Supplementary Material: SLMP53-2 Restores Wild-Type-Like Function to Mutant p53 through Hsp70: Promising Activity in Hepatocellular Carcinoma

Sara Gomes, Bartolomeo Bosco, Joana B. Loureiro, Helena Ramos, Liliana Raimundo, Joana Soares, Nair Nazareth, Valentina Barcherini, Lucília Domingues, Carla Oliveira, Alessandra Bisio, Silvano Piazza, Matthias R. Bauer, João P. Brás, Maria Inês Almeida, Célia Gomes, Flávio Reis, Alan R. Fersht, Alberto Inga, Maria M. M. Santos, Lucília Saraiva

Figure S1. Clustering analysis of the microarray data. The microarray experiment was performed in quadruplicate for 2xIC₅₀ or 3xIC₅₀ SLMP53-2 and control (DMSO). The overall result of the clustering analysis performed expression matrix of the genes with standard deviation higher than 0.3 (n=7530) indicates high level of reproducibility among the replicates. The microarray data has been deposited in GEO (GSE124021).

Figure S2. Microarray data analysis related to Figure 2. Venn Diagram presenting the number of DEGs (adj p value < 0.05) for $2 \times IC_{50}$ or $3 \times IC_{50}$ SLMP53-2 and the overlap. Both for Up-regulated (A) and Down-regulated (B) genes there is a dose dependency on the number of DEGs with a large common core of genes. Besides the p value cut-off, a \log_2 fold change greater or equal to 0.6 or less than -0.6 was used. Number in parenthesis are relative to a more stringent cut-off (log₂ fold change cut off >1 or <-1). (C) qPCR validation of the responsiveness of 10 DEGs for 2 × IC50 SLMP53-2. Two of the ten genes (AURKA and BIRC5) were repressed by SLMP53-2 according to the microarray results. In all cases except AURKA, for which the difference is consistent but not significant, SLMP53-2 led to significant modulation of the genes (p < 0.05, t-test). The highest fold change was seen for DDIT4 that along with SESN2 and TRIB3 were included because of their involvement in the unfolded protein response. Presented are the average fold of induction relative to the DMSO treatment and the standard deviation of three replicates. B2M was used as reference genes. (D,E) Metascape was used to perform Gene Ontology analysis and comparison of enriched pathways and molecular functions derived from the lists of DEGs in common between the two treatments. (D) Modulation of mTORC1 signaling, cholesterol homeostasis and unfolded protein response are the most significant enriched features from the upregulated gene group, consistent with the results obtained by Ingenuity Pathway (Figure S2). (E) Cell cycle, proliferation and cell division pathways are strongly enriched considering the repressed, differentially expressed genes. (F) SLMP53-2 repressed genes are enriched for mir-34a and mir-193b targets according to Enrichr. Presented are the results from miRTarBase-2017 starting from the list of 169 down-regulated, genes that are downregulated in the treatment with both SLMP53-2. The number of targets for each of the two microRNAs and the statistical analysis is provided.

Figure S3. Connectivity map results. Summary graph of the connectivity map results obtained using the gene expression results from the HuH-7 cells treated with 2xIC₅₀ SLMP53-2. Results were filtered for *p* value and are ordered for decreasing enrichment score. As expected given the strong cell cycle arrest and apoptosis phenotype induced by SLMP53-2, high enrichment score was observed with several drugs, although specificity was generally low. Interestingly, among the top scorer are molecules involved in autophagy and proteasome functions. Further, cytotoxic chemotherapeutics are not present in the top scoring molecules, consistent with the results data SLMP53-2 is not activating an overt DNA damage response (Figure 2D).

DMSO

SLMP53-2

Figure S4. Representative images of XBP1 immunofluorescence in HuH-7 cells treated with 28 μ M SLMP53-2 or DMSO for 24 h (scale bar = 10 μ m).

Figure S5. Protein levels of p53 target genes in HCC1419 cells, after 24 h (KILLER) or 48 h (MDM2, p21, survivin, and VEGF) treatment with 14 μ M SLMP53-2. Immunoblots represent one of three independent experiments; GAPDH was used as a loading control.

Figure S6. Representative images of p53 immunofluorescence staining of HuH-7 cells treated with 42 μ M SLMP53-2 or DMSO for 36 h. Cells were labelled with conformation-specific antibodies PAb240 (unfolded/mutant) and PAb1620 (folded/wild-type), or with DO-1 (total p53) (scale bar = 20 μ M).

Figure S7. Overlay of ¹H/¹⁵N-HSQC NMR spectra of T-p53C-Y220C with varying concentrations of SLMP53-2, showing no significant chemical shift.

Figure S8. Western blot analysis of Hsp70 protein levels in HuH7 cells transfected with sipHsp70 or siCTRL.

Figure S10. Concentration-response curves for SLMP53-2 in (**A**) HCT116 p53^{+/+}, HCT116 p53^{-/-}, and (**B**) HepG2 cells, analyzed by SRB assay after 48h treatment with 3.12–50 μ M SLMP53-2. Data are mean ± SEM (*n* = 3); * *p* < 0.05, extra sum-of-squares F test.

Figure S11. Co-immunoprecipitation of Hsp70 with p53 in HuH-7 cells treated with 34 and 68 μ M SLMP53-1 or DMSO for 36 h, using anti-p53 antibody (DO-1), followed by immunoblotting with anti-Hsp70and anti-p53 antibodies; whole cell lysate (input); immunoblots represent one of three independent experiments; GAPDH was used as a loading control.

GAPDH - HuH-7

GAPDH - HuH-7

GAPDH - HuH-7KO

Cancers 2019

Figure S12. Whole blots.

Table S1. Gene expression data (see Table S1.xlsx file). The two sheets contain the gene expression data resulting from the treatment with 2xIC₅₀ or 3xIC₅₀ (28 or 42µM) SLMP53-2. Gene Name, Systematic Name, Description, Log2 Fold Change, Average expression signal and statistical analysis are presented.

Table S2. Ontology, Pathways and Upstream Regulators analyses by Ingenuity Pathway and Metascape (see Table S2.xlsx file). Three sheets are included for each treatment dose (2xIC₅₀ or 3xIC₅₀ SLMP53-2) presenting the results of Canonical Pathways, Upstream Regulator, Disease and Biofunctions, according to Ingenuity Pathway (see Figure S2). Two additional sheets contain the Gene Ontology results obtained with Metascape (metascape.org/) (see Figure S4).

Table S3. Connectivity Map results by Ingenuity Pathway analysis of the microarray data (see Table S3.xlsx file). "Cmap molecule name" data obtained comparing the gene expression results of $2xIC_{50}$ or $3xIC_{50}$ SLMP53-2. Tables are filtered based on *p* value and rank. Results obtained with the $2xIC_{50}$ SLMP53-2 are summarized in Figure S4.

Parameter	Control	Treated	
Biochemical data			
Blood Glucose (mg/dL)	165.83 ± 8.91	193.33 ± 19.63	
Urea (mg/dL)	18.38 ± 0.45	19.07 ± 0.62	
Creatinine (mg/dL)	0.32 ± 0.01	0.32 ± 0.01	
Uric Acid (mg/dL)	2.8 ± 0.33	1.9 ± 0.15	
Total protein (g/dL)	6.68 ± 0.24	6.43 ± 0.03	
Albumin (g/dL)	3.25 ± 0.08	3.4 ± 0.06	
Sodium (mmol/L)	146.83 ± 0.83	148.33 ± 1.33	
Potassium (mmol/L)	5.98 ± 0.23	5.83 ± 0.67	
Osmolality (mOSM/Kg)	296.6 ± 1.97	302.67 ± 1.76	
Phosphorous (mg/dL)	7.83 ± 0.47	8.43 ± 0.17	
ALT (U/L)	38.67 ± 2.5	34.33 ± 3.84	
AST (U/L)	73.83 ± 8.68	67.67 ± 5.46	
Total Cholesterol (mg/dL)	65.33 ± 7.44	68.67 ± 2.96	
Cholesterol-HDL (mg/dL)	42.33 ± 4.78	44 ± 2.08	
Cholesterol-LDL (mg/dL)	20.83 ± 2.79	19.67 ± 1.45	
Triglycerides (mg/dL)	153.33 ± 27.72	183 ± 10.07	
Atherogenic index	1.53 ± 0.04	1.57 ± 0.03	
Hematological data			
WBC (×10 ³ /µL)	1.78 ± 0.42	2.33 ± 0.87	
RBC (×10 ⁶ /µL)	8.5 ± 0.32	8.14 ± 0.49	
HGB (g/dL)	14.72 ± 0.55	14.9 ± 0.15	
HCT (%)	44.07 ± 1.69	44.7 ± 0.61	
MCV (fL)	51.85 ± 0.58	55.23 ± 3.47	
MCH (pg)	17.3 ± 0.21	18.4 ± 1.11	
MCHC (g/dL)	33.38 ± 0.3	33.33 ± 0.15	
RDW (%)	14.73 ± 0.31	$13.3 \pm 0.55^*$	
PLT (×10³/µL)	552.98 ± 152.92	781.67 ± 29.04	
MPV (fL)	7.92 ± 0.02	$6.23 \pm 0.83^*$	
RET (%)	3.09 ± 0.31	3.66 ± 0.16	
IRF	0.7 ± 0.03	0.71 ± 0.01	
Lymphocytes (%)	77.3 ± 1.03	81 ± 3.91	
Lymphocytes (×10 ³ /µL))	1.4 ± 0.32	1.83 ± 0.61	

Table S4. Biochemical and haematological data of SLMP53-2 in Wistar rats.

Data from blood samples were analysed for saline (control), and 50mg/kg SLMP53-2 (treated) rat groups, after five intraperitoneal administrations (twice a week). Results are shown as mean±SEM (n=5; values significantly different from control: * p < 0.05; unpaired Student's *t*-test). ALT, alanine aminotransferase; AST, aspartate aminotransferase; HCT, haematocrit; HGB, Haemoglobin concentration; IRF, immature reticulocyte fraction; MCH, mean corpuscular haemoglobin; MCHC,

mean corpuscular haemoglobin concentration; MCV, mean corpuscular volume; MPV, mean platelet volume; PLT, platelet; RBC, red blood cell count; RDW, red cell distribution width; RET, reticulocytes; WBC, white blood cells.

Antigen	Final Dilution	Supplier
Primary antibodies		
α-actinin	1 (000	Santa Cruz Biotechnology
Mouse monoclonal	1:6000	Cat# sc-17829
γΗ2ΑΧ	1.10000	Abcam
Rabbit polyclonal	1:10000	Cat# ab2893
Bax (6A7)	1.100	Thermo Scientific
Mouse monoclonal	1:100	Cat# MA5-14003
eIF2α	1.500	Abcam
Rabbit polyclonal	1:500	Cat# ab26197
p-eIF2α	1.500	Abcam
Rabbit polyclonal	1:500	Cat# ab32157
GADD45	1.500	Millipore
Rabbit polyclonal	1:500	Cat# ABE2696
GAPDH (6C5)	1.10000	Santa Cruz Biotechnology
Mouse monoclonal	1:10000	Cat# sc-32233
Hsp40 (B-3)	1 200	Santa Cruz Biotechnology
Mouse monoclonal	1:200	Cat# sc-398766
Hsp70	1 1000	Sigma-Aldrich
Rabbit polyclonal	1:1000	Cat# SAB2702387
Hsp90 (F-8)	1 500	Santa Cruz Biotechnology
Mouse monoclonal	1:500	Cat# sc-13119
Killer	1 500	Thermo Scientific
Rabbit polyclonal	1:500	Cat# PA5-19895
Ki67 (SP6)	1 500	Thermo Scientific
Rabbit monoclonal	1:500	Cat# MA5-14520
MDM2 (SMP14)	1 100	Santa Cruz Biotechnology
Mouse monoclonal	1:100	Cat# sc-965
p21 (C-19)	1 100	Santa Cruz Biotechnology
Rabbit polyclonal	1:100	Cat# sc-397
p53 (DO-1)	1:5000 (WB)	Santa Cruz Biotechnology
Mouse monoclonal	1:500 (IF)	Cat# sc-126
p53 (PAb1620; Ab-5)	1 100	Millipore
Mouse monoclonal	1:100	Cat# OP33
p53 (PAb240; Ab-3)	1 200	Millipore
Mouse monoclonal	1:200	Cat# OP29
Survivin (EP2880Y)	1 1 5000	Abcam
Rabbit monoclonal	1:15000	Cat# ab76424
VEGF	1 200	Thermo Scientific
Mouse monoclonal	1:200	Cat# MA1-16629
XBP1	1:250	Santa Cruz Biotechnology
Mouse monoclonal		Cat# sc-8015
Secondary antibodies		
Anti-mouse	1:5000	Santa Cruz Biotechnology
HRP-conjugated		Cat# sc-2005
Anti-rabbit	1 5000	Santa Cruz Biotechnology
HRP-conjugated	1:5000	Cat# sc-2006
Anti-mouse	1 1000	ThermoFisher Scientific
Alexa Fluor 488-conjugated	1:1000	Cat#A-11001

Table S5. List of antibodies used in western blot (WB), immunofluorescence (IF), immunohistochemistry, and immunoprecipitation.

Immunoprecipitation		
p53 (DO-1)	1	Santa Cruz Biotechnology
Mouse monoclonal	1µg/mL	Cat# sc-126
p53 (PAb1620; Ab-5)	1	Millipore
Mouse monoclonal	1µg/mL	Cat# OP33
p53 (PAb240; Ab-3)	1	Millipore
Mouse monoclonal	1µg/mL	Cat# OP29

Table S6. List of primers.

Primer	Sequence (5'-3')	
	RT-qPCR	
AREG Fw	TTGATACTCGGCTCAGGCCAT	
AREG Rv	CACAGGGGAAATCTCACTCCC	
ASNS Fw	CCTCGCAGGCATGATGAAAC	
ASNS Rv	GAAGAAAATCTGGGCGTAAGCA	
AURKA Fw	ATATCTCAGTGGCGGACGAG	
AURKA Rv	TGAGACCCTCTAGCTGTAATAAGT	
B2M Fw	AGGCTATCCAGCGTACTCCA	
B2M Rv	ATGGATGAAACCCAGACACA	
BIRC5 Fw	AGGACCACCGCATCTCTACA	
BIRC5 Rv	TTTCCTTTGCATGGGGTCGT	
BAX Fw	CCTGGAGGGTCCTGTACAATCT	
BAX Rv	GCACCTAATTGGGCTCCATCT	
BMF Fw	CCCTCCTTCCCAATCGAGTCT	
BMF Rv	CTCCATCTCTCCTGGGTGACT	
CDKN1A Fw	CTGGAGACTCTCAGGGTCGAA	
CDKN1A Rv	GATTAGGGCTTCCTCTTGGAG	
CHOP Fw	AGAACCAGGAAACGGAAACAGA	
CHOP Rv	TCTCCTTCATGCGCTGCTTT	
DDIT4 Fw	CTAGCTGCGGCTTCTACGC	
DDIT4 Rv	CCAAAGGCTAGGCATGGTGA	
GADD45 Fw	TCAGCGCACGATCACTGTC	
GADD45 Rv	CCAGCAGGCACAACACCAC	
GAPDH Fw	TCCAAAATCAAGTGGGGCGA	
GAPDH Rv	AGTAGAGGCAGGGATGATGT	
MDM2 Fw	GGCCTGCTTTACATGTGCAA	
MDM2 Rv	GCACAATCATTTGAATTGGTTGTC	
SESN2 Fw	CTCCTCCTTCGTGTTTGGCT	
SESN2 Rv	CTCAAAGCCCCCAGAGTTGT	
SCL3A2 Fw	AGCTGGAGTTTGTCTCAGGC	
SCL3A2 Rv	GGCCAATCTCATCCCCGTAG	
TNFRSF10B Fw	TGACTCATCTCAGAAATGTCAATTCTTA	
TNFRSF10B Rv	GGACACAAGAAGAAAACCTTAATGC	
TRIB3 Fw	AGACTCGCAGCGGAAGTGG	
TRIB3 Rv	CTCGCATCTCGCCCCGTC	
sXBP1 Fw	CTGAGTCCGAATCAGGTGCAG	
sXBP1 Rv	ATCCATGGGGAGATGTTCTGG	
uXBP1 Fw	CAGCACTCAGACTACGTGCA	
uXBP1 Rv	ATCCATGGGGAGATGTTCTGG	
tXBP1 Fw	TGGCCGGGTCTGCTGAGTCCG	
tXBP1 Rv	ATCCATGGGGAGATGTTCTGG	
	ChIP	
p21 Fw	GTGGCTCTGATTGGCTTTCTG	
p21 Rv	CTCCTACCATCCCCTTCCTC	

Table S7. Quantification of western blots.

Figu	re 1	Fig	gure 2
Sample	p53	Sample	H2AX
Vector	NS	DMSO	NS
R175H	1.00	14 µM	NS
Y220C	0.92	28 µM	NS
G245S	1.08	42 µM	NS
R280K	1.24	Etop	1.00
			p-p53 (Ser15)
	2.41-	DMSO	1.00
	2411	SLMP53-2	0.91
	101	DMSO	1.00
	4011	SLMP53-2	0.78
		Figure 3	
Sample	eIF2α	Sample	p-eIF2a
DMSO	1.00	DMSO	1.00
28µM	1.14	28μΜ	3.10
		Figure 4	
Hul	I- 7	HuH-7KO	
		MDM2	
DMSO	1.00	DMSO	1.00
28µM	3.60	28μΜ	0.64
		p21	
DMSO	1.00	DMSO	1.00
28µM	3.08	28μΜ	1.12
		GADD45	
DMSO	1.00	DMSO	1.00
28µM	13.24	28µM	0.89
		BAX	
DMSO	1.00	DMSO	1.00
28µM	2.76	28µM	0.85
DMCO	1.00	KILLEK	1.00
DMSO	1.00	DMSO	1.00
28µ1VI	1.91	28µM	0.73
DMCO	1.00	DMCO	1.00
DM50	1.00	DMSO	1.00
20μ101	0.56		1.02
DMSO	1.00		1.00
28uM	1.00	28uM	1.00
204111	0.01	Eigure 54	1.04
Inn	t	Figure 5A	IP
Sample		Sample	 PAb1620
DMSO	1.00	DMSO	1.00
28uM	0.99	28µM	1.10
42 µM	0.82	42 µM	1.70
		Sample	PAb240
		DMSO	1.00
		28µM	0.94
		42 µM	0.69
		Figure 5B	
Inv	ut	0	IP
Sample	Hsp90	Sample	Hsp90
DMSO	1.00	DMSO	1.00
28µM	1.11	28µM	0.98
42 μM	0.94	42 μM	1.08

Sample	Hsp70	Sample	Hsp70
DMSO	1.00	DMSO	1.00
28μΜ	1.62	28μΜ	1.36
42 μΜ	1.58	42 μΜ	1.56
Sample	Hsp40	Sample	Hsp40
DMSO	1.00	DMSO	1.00
28μΜ	1.17	28μΜ	0.81
42 μΜ	0.89	42 μΜ	1.09
Sample	p53		
DMSO	1.00		
28μΜ	1.05		
42 μΜ	1.12		
NS – no signal.			