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Abstract: SNAIL (SNAI1) is a zinc finger transcription factor that binds to E-box sequences and
regulates the expression of genes. It usually acts as a gene repressor, but it may also activate the
expression of genes. SNAIL plays a key role in the regulation of epithelial to mesenchymal transition,
which is the main mechanism responsible for the progression and metastasis of epithelial tumors.
Nevertheless, it also regulates different processes that are responsible for tumor growth, such as
the activity of cancer stem cells, the control of cell metabolism, and the regulation of differentiation.
Different proteins and microRNAs may regulate the SNAIL level, and SNAIL may be an important
regulator of microRNA expression as well. The interplay among SNAIL, microRNAs, long non-coding
RNAs, and circular RNAs is a key event in the regulation of tumor growth and metastasis. This review
for the first time discusses different types of regulation between SNAIL and non-coding RNAs with a
focus on feedback loops and the role of competitive RNA. Understanding these mechanisms may
help develop novel therapeutic strategies against cancer based on microRNAs.

Keywords: tumor; metastasis; microRNA; SNAIL (SNAI1) transcription factor; epithelial to
mesenchymal transition (EMT); long non-coding RNAs (lncRNAs); circular RNAs

1. Introduction: Background of SNAIL Transcription Factor

SNAIL is a member of the group of conservative zinc finger transcription factors. It was first
described in Drosophila melanogaster as an essential factor for the mesoderm formation [1]. Subsequently,
its homologues have been described in many species, including humans. The SNAIL family consists
of three members: SNAIL (SNAI1), SLUG (SNAI2), and SMUG (SNAI3) [2]. The SNAIL protein
contains C-terminal zinc finger domains that are responsible for DNA binding, the N-terminal SNAG
domain responsible for interaction with several co-repressors or epigenetic remodeling complexes,
the serine-rich domain (SRD) regulating ubiquitination and proteasome degradation, and the nuclear
export sequence (NES) that controls the protein stability and subcellular localization [3].

1.1. SNAIL Expression and Regulation

SNAIL expression may be regulated by many signaling pathways. At the transcriptional
level, SNAIL is regulated by multiple growth factors and signaling molecules that are responsible
for the subsequent regulation of the SNAIL promoter, including transforming growth factor β

(TGF-β), fibroblast growth factor 2 (FGF2), epidermal growth factor (EGF), Harvey rat sarcoma
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viral oncogene homolog (H-ras), Akt kinase-transforming protein (v-Akt), and nuclear factor
kappa-light-chain-enhancer of activated B cells/protein 65 (NF-κB/p65) [4,5]. Post-translational
modifications, such as phosphorylation, ubiquitination, and lysine oxidation also regulate SNAIL
level. Glycogen synthase kinase 3 beta (GSK-3β) phosphorylates SNAIL at two consensus motifs.
Phosphorylation of the first motif regulates ubiquitination and degradation in the proteasome, whereas
phosphorylation of the second motif regulates its subcellular localization [6]. Lysyl oxidase-like 2
(LOXL2) enzyme interaction regulates SNAIL stability [7] by interfering with FBXL14 binding SNAIL.
FBXL14 (F-box and leucine-rich repeat protein 14) is a ubiquitin ligase that targets both phosphorylated
and unphosphorylated SNAIL for proteasome degradation [8]. SNAIL can also be stabilized by
hyperglycemia-regulated O-linked β-N-acetylglucosamine (O-GlcNAc) modification of serine [9].
Moreover, SNAIL can be stabilized by NF-κB, which induces COP9 signalosome 2 (CSN2), which, in
turn, blocks the ubiquitination and degradation of SNAIL [10]. The phosphorylation of SNAIL may
result in an increased retention of the protein in the nucleus. That mechanism of action was described
for p21-activated kinase (PAK1), which phosphorylates SNAIL at Ser 246 [11].

1.2. Different Pathways Regulated by SNAIL

SNAIL plays an important role in the regulation of epithelial to mesenchymal transition in embryo
development: gastrulation and mesoderm formation [2]. However, molecular mechanisms of certain
pathological stages resemble those observed in physiological process. One of them is epithelial to
mesenchymal transition (EMT) during cancer progression. It is the main mechanism responsible for
the invasiveness and metastasis of neoplasm at the advanced stages [12]. SNAIL exerts its effects
by decreasing the expression of E-cadherin by binding to its promoter [13]. Nevertheless, SNAIL is
a transcriptional repressor, which binds to regulatory regions and promoters containing sequences
called E-boxes, and thereby it regulates the expression of many different genes and in this way, it may
also regulate EMT. The SNAIL family contains a highly conserved region of four to six zinc fingers
that allows them to interact with those E-box sequences (CANNTG). Since these sequences are also
recognized by transcription factors from the basic helix-loop-helix (bHLH) family, the role of SNAIL
factors is mainly focused on transcription repression by excluding these proteins from their binding
sites [2]. SNAIL is capable of interacting with HDAC1/2 histone deacetylase, which causes a local
modification of the chromatin structure and blocks the expression of E-cadherin, the loss of which
is a marker of epithelial–mesenchymal transition (EMT) [13]. As E-box sequences are present in the
promoters of many different genes, in the literature, SNAIL is described as a regulator of many genes
important in tumorigenesis, such as cyclin D2, proliferating cell nuclear antigen (PCNA), prostaglandin
dehydrogenase, ATPase1, etc. [12]. SNAIL turned out to be also a direct regulator of not only EMT in
tumor progression, but also of myogenic differentiation. The binding of SNAIL to E-box sequences in
the myogenic factor 5 (MYF5) promoter and recruiting histone deacetylases (HDACs) was described
in the regulation of rhabdomyosarcoma development [14]. Another example of the non-canonical
actions of SNAIL is the regulation of myoblast determination protein 1 (MyoD) function in myogenic
differentiation by the competitive binding of SNAIL to its regulatory sequences [15]. Nevertheless,
SNAIL is not only described as a transcriptional repressor, but also as the transcriptional activator. For
example, SNAIL induces the expression of mesenchymal genes, such as vimentin, fibronectin, matrix
metalloproteinases MMP-2, and MMP-9. In that way, it further facilitates the increased motility of
cells [16].

What is more, the recent data demonstrated the mechanism of self-regulation by members of the
SNAIL family: the SNAIL-binding site is present in the SNAIL promoter (negative feedback) [17], and
avian Slug can self-activate during the neural crest development [18]. Moreover, in ovarian cancer cells,
SNAIL binds to two E-box sequences in SLUG promoter and represses SLUG, which is predominantly
mediated through the recruitment of the HDACs [19].

SNAIL plays a role in many physiological and pathological processes, such as chronic inflammation,
fibrosis, EMT induction, the regulation of cancer stem cells, the control of cell metabolism, the
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suppression of estrogen receptor signaling, and in particular the development and metastasis of
tumors [3]. Currently, many research papers focus not only on interaction between SNAIL and different
genes, but also on the interplay between SNAIL and non-coding RNAs, such as microRNAs, long
non-coding RNAs, and circular RNAs [20]. In this review, we discuss recent advances in those fields.
We present bidirectional crosstalk between SNAIL and non-coding RNAs with implications of these
new findings on tumor progression, which may help develop novel therapeutic strategies in future.

2. Non-Coding RNAs as Regulators of Tumor Progression

Non-coding RNAs (ncRNAs) are a class of RNA transcripts that do not encode proteins, but
they may play a role in the regulation of gene expression at transcriptional, translational, and
post-translational levels. Among regulatory ncRNAs, long non-coding RNAs, small RNAs, and circular
RNAs may be distinguished [21] (Figure 1), and they are described in this review.

Figure 1. Scheme presenting the selected regulatory non-coding RNAs.

Long non-coding RNAs (lncRNAs) are RNA transcripts with a length greater than 200 nucleotides.
They can regulate gene expressions and functions. Therefore, they are involved in the pathogenesis of
many diseases, including cancer. Nevertheless, there are papers revealing that some lncRNAs contain
cryptic open reading frames (ORFs), which may blur the distinction between protein-coding and
non-coding transcripts [22]. lncRNAs can originate from their own promoters or from the promoters
shared with other coding or non-coding genes, or from enhancer sequences. lncRNAs are usually
transcribed by RNA polymerase II or RNA polymerase III. They are often 5′-capped, spliced, and
polyadenylated, but they are usually shorter than mRNAs [23,24]. lncRNAs may be co-regulated with
mRNAs in expression networks. lncRNAs may also be generated from the divergent transcription
from shared protein-coding gene promoters. Divergent transcription generates the sense (mRNA) and
anti-sense RNAs [24,25]. lncRNA promoters are usually evolutionarily conserved and tightly regulated,
and they are prone to epigenetic modification [23]. lncRNAs may also be processed in different ways
than mRNAs, such as RNase P-processed 3′ maturation, which was shown for MALAT1 (metastasis
associated lung adenocarcinoma transcript 1) [24]. DICER1 endonuclease is an important factor in both
the biogenesis of miRNAs that may also act as a downstream activator of many lncRNAs [26]. What is
also interesting is that few miRNAs are derived from lncRNA exons [27]. lncRNAs participate in and
modulate the various cellular processes, such as cellular transcription, the modulation of chromatin
structure, DNA methylation, or histone modification. They may act as a sponge for microRNAs and as
a competing endogenous RNAs (ceRNAs) [28].

Circular RNA (circRNA) is a type of single-stranded RNA that forms a covalently closed continuous
loop that is insensitive to ribonucleases. circRNAs are formed by exon skipping or back-splicing
events. circRNAs are produced by nonsequential exon-exon back-splicing, which results in a chemically
circularized transcript in which 3′ sequences are spliced upstream of 5′ sequences, and they have special
5′ and 3′-end processing [24]. Alternative splicing factor quaking is a regulator of that circularization
during EMT [29]. There is also a class of circular intronic lncRNA (ciRNAs) that are generated
from stabilized introns after canonical splicing. They display regulatory functions, mostly at their
transcription sites [30]. There are also exon–intron circRNAs (elciRNAs) that represent a class of
circular RNAs that retain unspliced introns. Their role involves induction of the transcription of their
parental genes via interaction with polymerase II and U1 snRNP (small nuclear ribonucleoprotein) [31].
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circRNAs are closely associated with tumor metastasis and patient prognosis, because they are
differentially expressed in different tumor types. They may act as a microRNA sponge and interact
with proteins [32]. Nevertheless, recent research papers provide initial evidence for certain endogenous
circRNAs coding for proteins [33].

MicroRNAs (miRNAs) are a class of approximately 22 nucleotides small non-coding RNAs.
They can regulate the expression of genes and translation of proteins by interfering with ribosomal
machinery. They commonly target the 3′ untranslated regions (3′ UTRs) of mRNAs and in that way
decrease their stability and suppress translation. Nevertheless, they can also activate other genes [34,35].
Genes highly and constitutively expressed usually display shorter 3′ UTR sites and in consequence
only a few binding sites for miRNAs. Accordingly, genes potently regulated during development
display multiple binding sites for miRNAs [36].

miRNAs can be expressed at high levels (even up to tens of thousands of copies per cell), and they
act as important regulatory factors, controlling hundreds of mRNA targets [37]. Animal miRNAs target
the 3′ UTRs of different mRNAs by seed sequence complementarity. They usually repress translation
more often than they cleave mRNA [35,38,39].

miRNAs are located in introns of coding genes, in exons, or in non-protein coding DNA regions.
miRNAs have their own promoters, and they are independently expressed. Some of them are also
organized in clusters sharing the same transcriptional regulation. miRNAs can arise from spliced introns,
which are often termed miRtrons, or their own promoter, driving the expression of a single miRNA
or polycistron yielding multiple pre-miRNA stem loops [40]. Nevertheless, miRNA transcription
may also be dependent on the host gene. Intronic miRNAs can be expressed together with their host
gene mRNA, and they can be derived from a common transcript [41]. Many non-canonical miRNA
biogenesis pathways have also been characterized [42].

miRNAs are transcribed by polymerase II, sometimes as polycistronic transcripts. miRNA stem
loops are excised from the primary transcripts (pri-miRNA) in the nucleus by endoribonuclease
Drosha, acting together with DGCR8. Then, the excised 70–100 nt hairpin called pre-miRNA is actively
transported from the nucleus to cytoplasm in a GTP (guanosine-5′-triphosphate)-dependent manner.
The export is mediated by exportin 5 and Ran GTPase. Subsequently in the cytoplasm, the pre-miRNA is
cleaved by Dicer endonuclease, giving the mature miRNA—a base-paired double-stranded processing
intermediate with a 2 nt 3′ overhang. Two strands are generated. Then, one strand of the duplex is
incorporated into RNA-induced silencing complexes (RISC) with the Argonaute protein, which
is capable of endonucleolytic cleavage [42,43]. The translational repression is characterized by
low miRNA–target complementarity, whereas mRNA degradation requires a high miRNA–target
complementarity [44].

Alterations of miRNAs expression in various cancers have been described in the literature. Firstly,
in 2002, they were shown in the most common form of adult leukemia, B cell chronic lymphocytic
leukemia [45] and then in 2003 in colorectal cancers [46]. It soon turned out that miRNAs can be
differentially expressed in different tumor types as either benign or malignant, and they can also act as
biomarkers [47].

Global miRNA downregulation is a common trait of many tumors [48,49]. Accordingly,
the diminished expression of miRNA processing factors is also associated with the poor prognosis of
different cancer types [50].

What is more, some miRNAs’ loci often display genomic instability in cancer, and they are located
in cancer-associated genomic regions or in fragile sites. It was also demonstrated that several miRNAs
located in deleted regions are expressed at low levels in cancer [51].

Cancer cells can also escape from miRNA regulation by the production of mRNAs with shortened
3′UTR and fewer miRNA target sites. This global switch of the use of miRNA-mediated gene
regulation is associated with an increased proliferation or cellular transformation [50]. These findings
are consistent with the widespread decrease of miRNAs in cancer [48,49].
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Some miRNAs can behave as oncogenes favoring tumorigenesis. They are called oncomirs.
They can reduce the levels of proteins blocking proliferation and migration and activating apoptosis.
Many miRNAs were identified as oncomirs in different types of tumors. For example, members encoded
by the miR-17-92 cluster were previously associated with carcinogenesis and usually display increased
expression in tumors, including lung cancer [52,53].

On the other hand, tumor-suppressive miRNAs can inhibit cancer development. Their inactivation
in tumors is followed by the accumulation of proteins stimulating proliferation and migration and
decreasing apoptosis. For example, miR-181a and miR-181b were described to act as tumor suppressors
in glioma [54] and miR-181a in non-small cell lung carcinoma [55]. Interestingly, plenty of miRNAs
may behave oppositely in different types of tumors. For example, miR-34c can exert tumor-suppressive
functions in prostate cancer [56], but in lung adenocarcinoma with different oncogenic mutations, it
was reported to be upregulated [57].

miRNAs can affect tumor progression also by modulation of the development of new blood
vessels. miRNAs promoting angiogenesis are called angiomirs, and they can target genes that are
important in angiogenic processes [58].

Currently, miRNAs’ role in the regulation of epithelial to mesenchymal transition has been widely
described in the literature [59]. Since SNAIL is one of the crucial factors regulating EMT, the interplay
between SNAIL and miRNAs may be a key factor in the regulation of tumor progression.

3. MicroRNAs Regulating SNAIL

3.1. MicroRNAs Directly Targeting SNAIL

MiRNAs can act as regulators of SNAIL expression by binding to the 3′UTR of SNAIL.
Bioinformatical analysis using TargetScanHuman 7.1 [60] revealed several binding sites for different
miRNAs in this region in human cells (Figure 2), and most of them have been already verified in the
literature. For example, the SNAIL 3′UTR was shown to function as a sponge for multiple migration
and invasion-related miRNA candidates including miR-153, miR-199a-5p, miR-203, miR-204, miR-22,
miR-34a and miR-34c [61].

Figure 2. MicroRNAs targeting the 3′ untranslated (3′UTR) region of SNAIL from bioinformatical
analysis using TargetScanHuman 7.1 (access: 22 October 2019). Experimental evidence for direct
binding to SNAIL 3′UTR was shown in the literature for miR-153, miR-22, miR-30, miR-363, miR-199,
miR-34, miR-22, miR-137, miR-203, miR-125, miR-211, and miR-203 (marked in red), which is described
in the text below.

Several miRNAs were experimentally validated to target SNAIL 3′UTR, and subsequently, their
role was described in different tumor types. One of the crucial regulators of SNAIL expression
widely described in the literature is the miR-30 family. Members of this family target the 3′UTR
of SNAIL mRNA in non-small cell lung carcinoma [62], breast cancer [63], pancreatic cancer stem
cells [64], melanoma [65], esophageal squamous cell carcinoma [66], rhabdomyosarcoma [14], or in
hepatocytes [67,68]. This inhibition usually regulates EMT in epithelial tumor types, but in mesenchymal
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tumors, such as rhabdomyosarcoma, it may be responsible for non-canonical SNAIL action [14]; it
might also be important in different processes, such as atherosclerosis [69]. Moreover, miR-30a was also
shown to regulate not only SNAIL but also SLUG in breast cancer to suppress EMT and metastasis [70].

SNAIL-dependent EMT in cancer has also been demonstrated to be regulated by p53 and miR-34
axis. In the absence of wild-type p53 function, SNAIL-dependent EMT is activated in colon, breast,
lung carcinoma cells [71], and ovarian cancer [72] as a consequence of a decrease in miR-34 levels.
A conserved miR-34a/b/c seed-matching sequence was detected in the SNAIL 3′-UTR. Moreover, there
is a double-negative feedback loop in the regulation of EMT formed by miR-34 and SNAIL [73].
Luciferase reporter assays revealed that in pancreatic cancer, miR-34a targets both SNAIL and NOTCH1
to inhibit pancreatic cancer progression through the regulation of EMT and NOTCH signaling
pathways [74].

Another example of miRNA that is described as a direct regulator of SNAIL expression in plenty
tumor types is miR-153. The downregulation of SNAIL by miR-153 suppresses human laryngeal
squamous cell carcinoma migration and invasion [75], melanoma cells proliferation and invasion [76],
esophageal squamous cell carcinoma progression [77], and gastric cancer metastasis [78]; regulates
EMT in hepatocellular carcinoma [79]; and diminishes pancreatic ductal adenocarcinoma migration
and invasion with miR-153 serving as a prognostic marker [80].

MiR-22 was demonstrated to target SNAIL and thereby inhibit tumor cell EMT and invasion
in lung [81] and bladder cancer [82], in melanoma [83] and gastric cancer [84]. In bladder cancer,
it inhibits both SNAIL and MAPK1 (mitogen-activated protein kinase 1) /SLUG/vimentin feedback
loop [82], whereas in melanoma and gastric cancer it acts as a tumor suppressor by targeting both
SNAIL and MMP14 [83,84].

SNAIL was found to be a target of multiple miRNAs in different tumor types. SNAIL was
targeted in breast cancer by miR-125b [85], miR-203 [86], miR-410-3p [87], and miR-182 [88]; in gastric
cancer by miR-491-5p [89] and miR-204 [90]; in lung cancer by miR-199a [91] and miR-940 [92]; in
papillary thyroid carcinoma by miR-199a [93]; in ovarian cancer by miR-137 [72] and miR-363 [94]; in
hepatocellular carcinoma by miR-122 [95] and miR-502-5p [96]; in prostate cancer by miR-486-5p [97];
and in renal cancer by miR-211-5p [98]. What is more, besides tumorigenesis, SNAIL is also regulated
in different processes by miRNAs. For example, miR-133 promotes cardiac reprogramming by the
direct repression of SNAIL and silencing fibroblast signatures [99], whereas miR-130b directly targets
SNAIL in the regulation of diabetic nephropathy [100]. The results described above are summarized
in Table 1.

Table 1. MicroRNAs regulating SNAIL.

MicroRNA Cancer/Cell Type References

miR-22

lung cancer [81]

bladder cancer [82]

melanoma [83]

gastric cancer [84]

miR-30 family

non-small cell lung carcinoma [62]

breast cancer [63]

pancreatic cancer [64]

melanoma [65]

esophageal squamous cell carcinoma [66]

rhabdomyosarcoma [14]

hepatocytes [67,68]



Cancers 2020, 12, 209 7 of 25

Table 1. Cont.

MicroRNA Cancer/Cell Type References

miR-34

colon carcinoma [71]

breast carcinoma [71]

lung carcinoma [71]

ovarian cancer [72]

pancreatic cancer [74]

miR-122 hepatocellular carcinoma [95]

miR-125b breast cancer [85]

miR-130b diabetic nephropathy [100]

miR-133 fibroblasts [99]

miR-137 ovarian cancer [72]

miR-153

laryngeal squamous cell carcinoma [75]

melanoma [76]

esophageal squamous cell carcinoma [77]

gastric cancer [78]

hepatocellular carcinoma [79]

pancreatic ductal adenocarcinoma [80]

miR-182 breast cancer [88]

miR-199a
lung cancer [91]

papillary thyroid carcinoma [93]

miR-203 breast cancer [86]

miR-204 gastric cancer [90]

miR-211-5p renal cancer [98]

miR-363 ovarian cancer [94]

miR-410-3p breast cancer [87]

miR-486-5p prostate cancer [97]

miR-491-5p gastric cancer [89]

miR-502-5p hepatocellular carcinoma [96]

miR-940 lung cancer [92]

3.2. Other Examples of SNAIL Regulation by MicroRNAs

The indirect regulation of SNAIL involves several different mechanisms. One of the examples
is inhibition of the GSK-3β (glycogen synthase kinase 3 beta) pathway. miR-148a binds to the
3′-UTR region of MET, which results in the attenuation of its downstream signaling, inhibition of
AKT-Ser473 and GSK-3β phosphorylation, and in consequence reduced accumulation of SNAIL
in the nucleus, the inhibition of EMT, and the metastasis of hepatoma cells [101]. In lung cancer
cells, miR-126 affects the PI3K/AKT/SNAIL (phosphatidylinositol 3-kinase/protein kinase B/SNAIL)
signaling pathway to regulate EMT [102]. A similar mechanism was described for miR-215 in papillary
thyroid cancer [103]. In thyroid carcinoma, miR-101 targets the CXCL12 (C-X-C motif chemokine
ligand 12, stromal cell-derived factor 1)-mediated AKT and SNAIL signaling pathways to inhibit
invasion and the EMT-associated signaling pathways [104]. On the other hand, in hepatocellular
carcinoma, miR-1306-3p targets FBXL5 to suppress SNAIL degradation and promote metastasis [105].
The SNAIL level can also be stabilized by miRNAs. miR-181b-3p promotes EMT in breast cancer cells
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through SNAIL stabilization by directly targeting the YWHAG protein [106]. In breast cancer cells,
miR-5003-3p promotes EMT also through SNAIL stabilization via MDM2 and the direct targeting
of E-cadherin [107]. In melanoma growth and metastasis, miR-9 is described as a downregulator of
NF-κB1-SNAIL pathway [108]. The results described above are summarized in Table 2.

Table 2. Signaling pathways involving microRNAs that regulate SNAIL.

MicroRNA Regulated Pathway
and Genes

Mechanism of
SNAIL Regulation Cancer/Cell Type References

miR-9 NF-κB1 SNAIL expression melanoma [108]

miR-101 CXCL12-mediated AKT SNAIL localization thyroid carcinoma [104]

miR-126 PI3K-AKT SNAIL localization lung cancer [102]

miR-148a MET/AKT/GSK-3β SNAIL localization
and degradation hepatoma cells [101]

miR-181b-3p YWHAG protein SNAIL
stabilization breast cancer [106]

miR-215 PI3K-AKT SNAIL localization papillary thyroid
cancer [103]

miR-1306-3p FBXL5 Suppression of
SNAIL degradation

hepatocellular
carcinoma [105]

miR-5003-3p MDM2, E-cadherin SNAIL
stabilization breast cancer [107]

Sometimes, the research data demonstrate the regulation of SNAIL expression by miRNAs, but
it is not described if the regulation is direct or indirect. There are also several other examples of
miRNAs regulating the SNAIL level. In ovarian cancer, miR-16 is associated with the downregulation
of mesenchymal markers, such as SNAIL, SLUG, and vimentin [109]. In Wilms’ tumor cells, miR-483-3p
regulates EMT by the modulation of E-cadherin, N-cadherin, SNAIL, and vimentin expression [110].
In osteosarcoma, the downregulation of miR-145 promotes EMT by regulation of the SNAIL level [111].
In rhabdomyosarcoma, miR-410-3p inhibits tumor growth and progression by inhibition of the
expression of SNAIL, SLUG, N-cadherin, and Bcl-2 [112]. However, miR-410-3p was shown previously
in different tumor types to directly target SNAIL [87].

The miRNAs–SNAIL axis may regulate not only EMT, but also the activity of cancer stem
cells. miR-210 induced by a hypoxic microenvironment favored breast cancer stem cells’ metastasis,
proliferation, and self-renewal by targeting E-cadherin and the upregulation of SNAIL [113].
Another example is miR-146a, which directs the symmetric division of SNAIL-dominant colorectal
cancer stem cells [114].

3.3. Regulation of SLUG Expression by MicroRNAs

MiRNAs can regulate not only SNAIL, but also SLUG, which is another important factor from the
SNAIL family. Some miRNAs can regulate both factors. Among them are miR-30a [70], miR-122 [95],
miR-182 [115], and miR-203 [115] and miR-204 [116]. SLUG is targeted in in oral squamous cell
carcinoma by miR-204 [116]; glioblastoma by miR-203 [117]; in lung cancer by miR-1 [118]; in breast
cancer by miR-124 [119,120], miR-30a [70], miR-497 [121], miR-1271 [122], and miR-203 [123,124]; in
gastric cancer by miR-33a [125]; in lung cancer by miR-218 [126]; in clear cell renal cell carcinoma
by miR-1 [127]; in osteosarcoma by miR-124 [128]; and in gingival fibroblasts by miR-200b [129].
Similarly to SNAIL, miRNAs–SLUG action regulates EMT in cancer progression, as well as different
processes, such as the modulation of cancer stem cells’ activity. miR-204 binds to the 3′UTR regions of
both SLUG and SOX4 to suppress osteosarcoma cancer stem cells [117], whereas the loss of miR-124
enhances the stem-like traits of glioma cells [130]. The miRNAs–SLUG axis is also important in
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other biological processes, such as for example in traumatic heterotopic ossification. miR-630 inhibits
endothelial–mesenchymal transition by targeting SLUG [131]. The regulation of SLUG expression by
miRNAs is summarized in Table 3.

Table 3. MicroRNAs regulating SLUG.

MicroRNA Cancer/Cell Type References

miR-1 lung cancer [118]

miR-30a breast cancer [70]

miR-33a gastric cancer [125]

miR-124
breast cancer [119,120]

osteosarcoma [128]

glioma [130]

miR-200b gingival fibroblasts [129]

miR-203
glioblastoma [117]

breast cancer [123,124]

miR-204 oral squamous cell carcinoma [116]

miR-218 lung cancer [126]

miR-497 breast cancer [121]

miR-630 dermal microvascular endothelial cells [131]

miR-1271 breast cancer [122]

4. LncRNA, CircRNAs, and their Relationship to SNAIL and Targeting MicroRNAs

Besides miRNAs, an interesting mechanism of action in the regulation of SNAIL or SLUG
expression is also described for long non-coding RNAs (lncRNA). The may act as sponges for miRNAs
targeting SNAIL. LncRNA MALAT1 (metastasis associated lung adenocarcinoma transcript 1) acts
as a competing endogenous RNA (ceRNA) by sponging miR-22 to promote melanoma growth and
metastasis [83]. MALAT1 turned out to be a regulator of not only miR-22, but also miR-1-3p expression.
In that way, it inhibits migration, invasion, and EMT, which leads to the increased expression of
E-cadherin and decreased expression of vimentin, SLUG, and SNAIL [132]. Another interesting feature
of MALAT1 is the modulation of cancer stem cells’ (CSC) activity by regulation of the miR-1/SLUG
axis in nasopharyngeal carcinoma [133]. In gastric cancer, miR-22 is also regulated by lncRNA H19
with effects on metastasis via the miR-22-3p/SNAIL axis [134]. Another example in gastric cancer is
lncRNA SNHG7 (small nucleolar RNA host gene 7), which directly binds to miR-34a and suppresses
the miR-34a–SNAIL–EMT axis, which regulates gastric cancer cell migration and invasion [135].

SLUG level can also be regulated by other lncRNAs. For example, lncRNA GAPLINC (gastric
adenocarcinoma associated) promotes the invasion of colorectal cancer by binding to PSF/NONO
(probable DNA replication complex GINS protein PSF/non-POU domain-containing octamer-binding
protein) and partly by stimulating the expression of SLUG [136]. lncRNA CAR10 directly binds
two miRNAs: miR-30 and miR-203 and hence regulates the expression of both SNAIL and SLUG.
In that way, it induces EMT and promotes lung adenocarcinoma metastasis [137]. In that cancer type,
another example is lncRNA HCP5 acting as a sponge for miR-203 [138]. miR-203 interacts also with
lncRNA UCA1 in hepatocellular carcinoma, and in that way, SLUG expression is regulated in tumor
progression [139]. In that cancer type, lncRNA–AB209371 binds to hsa-miR199a-5p and weakens the
inhibitory effect of hsa-miR199a-5p on SNAIL expression to promote EMT [140]. In breast cancer,
lncRNA TINCR (terminal differentiation-induced ncRNA) targets miR-125b, and in that way regulates
SNAIL and EMT [85].

LncRNAs may regulate the SNAIL level not only by miRNAs, but also epigenetically.
LncRNA SATB2-AS1 (the antisense transcript of SAT2B—special AT-rich sequence-binding protein 2)
mediates the epigenetic regulation of SNAIL expression in colorectal cancer progression. SATB2-AS1
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recruits p300, whose acetylation of H3K27 and H3K9 at the SATB2 promoter and subsequently the
elevated SATB2 recruits HDAC1 to the SNAIL promoter to repress its transcription [141].

The interaction of lncRNAs with SNAIL is also possible. lncRNA NEAT1 (nuclear enriched
abundant transcript 1) epigenetically suppresses E-cadherin expression in osteosarcoma cells by
association with the G9a–DNMT1 (DNA methyltransferase 1)—SNAIL complex [142].

lncRNAs may also regulate the level of transcription factor by increasing their stability. For example,
lncRNA SNHG15 impedes SLUG ubiquitination and its proteasomal degradation by interaction with
the zinc finger domain of SLUG [143].

Besides lncRNAs, circular RNAs (circRNAs) were also described as SNAIL regulators.
In hepatocellular carcinoma, circ-ZNF652 could physically interact with miR-203 and miR-502-5p
to increase the expression of SNAIL. circ-ZNF652 was identified as a novel driver of EMT [96].
Similarly, in melanoma, circRNA_0084043 promotes progression via the miR-153-3p/SNAIL axis [144].
In urothelial carcinoma, circRNA PRMT5 acts as a sponge for miR-30c, which affects the
SNAIL/E-cadherin pathway and thereby induces EMT [145]. circRNAs may be also implicated
in the regulation of SLUG level. For example, circRNA-000284 can positively regulate the SLUG level
in cervical cancer by sponging miR-506, which directly binds to SLUG 3′UTR [146].

The indirect regulation of SNAIL level by several mediators is also possible. Circular RNA
hsa_circ_0008305 (circPTK2) inhibits TGF-β-induced EMT in non-small cell lung cancer by direct
binding to miR-429/miR-200b-3p, which act as direct regulators of TIF1γ (transcriptional intermediary
factor 1 γ), resulting in diminished SNAIL expression [147]. CircPIP5K1A induces non-small cell
lung cancer progression by the regulation of miR-600/HIF-1α (hypoxia-inducible factor 1-alpha),
which results in the upregulation of EMT-related factors, such as SNAIL [148]. Circ_0026344 promotes
colorectal carcinoma invasion by targeting miR-183, which increases EMT and upregulates mesenchymal
markers and SNAIL [149].

To summarize, SNAIL is regulated by signaling networks involving plenty of miRNAs, long
non-coding RNAs, and circular RNAs (Table 4). lncRNAs and circRNAs usually act as sponges
for miRNAs targeting SNAIL (Figure 3). This mechanism may be responsible for the regulation of
tumor progression.

Table 4. Long non-coding RNAs regulating SNAIL and SLUG.

LncRNA/CircRNA Regulated MicroRNAs Regulated Factors Cancer References

lncRNA MALAT1
miR-22 SNAIL melanoma [83]

miR-22 and miR-1-3p E-cadherin, vimentin, SLUG and SNAIL prostate cancer [132]

miR-1 SLUG nasopharyngeal carcinoma [133]

lncRNA H19 miR-22-3p SNAIL gastric cancer [134]

lncRNA SNHG7 miR-34a SNAIL gastric cancer [135]

lncRNA CAR10 miR-30 and miR-203 SNAIL and SLUG lung adenocarcinoma [137]

lncRNA HCP5 miR-203 SNAIL lung adenocarcinoma [138]

lncRNA UCA1 miR-203 SLUG hepatocellular carcinoma [139]

lncRNA AB209371 miR199a-5p SNAIL hepatocellular carcinoma [140]

lncRNA TINCR miR-125b SNAIL breast cancer [85]

lncRNA SATB2-AS1 - SNAIL (epigenetic regulation involving SATB2) colorectal cancer [141]

lncRNA NEAT1 - E-cadherin by association with
G9a-DNMT1-SNAIL complex osteosarcoma cells [142]

lncRNA SNHG15 - SNAIL (ubiquitination by interaction with zinc
finger domain) colon cancer [143]

lncRNA GAPLINC - SLUG (by binding to PSF/NONO) colorectal cancer [136]

circ-ZNF652 miR-203 and miR-502-5p SNAIL hepatocellular carcinoma [96]

circRNA_0084043 miR-153-3p SNAIL melanoma [144]

circRNA PRMT5 miR-30c SNAIL urothelial carcinoma [145]

circRNA-000284 miR-506 SLUG cervical cancer [146]

hsa_circ_0008305 (circPTK2) miR-429 and
miR-200b-3p SNAIL (indirectly by TIF1γ) non-small cell lung cancer [147]

circPIP5K1A miR-600 SNAIL (indirectly by HIF-1α) non-small cell lung cancer [148]

circ_0026344 miR-183 SNAIL (indirectly) colorectal cancer [149]
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Figure 3. Role of long non-coding RNAs and circular RNAs as sponges for microRNAs in the regulation
of SNAIL expression in tumors.

5. SNAIL Regulation of Non-Coding RNAs

MiRNAs were presented as regulators of SNAIL expression. On the other hand, there are several
cases describing SNAIL as a regulator of miRNA level with implications to epithelial tumor progression
and the role of EMT in this process. MiRNAs may be regulated either indirectly or by the direct binding
of SNAIL to E-box sequences in miRNA promoters or regulatory sequences.

For example, in breast cancer cells, SNAIL directly suppresses miR-182 [88] and miR-203 [86].
In head and neck cancers, SNAIL binds to the miR-493 promoter [150]. SNAIL also significantly
represses the miR-145 promoter. miR-145 plays a role in antagonizing SNAIL-mediated stemness
in colorectal cancer [151]. In gastric cancer, SNAIL binds to the putative promoter of miR-375 [152].
SNAIL directly activates the transcription of miR-21 to produce exosomes abundant in miR-21, which
promotes the M2-like polarization of tumor-associated macrophages [153].

In non-epithelial tumor types, such as glioma, SNAIL suppresses miR-128b expression by
direct binding to the miR-128b-specific promoter motif; then, miR-128 and SP1 regulate tumor
progression [154]. A similar direct mechanism was demonstrated for miR-128-2 in mammary epithelial
cells. The loss of SNAIL-regulated miR-128-2 targets multiple stem cell factors to promote the oncogenic
transformation of mammary epithelial cells [155]. The SNAIL/miR-128 axis regulates the growth,
invasion, metastasis, and EMT of gastric cancer. miR-128 targets directly Bmi11, and it can reverse
EMT induced by Bmi-1 via the PI3K/AKT pathway, whereas SNAIL curbs the expression of miR-128,
and then down-regulated miR-128 promotes the expression of Bmi-1 [156]. The loss of SNAIL was also
shown to inhibit cellular growth and metabolism through the miR-128-mediated signaling pathway in
prostate cancer cells [157].

Interestingly, SNAIL may also exert its effects by epigenetic modifications. SNAIL is involved in
CpG DNA methylation of the miR-200f loci, which is essential for maintenance of the mesenchymal
phenotype. In the MDCK (Madin-Darby canine kidney) epithelial kidney cells model, it has been shown
that ZEB1 and SNAIL engage miR-200f transcriptional and epigenetic regulation during EMT [158].
Regulation of the miR-200 family by SNAIL also plays a role in vasculogenesis and may be significant
both in malignant cancer and in early developing embryos [159].

SNAIL overexpression increases the level of miR-125b through the SNAIL-activated
Wnt/β-catenin/TCF4 (transcription factor 4) axis. This mechanism was described for SNAIL-induced
stem cell propagation [160]. Another example of SNAIL action in cancer stem cells is signaling axis
involving SNAIL, miR-146a, and Numb in regulation of the switch between symmetric and asymmetric
cell division in colorectal cancer stem cells [161].

As indicated previously, SNAIL is a regulator of not only EMT and cancer stem cells,
but also of myogenic differentiation. In rhabdomyosarcoma, SNAIL regulates the expression of
myogenic-associated miRNAs, such as miR-1, miR-206, and miR-378 [14]. What is more, the
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SNAIL/miR-199a-5p axis promotes the differentiation of fibroblasts into myofibroblasts by the induction
of endothelial–mesenchymal transition [162].

There are also examples of interaction among lncRNAs, miRNAs, and SNAIL. SNAIL binds to the
promoter of lncRNA PCA3 and activates its expression. Then, lncRNA PCA3 inhibits the translation of
PRKD3 (serine/threonine-protein kinase D3) protein via competitive miR-1261 sponging and in that
way promotes the invasion of prostate cancer cells [163].

SNAIL’s role has been also described in controlling telomere transcription and integrity, which
may be significant features of cancer stem cells, since telomere maintenance is essential for stemness.
SNAIL turned out to be a negative regulator of lncRNA that controls telomere integrity, which is called
telomeric repeat-containing RNA (TERRA). What is more, TERRA can also affect the transcription of
some genes induced during EMT [164].

SNAIL may also not only regulate the level of lncRNAs, but it may also interact with them to
modify the chromatin. lncRNA HOTAIR (HOX Transcript Antisense Intergenic RNA) mediates a
physical interaction between SNAIL and EZH2 (enhancer of zeste homolog 2), which is an enzymatic
subunit of the polycomb-repressive complex 2. In that way, SNAIL recruits EZH2 to specific genomic
sites during EMT [165].

SNAIL may also regulate circRNAs. For example, SNAIL targets the E-box motif on the promoter
of circ-ZNF652 to increase its expression [96].

Besides SNAIL, similar mechanisms of binding to miRNA promoters were also described for
SLUG. In colorectal cancer, SLUG binds to miR-145 promoter and represses it to modulate 5-fluorouracil
sensitivity [166]. In lung cancer cells, SLUG binds directly to the E-box in the promoter of miR-137
and acts as an activator, which promotes cancer invasion and progression by directly suppressing
TFAP2C (transcription factor AP-2 gamma) [167]. In prostate cancer, SLUG is a direct repressor of
miR-1 and miR-200 transcription [168]. In breast cancer cells, SLUG directly binds to miR-203 promoter,
downregulating its expression [124]. SLUG-upregulated miR-221 promotes breast cancer progression
through suppressing E-cadherin expression, which indicates that miR-221 is an additional blocker of
E-cadherin besides SNAIL and SLUG [169].

Sometimes, both SNAIL and SLUG collaborate on EMT and tumor metastasis through miRNAs.
In oral tongue squamous cell carcinoma, those transcription factors act through the miR-101-mediated
EZH2 axis [170]. miR-101 functions as a tumor suppressor by directly targeting ZEB1 (zinc finger
E-Box binding homeobox 1) in various cancers, including colorectal cancer [171].

To summarize, SNAIL and SLUG may be direct or indirect regulators of miRNAs, lncRNAs, and
circRNAs (Table 5). There are several examples of direct binding SNAIL to promoters or regulatory
sequences of non-coding RNAs (Figure 4). Subsequently, those RNAs target plenty of genes to regulate
tumor progression.

Table 5. Non-coding RNAs regulated by SNAIL and SLUG.

Non-Coding RNA Mechanism Cancer/Cell Type References

miR-1 SLUG binding to promoter prostate cancer [168]

regulation by SNAIL
(unknown mechanism) rhabdomyosarcoma [14]

miR-21 SNAIL binding to promoter head and neck cancer [153]

miR-101 transcriptional control by
SNAIL and SLUG squamous cell carcinoma [170]

miR-125b SNAIL-activated
Wnt/β-catenin/TCF4 axis breast cancer stem cells [160]
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Table 5. Cont.

Non-Coding RNA Mechanism Cancer/Cell Type References

miR-128 SNAIL binding to promoter
glioma [154]

prostate cancer [157]

gastric cancer [156]

miR-137 SLUG binding to promoter lung cancer [167]

miR-145 SNAIL binding to promoter colorectal cancer [151]

SLUG binding to promoter colorectal cancer [166]

miR-146a SNAIL-induced
β-catenin-TCF4 complex colorectal cancer stem cells [161]

miR-182 SNAIL binding to promoter breast cancer [88]

miR-200 SNAIL involved in CpG DNA
methylation human kidney cells [158]

SLUG binding to promoter prostate cancer [168]

miR-203 SNAIL binding to promoter breast cancer [86]

SLUG binding to promoter breast cancer [124]

miR-206 regulation by SNAIL
(unknown mechanism) rhabdomyosarcoma [14]

miR-221 transcriptional control by
SLUG breast cancer [169]

miR-375 SNAIL binding to promoter gastric cancer [152]

miR-378 regulation by SNAIL
(unknown mechanism) rhabdomyosarcoma [14]

miR-493 SNAIL binding to promoter head and neck cancer [150]

lncRNA PCA3 SNAIL binding to promoter prostate cancer [163]

lncRNA TERRA transcriptional control by
SNAIL

mesenchymal stem cells and
mammary cells [164]

lncRNA HOTAIR interaction of SNAIL with
HOTAIR and EZH2 hepatocytes [165]

circ-ZNF652 SNAIL binding to promoter hepatocellular carcinoma [96]

Figure 4. MiRNAs, long non-coding RNAs (lncRNAs), and circular RNAs regulated directly by SNAIL
transcription factor.

6. Multi-Component Feedback Loops and Multi-Component Signaling Networks

The literature also describes several examples of multi-component feedback loops and
multi-component signaling networks involving the SNAIL transcription factor and non-coding RNAs.

Selected different multi-component feedback loops and multi-component signaling networks are
presented in Figure 5.
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An interesting example is miR-182, which is directly suppressed by SNAIL in breast cancer cells,
which can also target its suppressor (Figure 5A). This mechanism regulates an epithelial-like phenotype
in vitro and enhances macrometastases in vivo [88].

Similarly in breast cancer, miR-203 forms also a double-negative miR-203/SNAIL feedback loop,
as SNAIL reduces the activity of the miR-203 promoter (Figure 5B) [86].

Moreover, miR-34 and SNAIL form a double-negative feedback loop (Figure 5C) [73] that may
feed-forward regulate ZNF281/ZBP99 to promote EMT, which has implications for human colon
and breast cancer [172]. The expression of ZNF281 (zinc finger protein 281) is induced by SNAIL
and inhibited by miR-34a, which mediates the repression of ZNF281 by the p53 tumor suppressor.
The deregulation of this circuitry by mutational and epigenetic alterations in the p53/miR-34a axis
promotes colorectal cancer metastasis [173].

In head and neck cancers, SNAIL binds to miR-493 promoter to repress it, and subsequently,
miR-493 forms a negative feedback loop with the insulin-like growth factor 1 receptor pathway to
block tumorigenesis (Figure 5D) [150].

Besides miRNAs, SNAIL may also form feedback loops with circular RNAs. SNAIL upregulates
circ-ZNF652 by binding to the E-box motif on the promoter. Subsequently, circ-ZNF652 acts a sponge
for miR-203 and miR-502-5p, which target SNAIL 3′UTR (Figure 5E) [96].

In cancer stem cells, SNAIL forms a feedback circuit to maintain Wnt activity. SNAIL induces
miR-146a expression through the β-catenin-TCF4 complex, and subsequently, miR-146a targets Numb
to stabilize β-catenin (Figure 5F) [161].

An interesting example is also SNAIL action in ZEB1 circuit in melanoma cells. SNAIL is considered
as an external signal that transcriptionally regulates the ZEB1/miR-200a/cicrZEB1 axis. circZEB1,
generated from the ZEB1 gene, contains a binding site for mir200a, which is a post-transcriptional
regulator of ZEB1 (Figure 5G) [174].

SLUG and microRNAs may also form regulatory loops. In breast cancer cells, SLUG and miR-203
form a double-negative feedback loop and SLUG directly binds to miR-203 promoter, downregulating
its expression in metastatic breast cancer cells (Figure 5H) [124]. Furthermore, SLUG and miR-1/miR-200
act in a self-reinforcing regulatory loop, which results in EMT amplification (Figure 5I) [168].

What is also interesting is that sometimes, gene transcripts may also act as a competitive
endogenous RNA (ceRNA) to regulate biological processes. FN1 (fibronectin 1) acts as a ceRNA for
miR-200c in the canonical SNAIL-ZEB-miR200 pathway in breast cancer cells (Figure 5J), whereas
TGFBI (transforming growth factor-beta-induced) is a transcript that is highly induced during EMT in
lung cancer cells, which acts as the ceRNA for miR-21 to modulate EMT [175].
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Figure 5. Multi-component feedback loops and multi-component signaling networks involving SNAIL
and non-coding RNAs. (A) Negative regulation between SNAIL and miR-182. (B) Negative regulation
between SNAIL and miR-203. (C) Negative regulation between SNAIL and miR-34. (D) Feedback loop
between SNAIL, miR-493, and IGF1R. (E) Feedback loop between SNAIL, circ-ZNF652, miR-203, and
miR-502-5p. (F) Signaling pathway involving SNAIL, β-catenin, miR-146a, and Numb. (G) Signaling
pathway involving SNAIL, ZEB1, miR-200a, and circ-ZEB1. (H) Negative regulation between SLUG
and miR-203. (I) Negative regulation among SLUG, miR-1, and miR-200. (J) Signaling pathway
involving SNAIL, ZEB1, miR-200c, and FN1 ceRNA.
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7. Conclusions

SNAIL participates in many physiological and pathological processes, including embryonic
development and cancer metastasis. Therefore, the identification of its crosstalk with non-coding
RNAs can help in understanding the complex signaling networks that drive tumor progression.
Unraveling these signaling networks may help generate new types of cancer therapeutics. miRNAs
and other non-coding RNAs play key roles in tumor progression or suppression. One miRNA may
target multiple genes besides SNAIL. Therapies targeting miRNA may enable the regulation of
more than one signaling pathway. An interesting example of miRNA (described in this review)
therapeutics is a drug based on miR-34a mimics, which has been already enrolled in clinical trials [176].
The identification of miRNA downstream and upstream of SNAIL may create novel possibilities for
biomarker determination during cancer progression, which may lead to improvements in prognosis and
therapy. As those miRNAs usually regulate epithelial to mesenchymal transition, their identification
may help to distinguish different stages of tumor development, as well as benign and malignant
tumors. For the identification of novel biomarkers, the next step is verification of whether miRNA
candidates can be secreted from tumor to blood vessels.
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