Supplementary Materials: Molecular pathogenesis of gene regulation by the *miR-150* duplex: *miR-150-3p* regulates *TNS4* in lung adenocarcinoma

Shunsuke Misono, Naohiko Seki, Keiko Mizuno, Yasutaka Yamada, Akifumi Uchida, Hiroki Sanada, Shogo Moriya, Naoko Kikkawa, Tomohiro Kumamoto, Takayuki Suetsugu and Hiromasa Inoue

Figure S1. Functional assays of *miR-150-3p* (0.1 nM, 1 nM, 10 nM) in LUAD cells (A549 and H1299). (A-C) Cell proliferation, migration, and invasive activities were significantly blocked by ectopic expression of *miR-150-3p* with 1 nM and 10 nM concentration. * p < 0.01, ** p < 0.05.

Figure S2. Both strands of *miR*-150-5*p* and *miR*-150-3*p* were incorporated into the RISC. (**A**) Schematic diagram for isolation of the Ago2-miRNA complex from the RISC. (**B–D**) Expression levels of *miR*-150-5*p* or *miR*-150-3*p* bound to Ago2 were measured by TaqMan RT-qPCR and normalized to the expression of *miR*-26*a* (**B**), *miR*-16-5*p* (**C**) and *miR*-21-5*p* (**D**), which had no effect upon *miR*-150-5*p* and *miR*-150-3*p*. * *p* < 0.01.

Figure S3. The strategy for identification of genes regulated by *miR-150-5p* and *miR-150-3p*. We obtained putative genes regulated by *miR-150-5p* and *miR-150-3p* using the TargetScanHuman Release 7.2 database and selected upregulated genes in non-small cell lung cancer clinical expression profiles from the GEO database (GSE19188). Then, we combined the gene expression analyses using A549 cells transfected with *miR-150-5p* or *miR-150-3p* and inspected the downregulated genes (GSE93290).

Figure S4. *TNS4* was directly suppressed at the diluted concentration of *miR-150-3p* precursor (1 nM and 0.1 nM). **(A,B)** *TNS4* mRNA and protein expression was reduced by *miR-150-3p* ectopic expression (48h after transfection). *GUSB* was used as an expression control. GAPDH was used as a loading control. * p < 0.01.

TNS4 3'UTR variant 1

CCTGAATGGGTGTGGCCTTGTGGCCATATTGACAGACCAATCTATGGGACTAGGGGGGATTG GCATCAAGTTGAAACCCCATCTCTACAAAGAATACAAAAATTAGCCGGGCAAGGTAGCGC ACCTGTGGTCCCAGGTACTCGGGAGACTGAGGCATGAGAATCCCTTGAAACTGGGAGGCG GAAGTTGCAGTGAGCTGTGATCGTGCCACTGCACTCCAGCCTGGTTGACAGAGCAACATG CTATCTCTAAAACAAACAAACAAAAAAACTCAGGTTCCCACACCCTCTAAACCCTGCC TCCTCTCAGGCTACAGAGACCTCTCCAGGAGGCTGAAGTGCCCTTACCCCGACCATCTGA CCAGCCACCGCCCATGCCCGTGCCCCACCGAGGGCGGAGGCTGCTCACTGCTCTGTTTT ATCTCTGGCCTCTGATCCTGCATTCTTGTGCCAGGGCTTAGACCCAGGGCAAGGTCTTAG ACCCAGGGCAGGGGTAGGGTTAAAGGCTTTCAACCCAGGGGCCAGTGCCTTAATTCATGC AACAAATGTTTTCTGGCTGTGTGCTTTATTCATGTGAACCAGGAAAACAGAAAAATATGA CAGTGTTTCCAACAGAGGTTTATAAGTGCTATGCAGGGCTGGTGGAAAGAGTAGAAACTG AGAAAGATAAACTTTACCCACTTGAAGGGAAGGAGGGCAATGTTACCAAGAAGGTAACAT TTGAGTTGGGTCTTCAAGGATGAATAGGAGTTCGGCATGCAAAGAGAGTTAGAAACCAAC TTTTAGGAGTGGGGGGGGGCTCTCATGTGCTACATACAATCTGAGGCACATTATATATGC CTAATCCCATTTTACAGATTAGAAAACTGGGGGCTCAGAGGGTTAACTTGCCCACATTCAC CTAACTGTAAATGGCAGAGAAACAGGATTTCAAGTCCATGCCCATCCTATTGCCCCAGCA TTCACAGAAAGCAGATGGAGACATTCGTGTGTGAAGCACACAGGTATGAAAAGA<mark>TGTACC</mark> TNS4 3'UTR variant 2

CTCGCAGGTCATCGGCCTGGTGACTGCTCTGCTGCAGGACGCAGAAAGGATGTAGGGGGAG AGACTGCCTGTGCACCTAACCAACACCTCCAGGGGGCTCGCTAAGGAGCCCCCCTCCACCC CCTGAATGGGTGTGGCCTTGTGGCCATATTGACAGACCAATCTATGGGACTAGGGGGGATTG GCATCAAGTTGACACCCTTGAACCTGCTATGGCCTTCAGCAGTCACCATCATCCAGACCC CCCGGGCCTCAGTTTCCTCAATCATAGAAGAAGACCAATAGACAAGATCAGCTGTTCTTA GATGCTGGTGGGCATTTGAACATGCTCCTCCATGATTCTGAAGCATGCACACCTCTGAAG ACCCCTGCATGAAAATAACCTCCAAGGACCCTCTGACCCCATCGACCTGGGCCCTGCCCA CACAACAGTCTGAGCAAGAGACCTGCAGCCCCTGTTTCGTGGCAGACAGCAGGTGCCTGG CGGTGACCCACGGGGCTCCTGGCTTGCAGCTGGTGATGGTCAAGAACTGACTACAAAACA GGAATGGATAGACTCTATTTCCTTCCATATCTGTTCCTCTGTTCCTTTTCCCACTTTCTG GGTGGCTTTTTGGGTCCACCCAGCCAGGATGCTGCAGGCCAAGCTGGGTGTGGTATTTAG GGCAGCTCAGCAGGGGGGAACTTGTCCCCATGGTCAGAGGAGACCCAGCTGTCCTGCACCC CCTTGCAGATGAGTATCACCCCATCTTTTCTTTCCACTTGTTTTTTATTTTTATTTTTT TGAGACAGAGTCTCACTGTCACCCAGGCTGAACTGCAGTGGTGTGATCTAGGCTCACTGC AACCTCCACCTCCCAGGTACTCAGGAGACTGAGGCATGAGAATCCCTTGAAACTGGGAGG CGGAAGTTGCAGTGAGCTGTGATCGTGCCACTGCACTCCAGCCTGGTTGACAGAGCAACA TGCTATCTCTAAAACAAACAAAACAAAAAACTCAGGTTCCCACACCCTCTAAACCCTG CCTCCTCTCAGGCTACAGAGACCTCTCCAGGAGGCTGAAGTGCCCTTACCCCGACCATCT GACCAGCCACCGCCCCATGCCCGTGCCCCACCGAGGGCGGAGGCTGCTCACTGCTCTGTT TTATCTCTGGCCTCTGATCCTGCATTCTTGTGCCAGGGCTTAGACCCAGGGCAAGGTCTT AGACCCAGGGCAGGGGTAGGGTTAAAGGCTTTCAACCCAGGGGCCAGTGCCTTAATTCAT GCAACAAATGTTTTCTGGCTGTGTGCTTTATTCATGTGAACCAGGAAAACAGAAAAATAT CTCGCAGGTCATCGGCCTGGTGACTGCTCTGCTGCAGGACGCAGAAAGGATGTAGGGGAG AGACTGCCTGTGCACCTAACCAACACCTCCAGGGGGCTCGCTAAGGAGCCCCCCTCCACCC CCTGAATGGGTGTGGCCTTGTGGCCATATTGACAGACCAATCTATGGGACTAGGGGGGATTG GCATCAAGTTGACACCCTTGAACCTGCTATGGCCTTCAGCAGTCACCATCATCCAGACCC CCCGGGCCTCAGTTTCCTCAATCATAGAAGAAGAACAATAGACAAGATCAGCTGTTCTTA GATGCTGGTGGGCATTTGAACATGCTCCTCCATGATTCTGAAGCATGCACACCTCTGAAG ACCCCTGCATGAAAATAACCTCCAAGGACCCTCTGACCCCATCGACCTGGGCCCTGCCCA CACAACAGTCTGAGCAAGAGACCTGCAGCCCCTGTTTCGTGGCAGACAGCAGGTGCCTGG CGGTGACCCACGGGGCTCCTGGCTTGCAGCTGGTGATGGTCAAGAACTGACTACAAAACA GGAATGGATAGACTCTATTTCCTTCCATATCTGTTCCTCTGTTCCTTTTCCCACTTTCTG GGTGGCTTTTTGGGTCCACCCAGCCAGGATGCTGCAGGCCAAGCTGGGTGTGGTATTTAG GGCAGCTCAGCAGGGGGAACTTGTCCCCATGGTCAGAGGAGACCCAGCTGTCCTGCACCC TGAGACAGAGTCTCACTGTCACCCAGGCTGAACTGCAGTGGTGTGATCTAGGCTCACTGC AACCTCCACCTCCCAGGTTCAAGCAATTATCCTGCCTCAGGCTCCCAAGTAGCTGGGATT ACAGGCATGTGCAACTCACCCAGCTAATTTTGTATTTTAGTAGAAACATGGTGAAACCC CATCTCTACAAAAAATACAAAAATTAGCCGGGCAAGGTAGCGCACCTGTGGTCCCAGGTA CTCAGGAGACTGAGGCATGAGAATCCCTTGAAACTGGGAGGCGGAAGTTGCAGTGAGCTG AAACAAACAAAAACTCAGGTTCCCACACCCTCTAAACCCTGCCTCCTCAGGCTACAGA GACCTCTCCAGGAGGCTGAAGTGCCCTTACCCCGACCATCTGACCAGCCACCGCCCCATG CCCGTGCCCCACCGAGGGCGGAGGCTGCTCACTGCTCTGTTTTATCTCTGGCCTCTGATC CTGCATTCTTGTGCCAGGGCTTAGACCCAGGGCAAGGTCTTAGACCCAGGGCAGGGGTAG GGTTAAAGGCTTTCAACCCAGGGGCCAGTGCCTTAATTCATGCAACAAATGTTTTCTGGC TGTGTGCTTTATTCATGTGAACCAGGAAAACAGAAAAATATGACAGTGTTTCCAACAGAG GTTTATAAGTGCTATGCAGGGCTGGTGGAAAGAGTAGAAACTGAGAAAGATAAACTTTAC CCACTTGAAGGGAAGGAGGGCAATGTTACCAAGAAGGTAACATTTGAGTTGGGTCTTCAA GGATGAATAGGAGTTCGGCATGCAAAGAGAGTTAGAAACCAACTTTTAGGAGTGGGGAGG GGCTCTCATGTGCTACATACAATCTGAGGCACATTATATGCCTAATCCCATTTTACAG ATTAGAAAACTGGGGGCTCAGAGGGTTAACTTGCCCACATTCACCTAACTGTAAATGGCAG AGAAACAGGATTTCAAGTCCATGCCCATCCTATTGCCCCAGCATTCACAGAAAGCAGATG GAGACATTCGTGTGTGAAGCACACAGGTATGAAAAGA<mark>TGTACCA</mark>AGTTTGGTGTGGCTCA

AGTACATGGTACCTAAGGGAGTAGGTGAGAGAGAAAAGCAGAAAAAAGACAGCAACAGG

Figure S5. The nucleotide sequences of 3'UTR of *TNS4* in A549 cells. Several variants of the 3'UTR of *TNS4* existed in A549 cells. The putative binding site of *miR-150-3p* was found in 3'UTR of *TNS4*, respectively (highlighted in blue). Red font was stop codon. There was no binding site of *miR-150-5p* in 3'UTR of *TNS4*.

Figure S6. The strategy for identification of *TNS4*-modulated genes. We combined the gene expression analyses using A549 cells transfected with si-*TNS4* and GEO database (GSE19188). Finally, a total of 88 genes were identified as *TNS4*-modulated genes.

Antibody	Dilution	Catalog Number	Company	
TNS4	IHC 1:50	ab82178	Abcam, Cambridge, UK	
GAPDH	WB 1:20000	MAB374	EMD Millipore, Billerica, MA, USA	
miRNA species	Concentration	Assay ID	Company	
miR-150-5p	10 nM	PM 10070	Applied Biosystems, Foster City, CA, USA	
miR-150-3p	10 nM	PM 12324	Applied Biosystems, Foster City, CA, USA	
negative control miRNA	10 nM	AM 17111	Applied Biosystems, Foster City, CA, USA	
anti-miR Negative Control #1	10 nM	AM 17010	Applied Biosystems, Foster City, CA, USA	
siRNA	Concentration	Catalog number	Company	
o: TNICA	10 mM	HSS131536	Invitrogen, Carlsbad, CA, USA	
51-11034	10 101	HSS131537		
Primer and probe		Assay ID	Company	
miR-26a		000405	Applied Biosystems, Foster City, CA, USA	
miR-150-5p		000473	Applied Biosystems, Foster City, CA, USA	
miR-150-3p		002637	Applied Biosystems, Foster City, CA, USA	
RNU48		001006	Applied Biosystems, Foster City, CA, USA	
TNS4		Hs00262662_m1	Applied Biosystems, Foster City, CA, USA	
GUSB		Hs00939627_m1	Applied Biosystems, Foster City, CA, USA	
Plasmid vector		Catalog number	Company	

Table S1. Reagents used in this study.

TNS4

RC222349 OriGene Technologies Inc., Rockville, MD, USA

Table S2. Immunohistochemical status and	characteristics of the lung	cancer and non-cancerous
	cases.	

A. Imm	A. Immunohistochemical status and characteristics of LUAD cases						
Patient	Grade	Т	Ν	М	Pathological	Immunohistochemical	Immunohistochemical
no.					stage	intensity	extensity
21	1	1	0	0	IA	3	3
22	1	2	1	0	IIA	3	3
23	2	1	0	0	Ι	3	3
24	2	2	2	0	IIIA	2	3
25	2	3	1	0	IIIA	3	3
26	2	2	0	0	IB	3	3
27	2	3	2	0	IIIA	3	3
28	2	1	0	0	IA	2	3
29	2	3	1	0	IIIA	1	3
30	-	4	0	0	IIIA	3	3
31	2	2	0	0	IIA	1	3
32	2	3	1	0	IIIA	2	3
33	2	2	1	0	IIB	1	3
34	2	3	0	0	IIB	0	0
35	2	3	1	0	IIIA	2	3
36	3	2	1	0	IIB	3	3
37	3	2	0	0	IB	1	3
38	2	2	0	0	IB	1	3
39	-	2	0	0	IB	3	3
40	2	2	1	0	IIB	1	3

B. Immunohistochemical status of non-cancerous cases

patient	Immunohistochemical	Immunohistochemical
no.	intensity	extensity
87	0	0
88	1	2
89	1	3
90	1	3
91	1	2
92	1	3
93	1	2
94	1	1
95	1	3
96	2	3
97	1	2

00	1	2
20	1	3
99	2	3
100	2	2

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).