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Abstract: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is an extremely rare tumour,
which usually affects elderly males and presents in the skin with frequent involvement of the
bone-marrow, peripheral blood and lymph nodes. It has a dismal prognosis, with most patients
dying within one year when treated by conventional chemotherapies. The diagnosis is challenging,
since neoplastic cells can resemble lymphoblasts or small immunoblasts, and require the use of
a large panel of antibodies, including those against CD4, CD56, CD123, CD303, TCL1, and TCF4.
The morphologic and in part phenotypic ambiguity explains the uncertainties as to the histogenesis of
the neoplasm that led to the use of various denominations. Recently, a series of molecular studies based
on karyotyping, gene expression profiling, and next generation sequencing, have largely unveiled
the pathobiology of the tumour and proposed the potentially beneficial use of new drugs. The latter
include SL-401, anti-CD123 immunotherapies, venetoclax, BET-inhibitors, and demethylating agents.
The epidemiologic, clinical, diagnostic, molecular, and therapeutic features of BPDCN are thoroughly
revised in order to contribute to an up-to-date approach to this tumour that has remained an orphan
disease for too long.

Keywords: blastic plasmacytoid dendritic cell neoplasm; clinics; morphology; phenotype; gene expression
profile; mutational landscape; chemotherapy; targeted therapy

1. Definition

Blastic plasmacytoid dendritic cell neoplasm (BPDCN, ICD-O code 9727/3) is regarded as an
orphan tumour due to its rareness and usual clinical aggressiveness with poor response to conventional
chemotherapies [1]. It derives from precursors of plasmacytoid dendritic cells (pDCs), also known
as professional type I interferon-producing cells or plasmacytoid monocytes. In the Revised WHO
Classification of Tumours of Haematopoietic and Lymphoid Tissues, BPDCN is quoted after acute
myeloid leukaemia [1]. This reflects the fact that the gene signature of the cell of origin is much closer
to myeloid than lymphoid precursors [2].
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2. BPDCN and pDCs Ontogenesis

Normal pDCs–originally described by Lennert and Remmele [3]-have been variously named
through time (e.g., T-associated plasmacells, plasmacytoid T-cells), thus reflecting the uncertainties
about their origin (definitely assessed only in the 1990s by Facchetti et al., [4] and their frequent
occurrence in the paracortex of reactive lymph nodes. Analogously, the origin of BPDCN remained
obscure for many years. In 2008, precursors of plasmacytoid dendritic cells (pDCs) were finally
recognized as the normal counterpart of BPDCN [5,6]. Further studies indicated that BPDCN is related
to resting pDCs of myeloid origin [2].

At the time being, it is widely accepted that normal pDCs can recognise either myeloid or lymphoid
derivation. Both common dendritic cell progenitors (CDPs) and common lymphoid progenitor (CLPs)
can differentiate into pDCs, with the same ability to produce type 1 interferons (IFN-I), although
only pDCs of myeloid origin can process and present the antigen [7]. CDPs and CLPs derive from
bone marrow hematopoietic stem cells (HSCs) through a complex transcriptional network, in which
the progressive lineage commitment causes alternative cell fate acquisition. The commitment to
pDC lineage is determined by the combinatorial dosage of specific transcription factors driving the
transition from myeloid and lymphoid hematopoietic progenitors to differentiated cells [8]. So far,
TCF4, BCL11A and IRF8 have been regarded as the main transcription factors determining the pDC
development. The E-box transcription factor TCF4 controls the differentiation to the pDC lineage and
its maintenance [9]. The B-cell lymphoma/leukemia 11A, BCL11A, is essential for pDCs generation
and, along with TCF4, is used to distinguish the gene expression profile of pDCs from myeloid
dendritic cells that, on contrary, are negative for BCL11A and highly positive for the B-cell lymphoma 6
protein (BCL6) [10]. The IFN regulatory factor 8, IRF8, induces in the lymphoid-primed multipotent
progenitors and in CDPs the early commitment towards DC lineage and its expression increases during
this transition [8,11]. IRF-8 regulates different hematopoietic lineages and, if mutated, may cause pDC
cytopenia and global immunodeficiency [12].

As normal pDCs, BPDCN cells express BCL11A and TCF4 [13], while IRF8 may be found mutated
or mis-spliced [14,15]. The functional consequences of these modifications remain elusive, as does
the ability of the tumour to produce IFN-I. BPDCN extensively expresses the interferon-induced
GTP-binding protein MxA, used as a surrogate marker of IFN-I on immunohistochemistry [16].
However, after in vitro stimulation not all primary neoplastic cells secrete IFN-I [17] and the BPDCN
derived CAL-1 cell line has provided discordant results [18–21]. Thus, the ability to secrete IFN-1
remains a central issue to clarify the histogenesis of BPDCN and needs systematic investigation in
the future.

3. Synonyms

The condition has been given several names, such as NK-cell lymphoma, CD4+ NK cell leukaemia
or blastic NK leukaemia/lymphoma. All of them are obsolete and reflect the misinterpretation of the
histogenesis due to the expression of the CD56 molecule, which is also observed in NK lymphocytes
and derived tumours [1]. The term agranular CD4+ CD56+ hematodermic neoplasm/tumour is still in
use, although it highlights only some of the diagnostic features and provides no indication as to the
histogenesis of the process [1].

4. Epidemiology

BPDCN more often affects males (male-to-female ratio = 3.3:1) in the seventh or eighth decade of
life, although it can occur at any age, including childhood. Its incidence is 0.000045% [1,22].

5. Etiology

There are no data concerning the etiology of BPDCN, except for a certain association with
myelodysplastic syndromes (MDS) and MDS/myeloproliferative neoplasms (MPN), with special
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reference to chronic myelomonocytic leukaemia, a fact that is not surprising taking into consideration
the co-occurrence of several gene mutations (see below) [1].

6. Clinics

The disease tends to involve multiple sites [1]. More often, it affects the skin (in 60–100% cases),
followed by the bone-marrow and peripheral blood (in 60–90% of cases) and lymph nodes (in 40–50%
of cases). In the natural history of the disease, the skin is the first affected site [23–28] (90% of patients),
where it usually remains confined until a rapid, second step (i.e., leukemic spread and multiorgan
involvement) occurs, eventually leading to death. It has been hypothesised that the skin may act as
a sanctuary organ limiting the disease spread at the beginning [29]. However, a few cases lacking
the initial cutaneous involvement have been reported in the literature [30–34]. BPDCN cutaneous
tropism has been related to the expression of skin-migration molecules such as CLA and CD56 by the
neoplastic elements. Another possible explanation may be the local availability of chemokines binding
cognate receptor expressed by the neoplastic cells such as CXCR3, CXCR4, CXCR6, CXCR7. At skin
level, the disease can present as isolated or disseminated bruise-like lesions [27,35]. The lesions are
usually described as erythematous to purplish papules, plaques or tumours with a heterogeneous
size (from few millimetres to several centimetres) with no preferred anatomic area (Figure 1) [27,35].
On clinical grounds, an important distinction should be made between the presence of isolated and
eruptive lesions [29]. The former have a better clinical outcome, while the latter should be regarded
as a marker of an aggressive disease (progression free survival of 23 vs. 9 months, respectively) [29].
Theoretically, the different behaviour may be due to a high tumour burden in the eruptive presentation.
Cases featuring mucosal involvement, especially in the oral cavity have rarely been observed [28].
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provided with immunoblastic-like appearance has been reported in association with MYC 
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dermis is usually massively infiltrated, with extension to the subcutaneous fat. The epidermis and 
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Figure 1. Examples of cutaneous manifestations of BPDCN (a) Erythematous-cyanotic plaques on the
back of a patient with widespread disease. (b) Erythematous-purplish single nodule on the leg of a
patient with localized disease.

7. Microscopic Findings

In its most common form, BPDCN is characterized by a diffuse, monomorphous infiltrate of
medium-sized blasts reminiscent of either lymphoblasts or myeloblasts [1]. Nuclei have a slightly
irregular profile, fine chromatin, and from one to several small nucleoli. The cytoplasm rim is usually
narrow and turns greyish-blue and agranular on Giemsa staining. Mitoses are variable in number,
and the Ki-67 rate ranges from 20 to 80% (Figure 2). Recently, a morphologic variant provided
with immunoblastic-like appearance has been reported in association with MYC rearrangement [36].
Angioinvasion and coagulative necrosis are absent [27,37]. In the skin, the dermis is usually massively
infiltrated, with extension to the subcutaneous fat. The epidermis and adnexa are generally spared [27].
In lymph nodes, there is diffuse involvement of the interfollicular areas and medulla, B-cell follicles
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being more often spared. Bone marrow biopsy shows either a subtle interstitial infiltrate (detectable
only by immunohistochemistry) or-more often-massive replacement; residual haematopoiesis may
display dysplastic changes, especially in megakaryocytes [38]. On peripheral blood and bone-marrow
smears, tumour cells may show cytoplasmic microvacuoles localized along the cell membrane and
pseudopodia [39].
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Figure 2. Morphological findings in BPDCN. (a) Skin involvement, low-power Giemsa stain (original
magnification 40×): a diffuse, monomorphous infiltrate massively involves the dermis, without
epidermotropism. (b) The neoplastic cells are medium-sized blasts with fine chromatin and scanty
cytoplasm, agranular on Giemsa staining (original magnification 600×).

8. Cytochemistry

Neoplastic cells are negative for myeloperoxidase, α-naphthylbutyrate esterase, ND naphthol
AS-D chloroacetate esterase.

9. Immunophenotype

BPDCN cells express CD4, CD43, CD45RA, and CD56, along with the pDC associated antigens
CD123 (IL3 α chain receptor), CD303, TCL1A, CD2AP, and SPIB, and the type I interferon– dependent
molecule MX1 [16,24,37,38,40–45] (Figure 3). Recently, the TCF4 (E2-2) transcription factor, essential for
PDC development, has been reported as a reliable diagnostic marker for BPDCN [13]. About 8% of cases
display CD4 or CD56 negativity, a fact that does not rule out the diagnosis in case other pDC-associated
antigens are detected [37,41,46]. CD68 (an antigen typically expressed on normal pDCs) is detected in
50–80% of cases, in the form of small cytoplasmic dots [24,38]. CD7 and CD33 are relatively commonly
expressed; some cases turn positive for CD2, CD5, CD36, CD38, and CD79a, while CD3, CD13, CD16,
CD19, CD20, LAT, lysozyme, and MPO are regularly negative. Granzyme B, which is found in normal
pDCs, has also been demonstrated by FACS and mRNA analyses [17,47], but it is typically negative on
tissue sections, as are other cytotoxic molecules such as perforin and TIA1. Besides CD56, BPDCN
may also express other antigens negative in normal pDCs, including BCL6, IRF4, and BCL2 [27] (the
latter potentially acting against tumour cell apoptosis) [2]. S100 protein is expressed in 25–30% of
cases [28], and even more frequently in the pediatric ones [48,49]. TdT is positive in about one third of
cases, with expression in 10–80% of the cells [37,43,50–52]. Occasionally, BPDCN carries KIT (CD117).
CD34 is negative on sections [17,27,38,52–54] but has been found by FACS analysis in 17% of cases [55].
The search for EBV is always negative. Among the antigens generally expressed by BPDCN blasts,
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CD123 could serve as a therapeutic target of engineered monoclonal antibodies [56–59]. As other
haematological neoplasms can share morphological and immunophenotypic features with BPDCN
(especially AML with monocytic differentiation, which can carry CD4, CD56, and CD123 [41,60,61],
extensive immunohistochemical and/or genetic analysis is required before a definitive diagnosis
of BPDCN can be made. BPDCNs must also be distinguished from mature pDC proliferations
(MPDCPs) associated with other myeloid neoplasms, which are predominantly found in lymph
nodes, skin, and bone marrow. MPDCPs consist of nodules or irregular aggregates composed of
cells morphologically and phenotypically similar to normal PDCs, frequently undergoing apoptosis.
Occasionally, they can reveal aberrant single or multiple antigen expression [43,61–64]. CD56 is
negative in most instances or shows only focal and weak reactivity [61,65]. MPDCPs are characterized
by a low Ki-67 proliferation index (<10%) and lack TdT. Their neoplastic nature and relatedness
with the associated myeloid neoplasm have been evidenced by the demonstration of identical clonal
chromosomal abnormalities in the two cellular components [64,66,67].

Cancers 2019, 11, x 5 of 16 

 

therapeutic target of engineered monoclonal antibodies [56–59]. As other haematological neoplasms 
can share morphological and immunophenotypic features with BPDCN (especially AML with 
monocytic differentiation, which can carry CD4, CD56, and CD123 [41,60,61], extensive 
immunohistochemical and/or genetic analysis is required before a definitive diagnosis of BPDCN 
can be made. BPDCNs must also be distinguished from mature pDC proliferations (MPDCPs) 
associated with other myeloid neoplasms, which are predominantly found in lymph nodes, skin, 
and bone marrow. MPDCPs consist of nodules or irregular aggregates composed of cells 
morphologically and phenotypically similar to normal PDCs, frequently undergoing apoptosis. 
Occasionally, they can reveal aberrant single or multiple antigen expression [43,61–64]. CD56 is 
negative in most instances or shows only focal and weak reactivity [61,65]. MPDCPs are 
characterized by a low Ki-67 proliferation index (<10%) and lack TdT. Their neoplastic nature and 
relatedness with the associated myeloid neoplasm have been evidenced by the demonstration of 
identical clonal chromosomal abnormalities in the two cellular components [64,66,67]. 

 
Figure 3. Most common phenotypic findings in BPDCN. Tumor cells show immunoreactivity for 
CD4 (a), CD56 (b), CD123 (c), and CD303 (d) (original magnification 400×). 

10. Genetics 

10.1. Karyotyping 

BPDCN patients are affected by frequent chromosomal alterations: up to 75% of them present 
a complex karyotype (≥3 abnormalities). Conventional cytogenetics studies reported a prevalence of 
genomic losses on gains and recognized six recurrent deletions of the regions 5q21 or 5q34 (72%), 
12p13 (64%), 13q13-21 (64%), 6q23-qter (50%), 15q (43%) and of the entire chromosome 9 (28%) 
[52,68]. Although recurrent, none of these alterations turned out to be BPDCN-specific, also being 
observed in other hematological malignancies. 

Figure 3. Most common phenotypic findings in BPDCN. Tumor cells show immunoreactivity for CD4
(a), CD56 (b), CD123 (c), and CD303 (d) (original magnification 400×).

10. Genetics

10.1. Karyotyping

BPDCN patients are affected by frequent chromosomal alterations: up to 75% of them present
a complex karyotype (≥3 abnormalities). Conventional cytogenetics studies reported a prevalence
of genomic losses on gains and recognized six recurrent deletions of the regions 5q21 or 5q34 (72%),
12p13 (64%), 13q13-21 (64%), 6q23-qter (50%), 15q (43%) and of the entire chromosome 9 (28%) [52,68].
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Although recurrent, none of these alterations turned out to be BPDCN-specific, also being observed in
other hematological malignancies.

By FISH analysis, MYC translocations were reported in the 39% of BPDCN patients, in association
with the above mentioned immunoblast-like morphology [36]. T(6;8)(p21;q24) corresponded to the
commonest type of MYC rearrangement: it defined a subgroup of patients with a more aggressive
behavior [69]. Of clinical relevance, MYC positivity was found to confer good response to the
acute lymphoblastic leukemia (ALL)–based chemotherapy in a limited number of patients [36,70].
Furthermore, FISH analysis documented in a few cases the translocation of the MLL1 gene, also recorded
in 18% of ALLs [71–74], along with frequent rearrangements of the ETS variant gene 6 (ETV6),
a transcription factor disrupted in other hematological malignancies [75,76].

Akin to cytogenetics and FISH, a-CGH evidenced frequent deletions on the chromosomes 4, 9
and 13. Lucioni et al. analyzed by a-CGH 21 BPDCNs and found that the most affected chromosomes
were Chr 9 (71%), 13 (61%), 12 (57%), 5 (19%), 7 (19%), 14 (19%), and 15 (14%). The deletions
outnumbered the amplifications and resulted in the loss of CDKN1B, CDKN2A, CDKN2B, RB1,
LATS2, and IKZF1 [77]. While aberrations of IKZF1, which is involved in the regulation of dendritic
cell hematopoiesis, may cause pDCs deficiency [78], their impact on BPDCN (see below) remains
indeterminate yet. The biallelic deletion of CDKN2A predicted a worse survival outcome [77]. Wiesner
et al. performed a-CGH and immunostaining analysis of 14 BPDCN skin samples and confirmed
recurrent deletions along chromosomes 9, 12, 13, and 15, combined with the negative or weak
expression of multiple cell-cycle and tumor suppressor genes (e.g., CDKN1B, CDKN2A, RB1 and
TP53) [79], possibly responsible for the uncontrolled proliferation and aggressiveness of BPDCN tumor
cells [79,80].

10.2. Gene Expression Profiling by Array

The first study of BPDCN gene expression profiling (GEP) was conducted in 2007 by Dijkman et al.
Since BPDCN skin lesions could easily be confused with cutaneous myelomonocytic leukemia (c-AML),
Dijkman et al. performed a-CGH and GEP by array of 5 BPDCN skin biopsies and 6 c-AML cases.
According to their study, BPDCN displayed: (1) a transcriptome profile and a molecular karyotype
indeed distinct from c-AMLs; (2) recurrent deletions of 4q34, 9, and 13q12-q31 chromosomal regions;
(3) lower expression of RB1 and LATS2 tumor suppressor genes; (4) higher expression of various
pDC-related genes, such as the TLRs, TLR9 and TLR10 [60]. In 2014, Sapienza et al. compared for the
first time the gene signature of 27 BPDCN primary samples with that of normal pDCs and found that
the tumor transcriptome was more similar to resting pDCs rather than activated ones, confirming
at molecular level the origin of BPDCN from a pDC precursor [2]. Tumor samples displayed 142
differentially expressed genes, mostly upregulated (89%), including those encoding for CyclinD1 and
the anti-apoptotic protein BCL2. Bioinformatic analysis of GEP data revealed the aberrant activation
of the NF-kB pathway, a finding suggesting possible response of BPDCN samples/cell lines to the
proteasome inhibitor Bortezomib [2]. In vitro and in vivo experiments demonstrated that Bortezomib
successfully shuts-down the NF-kB pathway and significantly induces BPDCN cell apoptosis, providing
a potential new therapeutic option for BPDCN patients [2,81].

Ceroi et al. performed transcriptional profiling of 12 BPDCN cases by array and focused on a
specific signature of downregulated genes involved in cholesterol homeostasis and responsible for its
accumulation within the tumor cells. These sets of downregulated genes, if activated, stimulated the
cholesterol efflux from neoplastic cells, inhibited the NF-kB pathway and arrested the BPDCN tumor
cell survival [82].

10.3. Sequencing Studies

The chromosomal lesions of BPDCNs fully reflect their myeloid origin and the same could be
expected at the DNA mutational level. Starting from the premise that the mutations of the epigenetic
regulator gene TET2 are diffused in the myeloid lineage [83], Jardin et al. decided to explore the
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mutational status of this gene in 13 BPDCNs. TET2 was mutated in more than half of patients and was
mostly affected by deleterious mutations (frameshift or nonsense). At diagnosis, TET2 mutations (54%)
were recurrently flanked by TP53 mutations (38%) leading to hypothesize a synergistic effect between
the two genes [84]. Alayed et al. confirmed the high mutational frequency of TET2 in BPDCN [46].
Ladikou et al. conducted the first targeted-sequencing on the BPDCN circulating free DNA of BPDCN
cases, by identifying novel mutations of TET2 and RHOA [85]. Besides TET2, thanks to the targeted
sequencing approach, many other myeloid-associated genes have been investigated in BPDCN. Taylor
et al. presented to the ASH Meeting the first study of targeted sequencing of 219 myeloid-related
genes in seven BPDCN samples. The most frequently mutated gene was the splicing factor ZRSR2
(57%) ex aequo with TET2 (57%), followed by ASXL1, TP53 and IDH2, KRAS, ABL1, ARID1A, GNA13,
U2AF1, SRSF2, and the transcription factor IRF8 associated with dendritic cell deficiency [14]. Later,
Stenzinger et al. sequenced 50 common myeloid genes in 33 cases of BPDCN and, in order of prevalence,
detected somatic mutations on NRAS, ATM, KRAS, MET, IDH2, KIT, RB1, APC, TP53, RET, VHL,
BRAF, and MLH1 genes, and deletions of CDKN2A, RB1, PTEN, and TP53 genes, already found by
a-CGH [86]. Menezes et al. analyzed three patients by whole exome sequencing (WES) and used the
WES results to design a targeted-sequencing panel of selected genes to examine 38 BPDCN samples.
The most affected genes were TET2 (36%), ASXL1 (32%), NRAS, NPM1, and IKZF family 1/2/3 (20%).
Overall, 50% and 20% of patients with mutations in genes encoding for epigenetic factors or belonging
to the IKAROS family respectively experienced a significantly reduced overall survival [87].

More recently, integrated “omics” approaches have been applied aiming to better understand
the tumor biology. Montero et al. analyzed, by RNA-sequencing, 12 BPDCN samples and four pDCs
from healthy donors by confirming BCL2 overexpression in tumors. Furthermore, by the BH3-proling
of two BPDCN cell lines (CAL-1 and GEN2.2), six primary patient samples, and six patient-derived
xenografts, the same authors demonstrated the BCL2 dependence of BPDCN elements as well as their
sensitivity to the BCL2 inhibitor venetoclax. In the light of this finding, two patients were then treated
with venetoclax and experienced significant disease responses [88,89].

Ceribelli et al. first performed an RNA interference screening study of the CAL-1 BPDCN cell
line and recognized the transcription factor TCF4 as a master regulator of the BPDCN oncogenic
program: its downregulation provoked the loss of the BPDCN-specific gene expression signature along
with tumor cell death. Already described as relevant in normal pDC development, the TCF4 gene
product was positively detected by immunohistochemistry in all the 28 BPDCN samples examined
and proposed as a new reliable diagnostic marker (see above) and potential therapeutic target for
bromodomain and extra-terminal domain inhibitors (BETis) [13].

Emadali et al. further substantiated the use of BETis in BPDCN. They examined 47 tumor samples
and the CAL-1 cell line by various techniques (e.g., cytogenetics, a-CGH, FISH, targeted sequencing)
and found that the loss of the glucocorticoid receptor gene, NR3C1, defined a high-risk group of
patients. NR3C1 is often juxtaposed with lncRNA3q, a novel nuclear noncoding RNA involved in
the regulation of leukemia stem cell programs and G1/S transition and aberrantly overexpressed in
BPDCN malignant cells. BETis successfully turned-off the expression of lncRNA3q and inhibited tumor
cells growth [90].

Suzuki et al., used RNA sequencing technology to discover novel fusion genes in 14 BPDCNs
corresponding to five children and nine adults; recurrent MYB gene rearrangement were identified in
all the children (100%) and in four out of the nine adults (44%) [91].

Sapienza et al. analyzed BPDCNs by WES, RNA and Chromatin Immunoprecipitation (ChIP)
sequencing approaches. Several epigenetic factor genes were found mutated (e.g., ASXL1, TET2, SUZ12,
ARID1A, PHF2, CHD8) and the functional enrichment analysis of the mutational data showed that of
all the biological programs explored, the epigenetic was the most affected. At transcriptomic level,
the patients displayed the significant enrichment of gene signatures related to epigenetic pathways,
predicting response to hypomethylating agents. Accordingly, the use of 5’-azacytidine in combination
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with decitabine significantly inhibited disease progression and extended survival in a preclinical mouse
model [22].

11. Therapy of Blastic Plasmacytoid Dendritic Neoplasm

BPDCN is characterized by an inherent resistance to standard chemotherapies. Treatment responses
are mostly transient, the overall outcome being general very poor in general [32,54,92]. Given the
rarity of the disease, the available data on BPDCN therapy mainly derive from retrospective studies.

In general, intensive induction regimens (e.g., hyperCVAD) are considered more effective compared
to standard therapies (e.g., CHOP-like) [39,92,93]. In general, ALL-like treatments seem to be more
effective in term of response rates than AML-like induction therapies [32,54,92]. The inclusion
of l-asparaginase in ALL-like regimens could be a significant determinant of efficacy in this
setting, as l-asparaginase has shown clinical activity in BPDCN in combination with single agent
methotrexate [94,95].

Regarding the role of hematopoietic stem cell transplant in BPDCN therapy, there are several
reports suggesting better results in terms of enduring remissions and relapse rates with allogeneic-stem
cell transplantation (allo-SCT) compared to auto-SCT. These studies demonstrated durable complete
remissions with allo-SCT, with OS rates ranging from 40% at 10 years, to 58% at 3 years depending on
the follow-up period [96,97]. In general, allo-SCT consolidation seems to yield the best results when
performed in first complete remission (CR) [97–99], with OS rates reaching 74–82% at 3–4 years [97,99].
Reduced intensity conditioning seems to be equivalent to myeloablative regimens in terms of relapse
rates [97]. However, these data should be interpreted with due caution given the possible biases arising
from the retrospective nature of these studies (e.g., patient selection bias, absence of intention to treat
analyses, small sample size).

Eligible patients should be considered for allo-SCT consolidation in first CR whenever feasible.
It should be noted, however, that these patients represent the minority of BPDCN patients, as the
disease normally affects elderly patients, with a median age of 68 years [32].

For elderly patients, lower intensity treatments can be explored. Lower intensity chemotherapy
regimens demonstrated some efficacy in BPDCN, such as single agent pralatrexate, bendamustine,
or gemcitabine/docetaxel combinations [100–103]. However, despite the promising results, these studies
were performed on a small number of patients, and which ought to be validated in larger future studies.

A recent study by our group strongly supports the use of hypomethylating agents, demonstrating
a significant enrichment in epigenetic modifiers mutations in the setting of BPDCN [22]. In line with
our preclinical findings, two clinical reports have demonstrated activity of 5-azacitidine in BPDCN,
although the responses were generally transient once again [104,105]. Combinatory approaches based
on hypomethylating agents should be explored in the near future.

Novel Agents

Given the unsatisfactory results of low-intensity treatments, and the toxicity of intensive therapies
and allo-SCT consolidation, there is strong rationale for the use of novel targeted agents for the
treatment of BPDCN.

SL-401 is a novel recombinant protein including components of diphtheria toxin fused to
interleukin-3. As mentioned in previous sections, CD123 is expressed on the surface of BPDCN cells.
In a phase I study of SL-401 in BPDCN the overall response rate was 77% (with 55% CR) in the evaluable
patient population (seven out of eleven patients were able to complete the planned treatment) [58].
A phase 2 study reported at the 2017 ASH meeting showed promising results with a 79% CR rate in
first line and 31% CR rate in relapsed/refractory patients [106].

Phase I trials are ongoing with other immunotherapies targeting CD123, such as bispecific
antibodies, immunoconjugates, and chimeric antigen receptor (CAR)-T-cells [107]. In fact, recent
data show promising activity of anti-CD123 CAR T-cells in acute myeloid leukemia and preliminary
experiences support the future implementation of anti-CD123 CAR-T cell therapy in the BPDCN
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setting [108]. The BCL-2 inhibitor venetoclax has shown high single agent activity in myeloid
malignancies [109,110] and is currently under evaluation in combination with induction chemotherapy
and hypomethylating agents.

Several recently published reports have described the activity of venetoclax in the setting of
BPDCN [89,110–112]. Venetoclax given as single agent or in combination with hypomethylating agents
was able to induce meaningful clinical responses in relapsed/refractory patients. Further therapeutic
options may be represented by bromodomain and extra-terminal domain inhibitors (BETis), which has
been tested in preclinical studies [13,90].

12. Conclusions and Perspectives

Although the criteria for the diagnosis of BPDCN are well-defined [1], the knowledge of the
pathobiology of the tumour is still based on a limited number of contributions, which reflect its
exceptional occurrence. The epigenetic regulation, activation of the NF-kB pathway, and resistance to
apoptosis seem to represent the main biological players, which should be taken into consideration in
designing innovative therapeutic strategies. BPDCN is in fact characterized by intrinsic resistance
to standard chemotherapies. In young patients, intensive ALL-like induction regimens followed by
allo-SCT consolidation is considered the most effective treatment strategy, leading to durable responses
in a fraction of cases. Elderly patients (who represent the majority of BPDCN patients) remain an unmet
medical need. Recently, hypomethylating agents, anti CD123 directed immunotherapies and the BCL-2
inhibitor venetoclax showed promising single-agent clinical activity. These observations, together
with emerging preclinical data provide the rationale for the prompt clinical testing of combinatory
approaches with curative intent.
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