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Abstract: The major type I interferon-producing plasmacytoid dendritic cells (pDC) surround and
infiltrate certain tumors like malignant melanoma, head and neck cancer, and ovarian and breast
cancer. The presence of pDC in these tumors is associated with an unfavorable prognosis for the
patients as long as these cells are unstimulated. Upon activation by synthetic Toll-like receptor
agonists or viruses, however, pDC develop cytotoxic activities. Viruses have the additional advantage
to augment cytotoxic activities of pDC via lytic replication in malignant lesions. These effects turn
cold tumors into hotspots, recruiting further immune cells to the site of inflammation. Activated
pDC contribute to cross-presentation of tumor-associated antigens by classical dendritic cells, which
induce cytotoxic T-cells in particular in the presence of checkpoint inhibitors. The modification
of oncolytic herpes viruses via genetic engineering favorably affects this process through the
enhanced production of pro-inflammatory cytokines, curbing of tumor blood supply, and removal of
extracellular barriers for efficient viral spread. Importantly, viral vectors may contribute to stimulation
of memory-type adaptive immune responses through presentation of tumor-related neo- and/or
self-antigens. Eventually, both replication-competent and replication-deficient herpes simplex virus 1
(HSV-1) may serve as vaccine vectors, which contribute to tumor regression by the stimulation of
pDC and other dendritic cells in adjuvant and neo-adjuvant situations.
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1. Introduction

Based on early observations of lineage-negative cells with dendritic cell (DC)-like morphology [1,2],
plasmacytoid dendritic cells (pDC) were characterized by two independent groups in 1999 as the main
type I interferon (IFN)-producing cells in the blood upon stimulation with herpes simplex or influenza
viruses [3,4]. Since then, it has become clear that these cells play an important role not only in innate
and adaptive immune defenses against viruses and other pathogens but also in autoimmune diseases
and anti-tumor immunity. Recent evidence suggests that pDC are a heterogeneous cell population
consisting of a majority of “conventional” pDC and a minority of “pDC-like cells” originating from
common lymphoid and common dendritic cell (DC) precursors, respectively [5]. The latter excel
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in antigen processing and presentation and may thus contribute to inducing antitumor responses
in vivo [5].

Several excellent reviews contributed by well-known experts in the field address antiviral and
anti-tumor activities of pDC [6,7], as well as properties of oncolytic viruses [8–11]. The purpose of
our review is not to repeat these findings but to specifically focus on the role of pDC in anti-tumor
defenses in the context of oncolytic herpes simplex virus 1 (HSV-1). In particular, we will address how
the genetic engineering of oncolytic HSV-1 can contribute to targeted stimulation of pDC and other DC
and thus contribute to tumor regression.

2. Facts and Prospects

2.1. The Yin and Yang of pDC within Tumors

pDC surround and occasionally infiltrate primary melanoma lesions and can also be detected in T-cell
rich areas of sentinel lymph nodes in patients suffering from malignant melanoma [12–14]. In addition,
pDC are reported to populate head and neck squamous cell tumors [15], ovarian carcinoma [16,17],
and breast cancer [18,19]. The presence of immature pDC in these tumors is regularly associated
with an immunosuppressive microenvironment, promoting regulatory immunity, and favoring tumor
progression [12,20–22]. Specifically, tumor-infiltrating pDC were impaired in responding to Toll-like
receptor (TLR) 9 but not TLR7 agonists [23].

Upon activation of pDC using potent stimuli, they start to exert anti-tumorigenic activity. In this
activation, natural and synthetic TLR agonists play a major role. Thus, the accumulation of pDC
and regression of murine malignant melanoma is reported upon stimulation with TLR7 agonist
imiquimod [24] and TLR9 agonist CpG-B [25]. Activated pDC exert cytotoxic activity, mostly through
a TRAIL-dependent mechanism [26,27], and stimulate other immune cells like CD4+ and CD8+ T-cells,
as well as natural killer (NK) cells [28–30]. Most importantly, pDC cooperate with classical dendritic
cells from the myeloid lineage in the anti-tumor defense [31]. In this process, cDC1 cells, although rare
in tumors, have proven to be crucial for stimulation of CD8+ T cells via trafficking of tumor antigen to
lymphatic tissue [32,33]. The recruitment of cDC1 cells into tumor tissue is dependent on natural killer
cells [34,35].

In principle, pDC are in a dormant stage in the vicinity of malignant melanoma lesions but, upon
proper activation, may attack tumor cells via direct killer cell-like cytotoxic activity and/or may induce
systemic adaptive immune responses against tumor-specific antigens.

2.2. The Viral Wake-Up Call

Apart from synthetic TLR ligands, pDC can efficiently be activated using RNA and DNA
viruses (Figure 1). In this respect, the human leukemic pDC cell line Gen2.2 developed cytotoxic
activity against tumor cells upon stimulation with inactivated influenza virus [36]. Similar effects
were observed with this cell line upon exposure to influenza virus-like virosomes delivering tumor
peptides [37]. TRAIL-mediated cytotoxicity by human pDC was observed in vitro upon stimulation
with live-attenuated measles virus vaccine [38]. Recently, the recruitment of pDC to mouse melanoma
lesions was reported upon exposure to human ß-defensin-expressing vaccinia virus [39].

In a systematic approach, the Figdor group characterized the potential of prophylactic
live-attenuated and inactivated viral vaccines to induce pDC activation and maturation, MHC
class I and class II expression, IFN-α production, and T-cell proliferation [40]. These data promoted
a first-in-patient trial in which pDC derived from patients suffering from metastasized malignant
melanoma were loaded ex vivo with tumor peptides, activated using tick-borne encephalitis virus
vaccine, and then re-infused into the patients, which significantly prolonged their overall survival [41].
This success pioneered the application of viruses as an efficient anti-tumor approach.
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Figure 1. Prospects of plasmacytoid dendritic cells (pDC) in orchestrating innate and adaptive immune
responses against melanoma in the context of oncolytic herpes simplex virus (HSV) infections. Upon
stimulation by wild type, attenuated, or replication-deficient HSV-1, pDC secrete IFN-alpha and
TNF-alpha, which activate natural killer (NK) cells. NK cells and activated pDC attack the tumor cells
via soluble and cell-associated cytotoxic mechanisms. These effects contribute to melanoma cell death
induced by infection with oncolytic HSV-1, either via lytic replication or induction of apoptotic and
necrotic cell death. Dying tumor cells release melanoma-associated antigens, which are cross-presented
to T-cells by classical dendritic cells (DC), mostly cDC1, and, at least in part, by pDC. The close
cooperation of pDC and DC results in the induction of tumor antigen-specific CD4+ and CD8+ T-cells,
which contribute to long-term control of tumor cells. Tumor escape from immune responses may result
in loss of tumor antigen expression, which may be counteracted by oncolytic HSV encoding for these
antigens. Oncolytic HSV-1 expressing either self-antigens or neo-antigens may further serve as tumor
vaccines in adjuvant and neo-adjuvant applications.

pDC can also be efficiently stimulated using HSV-1. HSV-1 is an enveloped double-stranded
DNA virus of the subfamily Alphaherpesvirinae which lytically replicates in many infected cell
types and establishes latent infection in sensory ganglions [42]. We have shown that wild type
HSV-1 induces a timely coordinated regulation of pDC surface receptors involved in chemotaxis,
maturation, migration, cytotoxicity, and costimulation [43], pointing to strong antiviral activities of
pDC in HSV-1 infections [44]. These effects on activation, maturation, and migration markers were
similar to those induced by different classes of CpG oligonucleotides [45] and cellular DNA species [46].
A subpopulation of pDC started to express CD8α upon exposure to HSV-1, displaying a highly activated
phenotype, which may be particularly active in recruiting other immune cells via the secretion of IL-8,
MIP-1alpha, MIP-1beta, and MCP-1 chemokines [47]. Furthermore, human NK cells were efficiently
activated by IFN-α and TNF-α secreted by HSV-1 stimulated pDC and monocytes [48]. These data
indicate that HSV-1 is a suitable stimulus to convert pDC from a tolerogenic to a fully-activated stage.

To investigate the effects of HSV-1-stimulated pDC on malignant melanoma, we co-cultivated
pDC and melanoma cell lines in the presence of the replication-deficient HSV-1 d106S strain [49].
Notably, strong cytotoxic activities of pDC were observed, which were directed against ten of eleven
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melanoma cell lines, resulting in apoptotic and necrotic tumor cell death (Figure 1). These oncolytic
effects, similarly noted in co-cultures with three leukemic cell lines, were dependent on type I IFN
production and on viral mRNA transcription, as evident from increased melanoma cell viability in
the presence of neutralizing antibodies against the IFN-α receptor and UV-irradiation of the viral
stock, respectively. Notably, pDC were significantly more cytotoxic than NK cells using the same
experimental conditions [49].

These data indicate that pDC can efficiently be activated by HSV-1 and subsequently exert
anti-tumor activities in co-cultures. Stimulation of pDC with HSV-1 prior to co-culture significantly
reduced the cytotoxic activity, which demonstrated that the infection of melanoma cell cultures by
HSV-1 contributed to the oncolytic effect of pDC.

2.3. Onco-Lysis

Viruses do not only activate pDC but exert additional oncolytic effects (Figure 1). These effects,
which have been observed using many different viruses in multiple tumor models in vitro and
in vivo [11], rely on two intertwined concepts: (i) Viruses infect and directly lyse the tumor cells
which subsequently release tumor-specific antigens; and (ii) these molecules are captured by antigen
presenting cells and induce respective cytotoxic T-cells. Consequently, the oncolytic activities of viruses
combine direct viral effects with indirect effects on innate and adaptive immune responses, the latter
mostly triggered by DC cross-presentation of tumor-specific antigens.

To enhance cross-presentation, oncolytic HSV-1 Talimogene Laherparepvec (T-VEC) was equipped
with the gene for granulocyte-macrophage colony-stimulating factor (GM-CSF), which drives the
recruitment and influx of antigen-presenting cells into the tumor [50]. This concept has been validated
in phase II and phase III clinical trials, in which significant anti-melanoma effects were observed
in hundreds of patients with local injections of T-VEC into the tumor compared to administration
of GM-CSF only [51,52]. The significant regression of injected, but to some extent also of distant
lesions [53,54], led to the approval of the first oncolytic herpes virus for the treatment of unresectable
stage IIIB/C and IVM1a melanoma without bone, brain, lung, or other visceral metastasis by US and
European authorities in 2015 and 2016, respectively.

In further studies, T-VEC showed not only the shrinking of injected lesions but induced the
regression of cutaneous, lymphatic, and visceral lesions, although not as efficiently as observed in
directly inoculated lesions [55]. Swelling of the injected lesion prior to response did not affect clinical
effectiveness [55]. The anti-tumor effects were attributed to virus replication in injected melanoma
lesions and the induction of systemic immune responses resulting from tumor cell lysis with subsequent
cross-presentation of tumor-specific antigens.

2.4. More or Less Virulence, That Is the Question

In contrast to wild type HSV-1, T-VEC is an attenuated strain resulting from deletion of the
γ34.5 gene, which is required for viral neurotoxicity via neutralization of protein kinase R (PKR)
activity by inhibiting phosphorylation of eIF-2α [56], and from inactivation of the ICP47 gene, which
counteracts the activity of the transporter associated with antigen processing (TAP) [57,58]. Despite
these attenuating modifications, T-VEC is fully replicative in tumor cells. The ability to replicate is
advantageous in oncolytic tumor therapies because progeny virus will spread to cells which have
not been infected in the first round. On the downside, replication in the malignant lesion may
provoke a strong inflammatory reaction, which may be detrimental, e.g., for brain tumors. In this
respect, significant anti-tumor effects as well as immune-stimulating properties were observed with
the replicative T-VEC strain in nude Balb/c mice [59].

Interestingly, new generations of oncolytic HSV-1 are designed to exhibit less virulence compared
to T-VEC via deletions of further viral genes. In this respect, G47∆ and JX-594 have insertions in the
immediate early gene ICP6 and thymidine kinase, respectively [60]. Another herpes virus, G207, which
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is currently evaluated in phase I studies for the treatment of pediatric brain tumors, has a deletion in
the viral ribonucleotide reductase UL39 [61].

The HSV-1 d106S strain is completely replication-deficient due to deletion or inactivation of
immediate early genes ICP4, ICP22, and ICP27 (in addition to ICP47) [62]. ICP4 and ICP22 are
major viral transcription factors [63], and ICP27 blocks interferon production via downregulating
of STAT1 phosphorylation [64], which leaves ICP0 and ICP6 as the only genes to be expressed after
infection. Infectious virions are produced in a complementing cell line, which substitutes for the lack
of deleted genes. Though replication-deficient, HSV-1 d106S has shown a strong oncolytic activity—in
combination with pDC, in particular [49]. Notably, this activity was significantly reduced with UV
irradiation, suggesting that efficient oncolysis by HSV-1 requires infection of susceptible tumor cells,
but not completion of the replication cycle.

Interestingly, the oncolytic activity of the replication-deficient HSV-1 d106S—in contrast to most
replication-competent viruses—was not decreased but increased in the presence of pDC-derived type I
interferon production [49] (Figure 1). Usually, type I IFNs block viral replication, resulting in reduced
anti-tumor effects of replicative viruses. In contrast, type I IFN production secreted by stimulated pDC
enhanced the oncolytic activity of the non-replicative HSV-1 d106S. Obviously, replication-competent
viruses are more susceptible to antiviral effects of IFNs compared to non-replicating viruses, which
affects the anti-tumor effects.

In this respect, replication-deficient viruses may be most effective in tumors in which pDC are
already present prior to infection. The downside of replication-deficient viruses may be that a higher
multiplicity of infection is required for oncolytic activity, because the virus does not self-amplify
within the tumor. In addition, it is still unclear whether the type of cell death is similar between
replication-competent and replication-deficient herpes viruses, i.e., whether tumor cells infected with
the latter die silently or stir an inflammatory microenvironment and turn a cold tumor into a hot zone.

2.5. Cross-Presentation vs. Direct Presentation

The long-term effects of oncolytic viruses are attributed to cross-presentation of tumor antigens
released from dying cells, resulting in induction of cytotoxic T-cells (Figure 1). Tumor-infiltrating
lymphocytes (TILs) have an important role in anti-melanoma immunity because their presence
was favorably correlated with the prognosis of patients [65]. The transfer of tumor antigen-pulsed
monocyte-derived DCs prolonged the survival in particular in a subset of patients with induction of
tumor-specific CD8+ T-cells [66]. TILs recognize a broad spectrum of melanoma-associated antigens like
MelanA/MART-1, tyrosinase, gp100, NY-ESO1, MAGE-A1, and MAGE-A3 [67]. In a more physiological
setting, tumor peptides are loaded onto MHC I via cross-presentation, which has not only been reported
for cDC1 cells but also for pDC [68]. However, effector functions of TILs are frequently impaired by
the immunosuppressive tumor microenvironment [69]. Consequently, checkpoint inhibitors blocking
the immunosuppressive molecules CTLA-4, PD-1, and PD-L1 have become a major breakthrough
in the therapy of metastasized melanoma [70]. These data point to the fact that induction of tumor
antigen-specific T-cells remains a major challenge.

To elicit tumor-specific adaptive immune responses is also a crucial challenge for oncolytic viruses.
Proof-of-concept comes from studies in which the effect of T-VEC was enhanced with the concomitant
application of checkpoint inhibitors, which block one of the inhibitory molecules in the interaction
between dendritic cells and T-cells. In this respect, the oncolytic effect was at least doubled when
T-VEC was combined with a PD-1 inhibitor [71]. These promising results appear to be re-affirmed in
a large ongoing phase III trial [72]. Hence, one of the main questions is how tumor antigen-specific
T-cells can be induced more effectively.

We hypothesized that the enhanced expression of a tumor-specific antigen in the context of an
oncolytic herpes virus may favorably affect the process of cell killing. Since MelanA/MART-1 is the
most frequent target of CD8+ T-cells responses against melanoma in vitro and in vivo [20,73], we
constructed a HSV-1 d106S-based oncolytic virus, which expressed the melanoma-associated antigen
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MelanA/MART-1 in melanoma cells not naturally expressing this tumor antigen [74]. When these cells
were cocultured with an HLA-matched MelanA-specific CD8+ T-cell clone, we observed the activation
and degranulation of T-cells, which resulted in significantly enhanced cell death upon infection with
the MelanA-encoding HSV-1 d106S (Figure 1). These data indicate that tumor-specific antigens can be
re-expressed in tumor cells upon infection with a respectively modified oncolytic herpes virus, thereby
provoking a CD8+ T-cell adaptive immune responses in addition to pDC innate immune responses.

2.6. Self- vs. Neo-Antigens

Another crucial question is whether self or neo-antigens should be preferentially used to induce
T-cell-mediated immunity. Recently, two seminal papers showed that neo-antigens served as efficient
targets not only to induce in particular CD4+ T-cell and, to a lesser extent, CD8+ T-cell responses but also
to elicit clinical responses in patients with malignant melanoma, namely reduction of metastasis [75,76].
Both studies investigated neo-antigens in a personalized vaccine approach, either via subcutaneous
injection of adjuvanted peptides [76] or via intralymphatic administration of RNA synthesized from
minigenes of tumor-specific neo-epitopes [75]. Very recently, this concept has been confirmed in a
clinical trial using a neo-peptide vaccination in glioblastoma patients [77]. These studies provided
proof-of-concept that clinically relevant T-cell immunity, in particular of CD4+ T-cells, can be induced
against neo-epitopes. Notably, T-cell immunity was also induced against tumor-associated self-antigens,
although immune responses were significantly weaker than against neo-antigens. In these studies,
severe adverse effects were not reported.

So far, it is unclear whether the expression of tumor antigens or epitopes in the context of oncolytic
viruses will actually contribute to the induction of tumor antigen-specific T-cells and may skew the
immune reaction into a more pronounced CD8+ T-cell response. We have observed expression of HSV-1
d106S-encoded GFP upon infection of CD11c+ cells and macrophages, but we were so far not able to
detect HSV-1 d106S-MelanA expression in antigen-presenting cells [74]. Therefore, this important point
needs to be evaluated in further studies. The advantage of incorporating tumor-associated self-antigens
or self-epitopes into an oncolytic herpes virus would be that a respectively designed oncolytic virus
was suitable for a much larger patient cohort, while the use of neo-antigens or neo-epitopes would
require a personalized design.

HSV-1 d106S shows prolonged transgene expression and efficient presentation on MHC-I and
MHC-II [78] and has been used in the past to induce humoral and cellular immune responses against
viruses. In this respect, it induced responses against ß-galactosidase [78,79] and West Nile virus [80] in
naïve and HSV-immune mice. In addition, HSV-1 d106S was used as vaccine to elicit both humoral
and cellular immune responses against lentiviruses in the macaque model, which contributed to the
control of virus replication [81]. Thus, HSV-1 d106S is, in principle, suited to be used as vaccine vector,
although these antigens were of viral origin and thus “neo.” It remains to be investigated whether the
expression of “self” in the context of an oncolytic virus is strong enough to break the immunological
tolerance. If yes, it has to be studied whether the induced autoimmunity affects only the tumor—as
intended—or other tissues as well.

2.7. Designer Viruses

Besides expression of tumor-related antigens or epitopes (Figure 2), oncolytic herpes viruses
can incorporate genes which contribute to tumor control in several respects. The most prominent
example is T-VEC, which encodes GM-CSF to recruit immune cells to injected lesions [50]. Another
approach is the expression of murine IL-12 in the HSV-1 context, which aims at enhancing adaptive
immune responses, as has been confirmed in murine xenograft models [61]. Based on the success of
this approach, two related oncolytic HSV-1 strains, which are currently evaluated in phase I studies
of pediatric and adult brain tumors, were designed to express human IL-12 [82,83]. IL-12 was also
incorporated into a fully-virulent HSV-1 strain, which was targeted to human epidermal growth factor
receptor (HER) 2-expressing tumor cells, inducing a systemic immunotherapeutic vaccine response in
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a murine model [84]. Serious toxic side effects of IL-12 in tumor immunotherapies may be reduced
using a variant of this molecule with deleted signal peptide [85].
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Figure 2. Prospects of optimizing anti-tumor activities via genetic engineering of oncolytic herpes
simplex viruses 1 (HSV-1). HSV-1 can be designed to express proteins which modify the tumor
environment, e.g., via restricting blood supply of the tumor, reducing barriers for efficient viral
spread, enhancing influx of immune cells through production of pro-inflammatory cytokines, and/or
contributing to local increase of immune cell activity. Engineered HSV-1 may also promote tumor cell
lysis via expression of apoptosis-inducing ligands or stimulate different cells of the adaptive immune
system as vaccine vector presenting neo- or self-antigens. Adapted according to [86].

Besides expressing growth factors or interleukins (Figure 2), oncolytic herpes viruses can also
incorporate genes which turn the tumor environment into an uncomfortable place [86]. In this respect,
herpes virus strains which code for enzymes to remove the extracellular matrix, thereby acting as
physical barrier to limit viral spread, were generated and tested in orthotopic murine xenograft
models [87,88]. Further approaches include incorporation of genes which limit the blood supply of
tumors [89] and which express cell death molecules like TRAIL [90]. A very recent approach described
cloning of the gene for the antibody against murine programmed cell death 1 (PD-1) into the oncolytic
vaccinia virus, causing a massive infiltration of immune cells in a syngeneic murine tumor model [91].
A similar approach aiming at inducing high local immune checkpoint inhibitor concentrations may be
realized with oncolytic herpes viruses.

The incorporation of new genetic information into oncolytic HSV-1 has been laborious because
HSV-1 is a large virus comprising more than 150,000 base pairs and does not support simple cloning.
Therefore, genes of interest are usually cloned into a transfer plasmid and incorporated into the
virus using homologous recombination [62]. However, this approach may not be successful on the
first attempt and requires time-consuming plaque-purification of clonal viruses. The modification of
oncolytic HSV-1 will profit much from the BAC technology, which was first established for cloning
of cytomegalovirus [92] and has proven to be very useful in this context. This method will facilitate
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quick incorporation and exchange of genes within HSV-1 [86,93]. Roughly one fifth of the herpes
viral genome is non-essential and therefore provides ample opportunities to incorporate genes coding
for tumor antigens and/or chemo- and cytokines [93]. Future promising options may come from
modifying the HSV-1 genome by CRISPR-Cas9 technology or from generating virus-like particles
using synthetic genes.

3. Prospects of pDC in Enhancing Anti-Tumoral Immunity of Designed Oncolytic Herpes Viruses

As outlined above, pDC provide ample opportunities to enhance cytotoxic effects of oncolytic
HSV-1:

• Secretion of anti-neoplastic type I IFNs
• Activation of NK cells via type I IFNs
• Exertion of direct oncolytic activity by pDC
• Amplification of cytotoxic activity of oncolytic HSV-1
• Contribution to cross-presentation of tumor-associated antigens by DC
• Induction of tumor antigen-specific CD4+ and CD8+ T-cells

The genetic engineering of oncolytic HSV-1 contributes to several of these activities. The expression
of cytokines and growth factors will enhance influx of immune cells into the injected lesions and thus
increase cross-presentation of tumor-related antigens released by dying tumor cells. The expression of
death molecules and anti-angiogenic factors will amplify viral cytotoxicity and oncolytic effects exerted
by stimulated pDC. Incorporation of tumor-related self-antigens into oncolytic herpes viruses will result
in re-expression of these antigens in tumor cells, which have escaped the immune response, although
MHC I downregulation on tumor cells may impair presentation of peptides from HSV-encoded tumor
antigens. Upon infection, these cells will be killed by tumor antigen-specific T-cells. Expression of self-
and neo-antigens may contribute to the (cross-) presentation of these antigens via DC (and possibly
via pDC), which will induce expansion and functionality of respective tumor antigen-specific CD4+

and CD8+ T-cells. The latter effects will specifically be promoted by high local concentrations of
checkpoint inhibitors.

pDC may amplify cytotoxic effects of oncolytic herpes viruses in particular in those tumors,
in which they are already present prior to injection of the virus. It may not be by chance that the
first tumors to be successfully evaluated for oncolytic HSV-1 therapy are malignant melanoma and
head and neck cancers. Malignant melanoma is known for being an immunogenic type of cancer,
leading the phalanx of tumors with the largest expression of neo-antigens [94]. Melanoma is also
known for being infiltrated and surrounded by pDC, which has also been reported for head and
neck carcinoma. Specifically, the presence of pDC may be crucial when non-replicating viruses are
used for oncolytic therapy, because the viruses will only be present for a short time within the tumor.
Another favorable aspect is the susceptibility of certain tumors, e.g., malignant melanoma, to the
antiproliferative, antiangiogenic, and immunostimulatory effects of type I IFNs, which is exploited
clinically in adjuvant IFN-α2 therapy for certain stages of melanoma [95].

An additional important point is the cooperation of pDC and classical DC in orchestrating adaptive
anti-tumor T-cell responses. In this respect, TLR9-stimulated pDC were reported to induce tumor
antigen cross-presentation by conventional DC to CD8+ T-cells in the murine model [96]. HSV-1 is
known to induce pDC activation via TLR9-dependent and TLR9-independent pathways [97]. Thus,
HSV-1 combines strong activation of pDC with the virus-mediated oncolysis of tumor cells, which
promotes the release of pathogen- and damage-associated molecular patterns (PAMPs, DAMPs), as
well as tumor-associated antigens. Designing oncolytic HSV-1 to directly express tumor-related self-
and neo-antigens may contribute to a vaccine-like approach resulting in a more efficient induction
of cytotoxic T-cell responses. It may be helpful to express tumor-related antigens or epitopes by less
virulent viruses, because cells which rapidly succumb to oncolytic effects may not efficiently express
the genes of interest [74].
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The effect of oncolytic viral vaccines may be more pronounced in the context of checkpoint
inhibitors. In this respect, the effect of T-VEC at least doubled with parallel administration of
ipilimumab and pembrolizumab [71,98]. Considering these data, the concept of vaccination has
recently been revitalized in the context of checkpoint inhibitors. In this context, B cells and antibodies
against tumor-related antigens may play a role as biomarkers for response and survival [99]. Finally, it
may be worth to test oncolytic viruses in neoadjuvant vaccination approaches, which may generate an
efficient T-cell response prior to removal of the tumor and thus may prevent or delay tumor relapse
after surgery.

4. Conclusions

Oncolytic herpes viruses provide a unique opportunity to treat and to vaccinate against certain
tumors. These effects are amplified by pDC, which surround and infiltrate certain types of cancer.
HSV-1 can incorporate large amounts of foreign DNA and thus be adjusted to the individual needs
of many tumor entities. Besides incorporating genes which turn the tumor into a hot zone, e.g.,
chemokines and growth factors, HSV-1 can be engineered to express self- or neo-antigens, which may
serve as therapeutic or neoadjuvant tumor vaccine in particular in the presence of immune checkpoint
inhibitors. Oncolytic HSV-1 can thus enhance activation and expansion of tumor antigen-specific
T-cells as well as the access of these cells to the tumor. The prospects of a HSV-1-encoded tumor vaccine
are particularly promising in the light of combination tumor immunotherapies [9]. Future prospects
will come from current clinical trials evaluating oncolytic HSV in different tumor entities (Table 1).

Table 1. Current clinical trials using oncolytic HSV (as listed on ClinicalTrials.gov, accessed April 2019).

HSV Study Identifier Phase

OH2 Phase I Study of OH2 Injection, an Oncolytic Type 2 Herpes Simplex Virus Expressing
Granulocyte Macrophage Colony-Stimulating Factor, in Malignant Solid Tumors

NCT03866525 1

rRp450 rRp450-Phase I Trial in Liver Metastases and Primary Liver Tumors NCT01071941 1

Orien
X010

Recombinant Human GM-CSF Herpes Simplex Virus Injection (OrienX010), Standard
Injection in Tumor, Treatment Scheme Failed, M1c IV Period, Malignant Melanoma Spread
to the Liver, Open I-c Phase of Clinical Trial

NCT03048253 1c

M032 A Phase 1 Study of M032 (NSC 733972), a Genetically Engineered HSV-1 Expressing IL-12,
in Patients With Recurrent/Progressive Glioblastoma Multiforme, Anaplastic Astrocytoma,
or Gliosarcoma

NCT02062827 1

C134 A Phase I Trial of IRS-1 HSV C134 Administered Intratumorally in Patients With Recurrent
Malignant Glioma

NCT03657576 1

G207 Phase 1 Trial of Engineered HSV G207 in Children With Recurrent or Refractory Cerebellar
Brain Tumors

NCT03911388 1

G207 Phase I Clinical Trial of HSV G207 Alone or With a Single Radiation Dose in Children With
Recurrent Supratentorial Brain Tumors

NCT02457845 1

T-VEC A Phase I, Open Label, Single Arm, Single Centre Study to Evaluate Mechanism of Action
of Talimogene Laherparepvec (T-VEC) in Locally Advanced Non-melanoma Skin Cancer

NCT03458117 1

T-VEC A Phase 1/2 Study of Talimogene Laherparepvec in Combination With Neoadjuvant
Chemotherapy in Triple Negative Breast Cancer

NCT02779855 1/2

T-VEC A Phase II Study Using Talimogene Laherparepvec as a Single Agent for Inflammatory
Breast Cancer (IBC) or Non-IBC Patients With Inoperable Local Recurrence

NCT02658812 2

T-VEC A Phase II Study of Talimogene Laherparepvec Followed by Talimogene Laherparepvec +
Nivolumab in Refractory T Cell and NK Cell Lymphomas, Cutaneous Squamous Cell
Carcinoma, Merkel Cell Carcinoma, and Other Rare Skin Tumors

NCT02978625 2

T-VEC A Phase 1b Study of Talimogene Laherparepvec (T-VEC) in Combination With Paclitaxel
or Endocrine Therapy in Patients With Metastatic, Unresectable, or Locoregionally
Recurrent HER2-Negative Breast Cancer With Evidence of Injectable Disease in the
Locoregional Area

NCT03554044 1b

T-VEC A Phase II Study of Combining Talimogene Laherparepvec T-VEC (NSC-785349) and
MK-3475 (Pembrolizumab) (NSC-776864) in Patients With Advanced Melanoma Who
Have Progressed on Anti-PD1/L1 Based Therapy

NCT02965716 2

T-VEC A Phase I Study of Talimogene Laherparepvec (TALIMOGENE LAHERPAREPVEC) With
Neoadjuvant Chemotherapy and Radiation in Adenocarcinoma of the Rectum

NCT03300544 1

ClinicalTrials.gov
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