



# Supplementary Materials: Graphene Oxide-Based Targeting of Extracellular Cathepsin D and Cathepsin L As A Novel Anti-Metastatic Enzyme Cancer Therapy

Tanveer A. Tabish, Md Zahidul I. Pranjol, David W. Horsell, Alma A. M. Rahat, Jacqueline L. Whatmore, Paul G. Winyard and Shaowei Zhang

# Chemicals and reagents

NaNO<sub>3</sub> (product no. S5506), H<sub>2</sub>SO<sub>4</sub> (95.0–98.0%, product no. 320501), KMnO<sub>4</sub> (product no. 223468), H<sub>2</sub>O<sub>2</sub> (30 wt%, product no. 216763), graphite flakes (product no.17346-25) and HCl (36 wt%, product no.: 7647-01-0) used in this work were purchased from Thermo Scientific, Fisher Scientific, Acros, Nacalai Tesque and Alfa Aesar, respectively.

# **Supplementary Note 1:**

We first characterized graphene oxide (GO) with a wide range of characterization tools such as Fourier-transform infrared spectroscopy (FTIR), Raman spectroscopy, transmission electron microscopy (TEM), scanning electron microscopy (SEM), Zeta potential analyser, thermogravimetric *analysis* (TGA), X-ray diffraction (XRD) and Brunauer–Emmett–Teller (BET) surface area method.

The surface area of the GO as measured by the N<sub>2</sub> absorption Brunauer–Emmett–Teller (BET) method is 25 m<sup>2</sup>/g having a pore volume of 0.07 cm<sup>3</sup>/g (Figure S4). However, it is still lower than the theoretical specific surface area for completely exfoliated and isolated graphene sheets (~2620 m<sup>2</sup>/g), potentially because it measures the outer surface of GO grains. The nitrogen molecules are inaccessible to the interlayer and interlamellar spaces of GO and as a result acid-base processes in aqueous GO dispersions take place on much greater surfaces. According to the Ruess model, graphite oxide consists of wrinkled carbon sheets composed of trans-linked cyclohexane, and the fourth valencies of the carbon atoms are bound to axial OH-groups and ether oxygen atoms in 1,3-positions. As a result, this geometrical network, functional groups existing at the edges and basal planes of GO sheets, degree of exfoliation and dispersion, and surface chemistry of GO hinders nitrogen access/adsorption to inner surfaces of GO, which is generally opened up upon exfoliation. The hydrophilic oxygen-containing functional groups provide GO sheets with a good dispersibility in water. The GO obtained shows good water solubility (Figure S6) and exhibits ultraviolet-visible (UV/Vis) absorption spectra of the GO at the absorption peak at 232 nm, which is attributable to a  $\pi$ - $\pi$ \* transition of the C=C bonds.



Figure S1. Transmission electron microscopy image of graphene oxide.



**Figure S2.** Basic characterization of exfoliated graphene oxide (GO). (**A**) XPS survey. (**B**) The C<sub>1</sub>s spectrum of the GO shows three main components arising from C–O (hydroxyl and epoxy, 286.7 eV), C=C/C–C (284.7 eV) and O=C–O (carboxyl, 288.8 eV) and a minor component of the C=O (carbonyl, 287.4 eV) and O=C–OH (289.1 eV) species



**Figure S3.** Raman spectrum of the graphene oxide sample shows intense D (1358 cm<sup>-1</sup>) and G peaks (1595 cm<sup>-1</sup>) of defects and the in-plane stretching motion of pairs of sp<sup>2</sup> atoms, respectively.



**Figure S4.** BET surface area of graphene oxide measured by nitrogen sorption isotherms measured at -196 °C. The BET surface area value obtained for this sample using the BET method was 25 m<sup>2</sup>/g.



Figure S5. Representative zeta potential of graphene oxide over a range of different pH values.



**Figure S6.** The Fourier transformed infrared (FTIR) spectrum of graphene oxide shows vibrations of functional groups of C–O–C (~1000 cm<sup>-1</sup>), C–O (1230 cm<sup>-1</sup>), C=C (~1620 cm<sup>-1</sup>), C=O (1740–1720 cm<sup>-1</sup>) bonds and O–H (3600–3300 cm<sup>-1</sup>).



**Figure S7.** (**A**) UV/Vis absorption spectra of graphene oxide solutions with different concentrations (from 0.039–10 mg/mL) show the main peak around 232 nm. (**B**) The plot of the absorbance ( $\lambda$  = 232 nm) divided by the cell length, versus the concentration. The Lambert–Beer law (A =  $\alpha$  × C × l), allowed the determination of the absorption coefficient ( $\alpha$ ). This linear relationship fits well with the Lambert-Beer Law, indicating the good water solubility of the GO product.



Figure S8. The XRD pattern recorded from graphene oxide shows a (001) peak at  $2\theta$  of 13.7°.



Figure S9. TGA of exfoliated graphene oxide. TGA was performed in the nitrogen atmosphere.

# **Supplementary Note 2:**

Buffers of different pH's were prepared, to investigate the proteolytic activities of CathD and CathL. 21.01 g of citric acid was dissolved in 1 ltr of distilled water and 28.40 g of Na<sub>2</sub>HPO<sub>4</sub> in 1 ltr distilled water. Citric acid monohydrate and Na<sub>2</sub>HPO<sub>4</sub> buffer solutions were prepared at pH's 3.6, 5, and 7 (as shown below). The final volume of each pH buffer was 50 mL containing freshly prepared 1 mM DTT for CathD (50 ng/mL). The final volume of each pH buffer was 50 mL containing 0.005% Tween 20 (2.5  $\mu$ L, Sigma) for CathL (50 ng/mL).

| pН  | Citric Acid Solution (mL) | + | Na <sub>2</sub> HPO <sub>4</sub> Solution (mL) |
|-----|---------------------------|---|------------------------------------------------|
| 3.6 | 33.9                      | + | 16.1                                           |
| 5   | 24.25                     | + | 25.75                                          |
| 7   | 8.825                     | + | 41.175                                         |

| Approximate<br>Frequency (cm <sup>-1</sup> ) | Approximate Vibrational Modes Frequency (cm <sup>-1</sup> )                                    |       |  |
|----------------------------------------------|------------------------------------------------------------------------------------------------|-------|--|
|                                              | CO stretching                                                                                  |       |  |
| 1610-1695                                    | <b>C O:</b> Amide I (C O stretching mode of proteins, $\alpha$ -helix                          | [1]   |  |
|                                              | conformation)/C C lipid stretch.                                                               |       |  |
|                                              | NH bending and CN stretching                                                                   |       |  |
|                                              | CH2: Asymmetric CH3 bending and CH2 scissoring, which are linked                               | [1–5] |  |
| 1480 1575                                    | with elastin, phospholipids and collagen.                                                      |       |  |
| 1460-1575                                    | <b>C N H:</b> Absorption of amide II, predominately $\beta$ -sheet; principally an             |       |  |
|                                              | N H bending coupled to a C N stretching vibrations, C N H bending                              |       |  |
|                                              | or/and C N stretching vibrational modes.                                                       |       |  |
|                                              | CH stretching and NH bending,                                                                  | [1–5] |  |
|                                              | <b>C N H:</b> ( $\nu$ (CN), $\delta$ (NH) amide III, $\alpha$ -helix collagen, tryptophan; and |       |  |
| 1220 1220                                    | PO <sub>2</sub> – asymmetric phosphate stretching vibrations associated with the               |       |  |
| 1220-1320                                    | phosphodiester groups of nucleic acids.                                                        |       |  |
|                                              | C N H: Symmetric stretch: Amide III and CH3/CH2 twisting, and/or                               |       |  |
|                                              | bending mode of collagens and lipids.                                                          |       |  |
| 625–765                                      | OCN bending, mixed with other modes of amide II and III                                        | [4,6] |  |
| 640-800                                      | Out-of-plane NH bending                                                                        | [4,6] |  |
| 535-605                                      | 535–605 Out-of-plane CO bending                                                                |       |  |

#### Table S1. Characteristic IR bands of the protein linkages.

**Table 2.** Kinetic parameters obtained for CathD and CathL for GO using an intraparticle diffusion model.

| Adsorbent       | Enzyme | k1 mg/g/min                                                    | C mg/g          | У                                   | <b>R</b> <sup>2</sup> |
|-----------------|--------|----------------------------------------------------------------|-----------------|-------------------------------------|-----------------------|
| CO(E0.ug/mI)    | CathD  | $k_1 = 0.14 \text{ min}^{-1}$                                  | 0.034939        | $0.00732 \pm 4.0427 \times 10^{-4}$ | 0.9939                |
| GO (50 µg/IIIL) | CathL  | $k_2 = 3.57 \times 10^{-6} \text{ g mg}^{-1} \text{ min}^{-1}$ | $2 \times 10^4$ | $0.00866 \pm 0.00126$               | 0.9777                |
| CO(E00 u a/mI)  | CathD  | $k_1 = 0.06 \text{ min}^{-1}$                                  | 0.494343        | $0.00866 \pm 0.00126$               | 0.9591                |
| GO (500 µg/mL)  | CathL  | $k_2 = 8.0 \times 10^{-7} \text{ g mg}^{-1} \text{ min}^{-1}$  | $5 \times 10^4$ | 2E-05x + 0.0005                     | 0.9747                |
| CO(1000  ug/mI) | CathD  | $k_1 = 0.067 \text{ min}^{-1}$                                 | 0.998941        | $0.00708 \pm 0.00243$               | 0.8996                |
| GO (1000 µg/mL) | CathL  | $k_2 = 1.3 \times 10^{-5} \text{ g mg}^{-1} \text{ min}^{-1}$  | $5 \times 10^4$ | 2E-05x + 0.0003                     | 0.9747                |



Figure S10. Photoluminescence emission spectrum of graphene oxide.



**Figure S11.** Effect of different concentrations of GO on CathD and CathL fluorescence activities. GO at different concentrations (50, 500, and 1000  $\mu$ g/mL) were incubated with CathD (**A**, **B**) and CathL

(**C**, **D**) in 96 well plates at different time-points (2, 5, 10, 15, and 20 min) as shown where RFU is relative fluorescence units. Fluorescence signals were determined using a plate reader at Ex/Em: 355/450 nm. Each data point represents the mean of *n* = 4 experiments. Bars show SDs.

# References

- 1. Rehman, S.; Movasaghi, Z.; Darr, J.A.; Rehman, I.U. Fourier transform infrared spectroscopic analysis of breast cancer tissues; identifying differences between normal breast, invasive ductal carcinoma, and ductal carcinoma in situ of the breast. *Appl. Spectrosc. Rev.* **2010**, *45*, 355–368.
- 2. Staniszewska, E.; Malek, K.; Baranska, M. Rapid approach to analyze biochemical variation in rat organs by ATR FTIR spectroscopy. *Spectrochim. Acta A Mol. Biomol. Spectrosc.* **2014**, *118*, 981–986.
- 3. Kumar, S.; Barth, A. Following enzyme activity with infrared spectroscopy. Sensors 2010, 10, 2626–2637.
- 4. Morhardt, C.; Ketterer, B.; Heißler, S.; Franzreb, M. Direct quantification of immobilized enzymes by means of FTIR ATR spectroscopy–a process analytics tool for biotransformations applying non-porous magnetic enzyme carriers. *J. Mol. Catal. B* **2014**, *107*, 55–63.
- 5. Barth, A. Infrared spectroscopy of proteins. *Biochim. Biophys. Acta* 2007, 1767, 1073–1101.
- 6. Movasaghi, Z.; Rehman, S.; ur Rehman, D.I. Fourier transform infrared (FTIR) spectroscopy of biological tissues. *Appl. Spectrosc. Rev.* **2008**, *43*, 134–179.



© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).