio; CI: confidence interval.

2.3. Aurora A Expression Is Positively Associated with Ghrelin in ccRCC

We further dissected the expressional correlation between Aurora A and ghrelin. Among ccRCC
cell lines in CCLE dataset, the analysis was performed using variant Aurora A probes, and a positive
correlation with ρ = 0.715 and 0.784 was observed respectively by each Aurora A probe (Figure 3A,B).
In addition, endogenous ghrelin and Aurora A protein levels were explored in a panel of seven ccRCC
cell lines (Figure 3C). The data further revealed a positive correlation of ghrelin and Aurora A at
protein levels in ccRCC cell lines (ρ = 0.833).

2.4. Ghrelin Upregulates Aurora A

Ghrelin was stably overexpressed via lentiviral infection in Caki-1 cells. In the results, ghrelin
ectopic overexpression elicited Aurora A upregulation at RNA level, respectively in clone 1 and
clone 2 (Figure 4A) and ACHN cells (Figure 4B). A similar effect was observed by QPCR method
(Figure 4C). In Caki-1 and ACHN cells, the increased Aurora A protein upon ghrelin overexpression
was further observed and shown (Figure 4D,E). The data suggest a regulatory impact of ghrelin on
Aurora A expression.



Cancers 2019, 11, 303 6 of 14
Cancers 2019, 11, x 6 of 14 

 

 
Figure 3. Ghrelin expression correlates with Aurora A in RCC cell lines. (A,B) Correlations in 
expression level of ghrelin and Aurora-A in ccRCC cell lines were respectively analyzed using 
different probes. Raw data was retrieved from CCLE dataset. (C) Endogenous Aurora A and 
ghrelin expression at protein level in ccRCC cell panel was determined by western blot method. 
Relative protein levels and statistical correlation were analyzed and shown after normalizing 
with β-actin internal control. 

 
Figure 4. Ghrelin upregulates Aurora A in ccRCC. (A) RNA expression levels of indicated 
molecules were examined upon lentiviral-based ghrelin overexpression in Caki-1 cell clone 1 
and clone2. (B) Regulation of ghrelin to Aurora A was investigated in ACHN cells using 
lentiviral-based overexpression method. (C) The modulation at RNA level was further 
examined by QPCR method. (D) The regulation of ghrelin overexpression to Aurora A protein 
was investigated by western blot in Caki-1 (D) and in ACHN cells (E). Figures were 
represented from the results of three repeated experiments with similar pattern. * p < 0.05, ** p 
< 0.01. 

Figure 3. Ghrelin expression correlates with Aurora A in RCC cell lines. (A,B) Correlations in expression
level of ghrelin and Aurora-A in ccRCC cell lines were respectively analyzed using different probes.
Raw data was retrieved from CCLE dataset. (C) Endogenous Aurora A and ghrelin expression at
protein level in ccRCC cell panel was determined by western blot method. Relative protein levels and
statistical correlation were analyzed and shown after normalizing with β-actin internal control.
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Figure 4. Ghrelin upregulates Aurora A in ccRCC. (A) RNA expression levels of indicated molecules
were examined upon lentiviral-based ghrelin overexpression in Caki-1 cell clone 1 and clone2.
(B) Regulation of ghrelin to Aurora A was investigated in ACHN cells using lentiviral-based
overexpression method. (C) The modulation at RNA level was further examined by QPCR method.
(D) The regulation of ghrelin overexpression to Aurora A protein was investigated by western blot
in Caki-1 (D) and in ACHN cells (E). Figures were represented from the results of three repeated
experiments with similar pattern. * p < 0.05, ** p < 0.01.

2.5. Aurora A Is Required for Ghrelin-Mediated ccRCC Invasion

Next, we aimed to explore whether ghrelin-induced ccRCC metastasis is dependent on Aurora A.
Cell migration ability was first tested in ACHN cells, and the results showed the decrease in migrated
cells upon Aurora A silencing in cells overexpressing ghrelin (p < 0.001, Figure 5A). Aurora-A was
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knocked down by 200 nM of specific siRNA in 786-0 cells which was the cell line characterized as
having a high Aurora A background (Figure 5B). Aurora A silencing resulted in the reduction of
cell invasion compared with the ghrelin treatment (Figure 5C). In in vivo metastasis model, Aurora
A expression was stably reduced by shRNA in ACHN (Figure 5D) and 786-0 cells (Figure 5E) after
ghrelin overexpression. Cells with Aurora A knockdown revealed the decreased lung metastasis as
judged by lung nodules (right, Figure 5D,E). These data indicated the requirement of Aurora A in the
ghrelin-mediated in vitro migration, invasion and in vivo metastasis in ccRCC.

Cancers 2019, 11, x 7 of 14 

 

2.5. Aurora A Is Required for Ghrelin-Mediated ccRCC Invasion 

Next, we aimed to explore whether ghrelin-induced ccRCC metastasis is dependent on 
Aurora A. Cell migration ability was first tested in ACHN cells, and the results showed the 
decrease in migrated cells upon Aurora A silencing in cells overexpressing ghrelin (p < 0.001, 
Figure 5A). Aurora-A was knocked down by 200 nM of specific siRNA in 786-0 cells which was 
the cell line characterized as having a high Aurora A background (Figure 5B). Aurora A 
silencing resulted in the reduction of cell invasion compared with the ghrelin treatment (Figure 5C). 
In in vivo metastasis model, Aurora A expression was stably reduced by shRNA in ACHN 
(Figure 5D) and 786-0 cells (Figure 5E) after ghrelin overexpression. Cells with Aurora A 
knockdown revealed the decreased lung metastasis as judged by lung nodules (right, Figures 
5D-E). These data indicated the requirement of Aurora A in the ghrelin-mediated in vitro 
migration, invasion and in vivo metastasis in ccRCC. 

 
Figure 5. Aurora A is required in ghrelin-mediated RCC metastasis in vitro and in vivo. (A) 
Cell migration assay was performed by transwell devices using stable clones of ACHN cell. 
Numbers of cell migration in each group were counted after 5h of incubation. (B) Knockdown 
efficacy of Aurora A by specific siRNA in 786-0 cells was examined. Cells were treated with 

Figure 5. Aurora A is required in ghrelin-mediated RCC metastasis in vitro and in vivo. (A) Cell
migration assay was performed by transwell devices using stable clones of ACHN cell. Numbers of
cell migration in each group were counted after 5h of incubation. (B) Knockdown efficacy of Aurora
A by specific siRNA in 786-0 cells was examined. Cells were treated with 100 or 200 nM of control
siRNA or siRNA specific to Aurora A (C) Relative cell invasion ability in 786-0 cells upon Aurora A
knockdown was studied. (D) RCC metastasis was investigated in ACHN cells (D) and in 786-0 cells
(E) overexpressing ghrelin and combined stable Aurora A silencing. Representative images of lung
surface nodule in indicated groups were showed (left). Numbers of lung nodule in each group were
quantified 8 weeks after cell injection. n = 7 per each group (right). Figures were represented from the
results of three repeated experiments with similar pattern. * p < 0.05, ** p < 0.01, *** p < 0.001.
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2.6. MMP10 Is the Downstream Effector of the Ghrelin-Aurora A Signaling Axis in ccRCC Invasion

To study the potential regulation of ghrelin toward MMP expression that might be involved in the
critical step for initiating cancer cell invasion, the association of MMPs including MMP1, 2, 7, 9, 10, 11
with cancer patient survival was explored to understand the correlation with clinical outcome. The data
suggest a potentially pivotal role of indicated MMPs in the RCC invasion. In particular, the prognostic
value of MMP10 in RCC was analyzed using The Human Protein Atlas database, which verified the
consequences of transcript levels linking to patient survival outcomes [15–19]. The high level of MMP10
in renal cancer patients was found to be associated with poor survival (p = 0.000284, Figure 6A). In
addition, MMP10 upregulation was reduced after Aurora A silencing in ACHN cells (Figure 6B).
The impact of MMP10 alternation was examined in cell invasion test, which showed the decrease in
invasive cell numbers upon Aurora A or MMP10 silencing (Figure 6C). The ghrelin receptor, GHS-R1a,
was relatively silenced by specific shRNAs (clone sh2 and sh3), and knockdown of GHS-R1a blocked
the signaling axis elicited by ghrelin overexpression (Figure 6D). The result indicated the increase
in MMP10 level contributed to ccRCC invasion ability, and characterized the importance of the
ghrelin-ghrelin receptor-Aurora A-MMP10 signaling pathway in ccRCC metastasis.

Cancers 2019, 11, x 8 of 14 

 

100 or 200 nM of control siRNA or siRNA specific to Aurora A (C) Relative cell invasion ability 
in 786-0 cells upon Aurora A knockdown was studied. (D) RCC metastasis was investigated in 
ACHN cells (D) and in 786-0 cells (E) overexpressing ghrelin and combined stable Aurora A 
silencing. Representative images of lung surface nodule in indicated groups were showed 
(left). Numbers of lung nodule in each group were quantified 8 weeks after cell injection. n = 7 
per each group (right). Figures were represented from the results of three repeated experiments 
with similar pattern. * p < 0.05, ** p < 0.01, *** p < 0.001. 

2.6. MMP10 Is the Downstream Effector of the Ghrelin-Aurora A Signaling Axis in ccRCC Invasion 

To study the potential regulation of ghrelin toward MMP expression that might be 
involved in the critical step for initiating cancer cell invasion, the association of MMPs 
including MMP1, 2, 7, 9, 10, 11 with cancer patient survival was explored to understand the 
correlation with clinical outcome. The data suggest a potentially pivotal role of indicated MMPs 
in the RCC invasion. In particular, the prognostic value of MMP10 in RCC was analyzed using 
The Human Protein Atlas database, which verified the consequences of transcript levels linking 
to patient survival outcomes [15–19]. The high level of MMP10 in renal cancer patients was 
found to be associated with poor survival (p = 0.000284, Figure 6A). In addition, MMP10 
upregulation was reduced after Aurora A silencing in ACHN cells (Figure 6B). The impact of 
MMP10 alternation was examined in cell invasion test, which showed the decrease in invasive 
cell numbers upon Aurora A or MMP10 silencing (Figure 6C). The ghrelin receptor, GHS-R1a, 
was relatively silenced by specific shRNAs (clone sh2 and sh3), and knockdown of GHS-R1a 
blocked the signaling axis elicited by ghrelin overexpression (Figure 6D). The result indicated 
the increase in MMP10 level contributed to ccRCC invasion ability, and characterized the 
importance of the ghrelin-ghrelin receptor-Aurora A-MMP10 signaling pathway in ccRCC 
metastasis. 

 
Figure 6. MMP10 is required in the ghrelin-Aurora A signaling axis to promote ccRCC invasion.
(A) Kaplan–Meier plot showing the association of indicated MMP with RCC (TCGA) patient survival
was represented. Data were retrieved from Human Protein Atlas website. (B) Representative Aurora
A and MMP10 expression pattern in ACHN cells overexpressing ghrelin combined with Aurora A
or MMP10 knockdown respectively. (C) Alternations in relative ACHN cell invasion ability were
shown. Magnification: 100× (D) The regulation of ghrelin toward MMP10 expression was further
studied in ACHN cells silencing GHS-R1a. Figures were represented from the results of three repeated
experiments with similar pattern. ** p < 0.01, *** p < 0.001.
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3. Discussion

Renal cell carcinoma (RCC), also called renal adenocarcinoma, comprises 90–95% of kidney-
derived tumors, and is a form of kidney cancer that arises from the cells of the renal tubule [20].
Although RCC is relatively rare compared with other cancers (approximately 2% of malignant tumors),
an alarming increase in incidence has been diagnosed and the survival of these patients is poor,
with a median survival of less than one year [21]. In addition, about 30% of RCC patients present with
metastatic disease, the metastatic RCC (mRCC). The common sites of metastasis include lung, lymph
node, bone and brain [1]. In particular, mRCC is generally resistant to chemotherapy. Immunologic
therapy with interferon or interleukin-2 (IL-2) has been the most commonly used treatment, despite
low a response rate (5–20%) [1]. Hence, it is urgently required to unravel the molecular mechanisms
involved in tumorigenesis and metastasis of mRCC for the development of novel target agents.
We previously identified a peptide hormone, ghrelin, and investigated the function and mechanism
of ghrelin in RCC metastasis [3]. The result of immunohistochemical analysis of ghrelin showed
an increase in ghrelin expression in specimens obtained from individuals with disease progression and
a progressive ghrelin upregulation in cancer tissues compared to normal adjacent tissues. Furthermore,
ghrelin expression is correlated with poor outcome, lymph node and distant metastasis status in
RCC patients. Our previous studies indicated that ghrelin could increase Snail protein level and
its E-cadherin promoter binding activity via phosphatidylinositol 3-kinase–Akt signaling activation,
leading to downregulated E-cadherin expression and subsequently contributing to the development
of EMT and RCC migration. The study demonstrated the poor prognostic and pro-metastatic role of
ghrelin in RCC. Importantly, cancer metastasis is a complicated process that requires multiple factors
to elicit tumor invasion at the primary site. We first observed that MMP10 is increased upon ghrelin
treatment in clear cell type of RCC, suggesting a novel function of ghrelin in promoting RCC metastasis.

In this study, we observed Aurora A upregulation by ghrelin, especially at the RNA level,
suggesting a potential transcriptional activation of the AURKA gene. Recently, increasing reports
point out that Aurora A is a target of Wnt/β-catenin signaling pathway, which is involved in
multiple myeloma disease progression [22]. In particular, AURKA expression is driven by β-catenin
transcription in VHL-null ccRCC. However, whether Wnt/β-catenin signaling is activated by ghrelin
leading AURKA transcriptional activation remains to be explored. An investigation of the synergistic
effect of hepatocyte growth factor (HGF) and vascular endothelial growth factor (VEGF) in human
endothelial cells revealed the increased expression of human AURKA mRNA in cultured cells 24 hours
after initial treatment [23]. Furthermore, co-expression of GABPA and GABPB1 proteins significantly
increased the promoter (-189-354) activity of human AURKA gene [24]. Interestingly, both VEGF
and GABPB1 were found to be upregulated in high ghrelin group in the CCLE dataset (Figure 1D),
indicating the regulatory mechanism of oncogenic Aurora A upregulation that remains to be studied.
In addition, BORA is a known Aurora A cofactor required for its kinase activity [25]. The BORA level
was also increased in high ghrelin group suggesting a potential role of ghrelin in activating Aurora
A in RCC. A report indicated that YY1 could suppress invasion and metastasis by downregulating
MMP10 in a MUC4/ErbB2/p38/MEF2C-dependent manner in pancreatic cancer cells, suggesting
MEF2C phosphorylation is required for MMP10 expression [26]. Thus far, the link of ghrelin and
Aurora kinase A to MEF2C phosphorylation has not yet been studied, and this link might shed light
on the molecular mechanism of MMP10 upregulation during RCC metastasis.

Similar function of ghrelin was indicated in gastric cancer invasion of which mechanism was
unraveled, that is, via the activation of GHS-R/NFκB signaling pathway [27]. In addition to the
modulation of cancer invasion, the ghrelin-ghrelin receptor signaling axis is pivotal in regulating cell
motility and cell-cell adhesion, which led to cancer metastasis in many types of cancer [2]. Ghrelin
treatment could activate PI3K/GTP-Rac signaling resulting in the actin polymerization in astrocytoma
cells [28]. According to the results of a pancreatic adenocarcinoma study, ghrelin promoted cell
migration via the activation of GHSR/PI3K/Akt signaling pathway, and the phenotype was inhibited
by the addition of ghrelin receptor antagonist [29]. A study in colorectal cancer revealed that the
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pretreatment of antagonist D(Lys-3)-GHRP-6 inhibited ghrelin-mediated ghrelin receptor function and
cell migration ability [30]. Moreover, ghrelin was also observed to induce cell migration by triggering
the activation of GHSR/CaMKII/AMPK/NFκB signaling pathway in glioma cells [31]. In our previous
study, ghrelin was found to reduce cell-cell contact in cell migration process through Snail-dependent
E-cadherin repression. Taken together, the findings demonstrate ghrelin’s multi-function in promoting
cancer metastasis.

4. Materials and Methods

4.1. Ingenuity Pathway Analysis (IPA)

Differential gene expression signatures of ccRCC cohort divided into high ghrelin and low ghrelin
groups were analyzed by Ingenuity® Pathway Analysis (QIAGEN, Hilden, Germany; www.qiagen.
com/ingenuity), according to the instructions provided. After comparison of the imported dataset
with Ingenuity® Knowledge Base, a list of relevant networks, upstream regulators and algorithmically
generated mechanistic networks based on the connectivity was obtained. The Canonical Pathway
analysis of IPA was used to rank significant Diseases and Disorders, Molecular and Cellular Functions
based on the altered gene signatures.

4.2. Cell Culture

Human renal adenocarcinoma cell lines were all obtained from American Type Culture Collection
(Manassas, VA, USA). 786-0 cells were maintained in RPMI 1640 medium supplemented with 10% fetal
bovine serum (GIBCO, Grand Island, NY, USA), 10 mM HEPES, 1 mM sodium pyruvate, penicillin
(100 unit/mL), and streptomycin (100 µg/mL). 769-P cells were maintained in RPMI 1640 medium
supplemented with 10% fetal bovine serum (GIBCO, Grand Island, NY, USA), penicillin (100 unit/mL),
and streptomycin (100 µg/mL). ACHN, A-498 and A-704 cells were maintained in MEM medium
supplemented with 10% fetal bovine serum, penicillin (100 unit/mL), and streptomycin (100 µg/mL).
Caki-1 and Caki-2 cells were maintained in McCoy’s 5a medium supplemented with 10% fetal bovine
serum, penicillin (100 unit/mL), and streptomycin (100 µg/mL). Cells were incubated in 95% air, 5%
CO2 humidified atmosphere at 37 ◦C. Ghrelin (n-octanoyl) was obtained from ANASPEC (Fremont,
CA, USA). Acylated ghrelin (n-octanoyl) was prepared in ddH2O.

4.3. Preparation of Ghrelin Expression Plasmid

Ghrelin was cloned from 293T cDNA using TAKARA DNA polymerase (Mountain View,
CA, USA) according to the manufacture’s instruction. The primer sequences designed were
as follows: ACCCAAGCTGGCTAGCATGCCCTCCCCAGGGACCGTC (sense) and TCAAGAT
CTAGAATTCTCACTTGTCGGCTGGGGCCTC (antisense). The PCR products were gel-purified,
digested with NheI/EcoRI, and subcloned into lentiviral expression vector pLAS3W (RNAi Core,
Academia Sinica, Taipei, Taiwan). The sequences were confirmed via DNA sequencing by Sequencing
Core Facility, SIC, Academia Sinica.

4.4. Animal Study

All animal experiments were conducted in accordance with a protocol approved by the Academia
Sinica Institutional Animal Care and Utilization Committee (ethical code: 12-02-319, 18 October 2016).
Age-matched male NSG mice (6 to 8 weeks of age) were used. To evaluate metastasis, 1 × 106 cells
were resuspended in 0.1 mL of PBS and injected into the lateral tail vein (n = 7). Metastatic lung
nodules were counted and were further confirmed via HE staining using a dissecting microscope
(OLYMPUS, Tokyo, Japan).

www.qiagen.com/ingenuity
www.qiagen.com/ingenuity
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4.5. Lentivirus-Based shRNA Production and Infection

The lentiviral shRNA constructs were purchased from Thermo Scientific (Pittsburgh, PA, USA).
Lentiviruses were produced via co-transfection of 293T cells with an shRNA-expressing plasmid,
an envelope plasmid (pMD.G) and a packaging plasmid (pCMV-dR8.91) using calcium phosphate
(Invitrogen, Carlsbad, CA, USA). The 293T cells were incubated for 18 h, followed by replacement of
the culture medium. The viral supernatants were harvested and titered at 48 and 72 h post-transfection.
The cell monolayers were infected with the indicated lentivirus in the presence of polybrene and
were further selected using puromycin (4 µg/mL) for 7 days. The selected stable clones were further
cultured in the presence of 2 µg/mL puromycin.

4.6. Western Blot Analysis

The cells were lysed at 4 ◦C in RIPA buffer containing 50 mM Tris-HCl (pH 7.4), 150 mM NaCl,
1% Triton X-100, 0.25% sodium deoxycholate, 5 mM EDTA (pH 8.0), and 1 mM EGTA supplemented
with protease and phosphatase inhibitors. After 20 min of lysis on ice, the cell debris was removed
via microcentrifugation, followed by rapid freezing of the supernatants. The protein concentration was
determined using the Bradford method. In our experiments, equivalent loads of 25–50 µg of protein
were electrophoresed using a SDS-polyacrylamide gel and then electrophoretically transferred from
the gel to a PVDF membrane (Millipore, Bedford, MA, USA). After blocking with 5% non-fat milk,
the membrane was incubated in specific primary antibodies (Ghrelin: GTX10473, GeneTex, Irvine
city, CA, USA, 1:1000; Aurora A: #4718, Cell Signaling, Danvers, MA, USA, 1:1000; MMP10: sc-80197,
Santa Cruz, Dallas, TX, USA, 1:1000; β-actin: A5316, Sigma-Aldrich, Louis, MO, USA, 1:5000; GHS-R
1: sc-374515, Santa Cruz, 1:2000) overnight at 4 ◦C and subsequently incubated in a corresponding
horseradish peroxidase-conjugated secondary antibody for 1 h. The membranes were visualized using
the ECL-Plus detection kit (PerkinElmer Life Sciences, Boston, MA, USA).

4.7. Invasion and Migration Assay

The in vitro migration and invasion were assessed using Transwell assay (Millipore, Bedford,
MA, USA). For invasion assay, transwell was additional pre-coated with 35 µL of 3× diluted matrix
matrigel (BD Biosciences Pharmingen, San Diego, CA, USA) for 30 min. Cells of 2 × 105 in serum-free
culture medium were added to the upper chamber of the device, and the lower chamber was filled
with 10% FBS culture medium. After indicated hours of incubation, upper surface of the filter was
carefully removed with a cotton swab. The filter was then fixed, stained and photographed. Cells
invasion was quantified by counting the cells in three random fields per filter.

4.8. Semi-Quantitative RT-PCR and Real-Time PCR Amplification Analysis

Total cellular RNA was extracted by TRIzol reagent (Invitrogen, Carlsbad, CA, USA) in accordance
with the manufacturer’s instructions. One microgram of total RNA was reverse-transcribed using
Advantage RT for PCR Kit (Clontech, Mountain View, CA, USA) at 42 ◦C for 1 h as described in
the manufacturer’s protocol. PCR conditions for rat leptin were 94 ◦C for 5 min and 37 cycles at
94 ◦C for 30 s, 56 ◦C for 30 s and 72 ◦C for 60 s, followed by a final extension step at 72 ◦C for
5 min by Bio-Rad icycler (Bio-Rad, Oxford, UK). For each combination of primers, the kinetics of
PCR amplification was studied. The number of cycles corresponding to plateau was determined
and PCR was performed at exponential range. PCR products were then electrophoresed through
a 1% agarose gel and visualized by ethidium bromide staining in UV irradiation. The mRNA levels
were also determined by real-time PCR with ABI StepOnePlus real-time PCR system according to
the manufacturer’s instructions. GAPDH was used as endogenous control. PCR reaction mixture
contained the SYBR PCR master mix, 50 ng cDNA, and primers. Relative gene expression level
that the amount of target were normalized to endogenous control gene was calculated using the
comparative Ct method formula E−∆∆Ct. The relative primer sequences for semi-qPCR are listed below:
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GHRL_F: 5′-GAGCCCTGAAC ACCAGAGAG-3′, GHRL_R: 5′-CCCAGAGGATGTCCTGAAGA-3′ (239
bp); AURKA_F: 5′-TGG AATATGCACCACTTGGA-3′, AURKA_R: 5′-ACTGACCACCCAAAAT CTGC-3′

(208 bp); GAPDH_F: 5′-GCTGAGAACGGGAAGCTTGT-3′, GAPDH_R: 5′-GCCAGGGGTGCTAAGCA
GTT-3′ (299 bp). The relative primer sequences for real-time PCR are listed below: GHRL_F:
5′-GGCATCTGACCTCCACTGTT-3′, GHRL_R: 5′-TCTAAACCAGCAACC CCATC-3′ (119 bp); AURKA_F:
5′-TTGGAAGACTTGGGTCCTTG-3′, AURKA_R: 5′-ACGTTTTGGACCTCCAA CTG-3′ (119 bp);
GAPDH_F: 5′-GACAGTCAGCCGCATCTTCT-3′, GAPDH_R: 5′-GCGCCCAA TACGACCAAATC-3′

(104 bp).

4.9. Statistical Analysis

Estimates of the survival rates were calculated using the Kaplan-Meier method and were
compared using the log-rank test. The association between clinicopathological categorical variables
and AURKA expression was analyzed using the chi-squared test. Student’s t-test was used for other
statistical analyses. All data are presented as the mean ± S.D. The p values at the following levels were
considered to be significant: * p < 0.05, ** p < 0.01, and *** p < 0.001. All data was represented based on
three repeated experiments with similar pattern.

5. Conclusions

In summary, the analytical results from the CCLE database revealed a significant association
between ghrelin and Aurora A expression in ccRCC. In addition, patients with high ghrelin and Aurora
A status have poor outcomes. We further observed that ghrelin could upregulate Aurora A at the
protein and RNA levels and that Aurora A plays a pivotal role in ghrelin-induced RCC invasion
and in vivo metastasis. Among those MMPs identified, MMP10 was associated with poor survival
in ccRCC, and the upregulation of MMP10 was induced by the ghrelin-ghrelin receptor-Aurora A
signaling axis to promote ccRCC metastasis.
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