Supplementary Materials: Stage 1: Modelling Pancreatic Neuroendocrine Cancer: From Bench Side to Clinic

4 Alexander Ney, Gabriele Canciani, J. Justin Hsuan and Stephen P. Pereira

Supplementary Table S1. Currently available disease models of pNETs: cell lines, patient-derived
 xenograft (PDX), animal models (GEMMs), spheroids and organoids.

	Models	Features	Used For	Outcome and Translation	References
Cell Lines	BON-1	Derived from metastatic lymph node of human pancreatic serotonin producing NET. P53, TSC2 and NRAS mutations with aberrant activation of mTOR/Akt pathway	Test tacrolimus and somatostatin- analogue (SSA) treatment	Antisecretory treatment for NETs. As monotherapy or in combination with antiproliferative therapy of neuroendocrine tumours currently in high-quality phase III trials	[1,3,4]
	QPG-1	Cells derived from human primary pancreatic NET. P53, ATRX and SMAD4 mutations	Test tacrolimus and somatostatin- analogue treatment	Antisecretory treatment for NETs. As monotherapy or in combination with antiproliferative management of neuroendocrine tumours currently in high-quality phase III trials	[2,3,4]
	BON-1 and QPG-1 orthotopic mouse model	BON-1 and QPG1 injected in recipient mice pancreas	Study the effects of cyclin-dependent kinase inhibition on tumour progression	ZK304709-treated cells showed increased propensity for apoptosis and reduction in angiogenesis	[5]
	RSUME knockdown BON-1 cells	RSUME knockdown BON-1 cells,	Study tumour progression after RSUME	pNETs with downregulation of RSUME grew faster	[6]

	implanted in nude mice	downregulation—a stabilising factor of PTEN	with increased liver metastases compared to those with normal RSUME expression	
СМ	Cells derived from ascitic fluid of a human patient with primary pancreatic NET	Investigate whether insulinoma CM cells retain β -cell function. CM cells have a functional glucose-signalling pathway and insulin mRNA expression similar to normal β - cells	The use of gefitinib (EGFR-TK inhibitor) treatment resulted in growth inhibition, apoptosis and cell- cycle arrest in CM cells	[7,8]
NT-3	Cells derived from metastatic lymph node of human pancreatic serotonin producing NET	Develop a well- differentiated and high SSTR- expressing tumour model	Octreotide, everolimus and streptozocin showed better response in NT-3 cells than in low SSTR-expressing QGP-1 cells	[9]
Primary pNET cells in bovine ECM	Human primary pancreatic NET cells derived from 15 patients in a bovine extracellular matrix culture	Test the effects of everolimus and somatostatin analogues	No benefit in everolimus and SSA combined treatment. Caspase- dependent apoptosis induced by SSA is reduced when administered in combination with everolimus	[10,11]
Primary pNET cells in bovine ECM	Human primary pancreatic NET cells derived from 16 patients (18 primary pNets and 2 metastases) cultured in bovine	Search for possible surrogate markers of response to everolimus	In vitro responsiveness to everolimus relates to in vivo efficacy in patients. pNET primary cultures could be used as a model to predict everolimus efficacy	[12]

extracellular matrix culture

PDXs:	Primary pNET cells	58 pancreatic, 1 gallbladder, 38 small bowel and 3 rectal tumours.	Develop a NET xenograft model	7 were successfully engrafted (3 pancreatic, 3 of intestinal and 1 of gallbladder origin) of which only 1 was propagated for 8 passages (gallbladder origin)	[13]
	PDX-pNET	Cells derived from a metastatic insulin producing NET	Test the effects of sapanisertib in everolimus resistant tumours	Sapanisertib treatment induced tumour volume reduction in everolimus resistant tumours	[14]
Animal Models (GEMMs)	RIP-Tag2 RIP-Tag5	GEMM SV40 large T-antigen directed oncogenic transcription of the rat insulin gene-2 promoter (RIP)	To develop insulinoma model and study the host immune response to the tumour	Tag expression induces β-cells hyperplasia and tumour progression. The lymphocytic infiltration was observed in islets overexpressing L- selectin and α4β7	[15,16]
	RIP-Tag2 AB6F1	RIP-Tag2 GEMMs are derived from hybridization of AB6FT genetic background and RIP-Tag2 mice. These models develop nonfunctioning pNETs	Develop nonfunctioning RIP- Tag2 tumour models and study the role of Insm1 gene in pNET differentiation	RT2 AB6F1 mice developed nonfunctioning tumours that were larger with higher metastatic capacity than those observed in RT2 B6 mice	[17]

RIP-myrAKT	GEMM overexpressing the active form of AKT1 under the rat insulin promoter	Develop an insulinoma model and study the AKT1/mTOR pathway	RIP-myrAKT mice developed β cell hyperplasia and tumours. The oncogenic transformation correlated with PTEN downregulation	[18]
pIns-c- MycER ^{tam} /RIP- Bcl-xl-RIP	GEMM with transgenic stimulation of c- Myc and Bcl-xL under control of an insulin promoter	Study the combined effect of Myc and Bcl-x∟ stimulation on tumourigenesis	Activation of c-Myc generates proliferation of B- cells but is controlled by apoptosis. Co- suppression of c- myc and bcl-x provokes progression into angiogenic and invasive tumours. Deactivation of c- myc induces vascular degeneration and apoptosis	[19]
GLU2-Tag	Glucagon- promoted simian virus T-antigen oncogene harboring GEMM	Provide a model for human insulinoma	The mice developed differentiated tumours and showed high levels of circulating glucagon	[20,21]
Men-1 ^{L/L} /RIP2- CreER	Crossbred GEMMs with mice carrying tamoxifen- inducible Cre recombinase under the control of the rat insulin promoter	Generate a temporally controlled conditional tumour model using tamoxifen in the mice diet	GEMMS treated with tamoxifen showed increased B-cell proliferation compared to control mice. This model enables the study of early events leading to B-	[22]

-				cell NET	
_				development	
				Cell hyperplasia	
		MEN-1		was observed in	
	Men-	inactivation	Develop an	the endocrine	
	1LoxP/LoxP-	using Cro Lov	inculinoma model	pancreas and	[23]
	RIPCre+	method	insulinoma model	pituitary gland, yet	
				only pNETs were	
				observed	
				Both models	
				developed well-	
				differentiated	
	Man 1 flox/flox			tumours faster than	
	Dtoreflox/flox DID			models with single	
	Pten ^{nox/nox} RIP-	GEMMs with	Evaluate the	deletion of MEN-1	
	Cre (MPR)	inactivation of	combination of two	or PTEN. MPR	[24]
	M 1 floy/floy	both MEN-1 and	genes inactivation in	developed	
		PTEN	tumourigenesis	pituitary NETs as	
	Pten ^{nox/nox} MIP-		0	well. Treatment	
	Cre (MPM)			with rapamycin	
			delayed the growth		
				of tumours in both	
				models	
				The use of	
		Gcgr with	Develop a highly penetrant and metastatic glucagonoma model	fluorescent	
				reporters allows	
		deletion of p53		the study of	[05]
	Gcgr	and Kb in renin-		metastasis and	[25]
		expressing		identification of	
		pancreas cells		potential molecular	
				targets	
			D1	The pNETS in	
			Develop a	GCGKO mice	
	Gcg gfp/gfp	Gfp knock-in	giucagonon	developed from α -	[0/]
	(GCGKO)	GEMM	producing tumour	cells and	[26]
()	. ,		model and study	disseminated in	
			metastases in pNETS	lungs and liver	
				Mice developed	
			Study the role of	tumours endocrine	
		PRKAR1A	PKA pathway in	or mixed	[07]
∆-Prkar1a	Δ -Prkar1a	Knockout GEMM	pNET	carcinomas with	[27]
		tumourigenesis	100% penetrance.		
			0	Stromal and lymph	
-					

				1 • •	
				node invasion were observed.	
	RT2 Hpa-Tg RT2 Hpa-Tg model constitutively expresses heparinase and RT2 heparinase knockout model	Study the role of heparinase in tumour microenvironment with the observation	RT2 Hpa-tg mice overexpressing heparinase developed tumours with increased peritumoural lymph- angiogenesis	[28]	
		knockout model	of overexpressing and knockout mouse models	Heparinase deletion in RT2 Hpse ^{-/-} provoked increased angiogenesis and pericyte coverage	
3D Cultures – Spheroids	BON1 and QPG-1 serum deprived	BON1 and QPG1 3D models	Study the effects of serum deprivation on BON1 and QPG1 spheroids and in comparison with 2D monolayer culture	In BON1 spheroids, total cell number, serotonin and chromogranin A secretion increased in parallel. QPG1 showed the most evident changes in mRNA expression of somatostatin and D2R receptors. Both BON1 and	[29]
				Both BON1 and QPG1 spheroids showed enhanced cell survival under serum deprivation compared to 2D models	

S7 of S9

	BON-1 96-well hanging drop plates (HD plates) BON-1 24-well plates with a cell-repellent surface BON-1 ultralow- attachment 96- well plates (ULA plates)	Three different methods to obtain 3D culture models of BON-1 cells developing tumours under more realistic conditions compared to 2D cultures	Identification of ideal 3D culture methods for the purpose of drug screening (sunitinib)	ULA plates method proven as ideal approach in terms of reproducibility enabling single spheroid culture in each well to perform viability or cytotoxic tests	[30]
	βTC3 murine pancreatic β-cell line	Cells derived from a PDGF-DD knockout mouse model	Study tumour growth in the absence of and following stimulation of PDGF-DD	βTC3 cells stimulated by PDGF-DD developed higher number of tumour spheroids compared to untreated cells	[31]
3D Cultures— Organoids	Screening platform with islet-like tumouroids originating from primary cells of pNET patients	Tumouroids maintained the neuroendocrine phenotype of primary tumour and remained viable for at least 2 weeks with 86% of success rate	Tumouroids comparing effects of sunitinib, everolimus and temozolomide treatment	Utility of pNET organoids in drug screening confirmed as a personalised treatment approach testing, demonstrating variable responses, including between samples from the same patient	[32]

7

8

9 References

- Townsend, C.M.; Ishizuka, J.; Thompson, J.C. Studies of Growth Regulation in a Neuroendocrine Cell Line.
 Acta Oncol. 1993, 32, 125–130, doi:10.3109/02841869309083900.
- Kaku, M.; Nishiyama, T.; Yagawa, K.; Abe, M. Establishment of a carcinoembryonic antigen-producing cell line from human pancreatic carcinoma. *Gan* 1980, *71*(5):596-601 PMID:7227711.
- Stueven, A.K.; Kayser, A.; Wetz, C.; Amthauer, H.; Were, A.; Tacke, F.; Wiedenmann, B.; Roderburg, C.;
 Jann, H. Somatostatin Analogues in the Treatment of Neuroendocrine Tumors: Past, Present and Future. *Int. J. Mol. Sci.* 2019, 20, 3049.
- Hofving, T.; Arvidsson, Y.; Almobarak. B.; Inge, L.; Pfragner, R.; Persson, M.; Stenman, G.; Kristiansson, E.;
 Johanson, V.; Nilsson, O. The neuroendocrine phenotype, genomic profile and therapeutic sensitivity of
 GEPNET cell lines. *Endocr. Relat. Cancer.* 2018, 25, X1–X2.
- Scholz, A.; Wagner, K.; Welzel, M.; Remlinger, F.; Wiedenmann, B.; Siemeister, G.; Rosewicz, S.; Detjen, K.M.
 The oral multitarget tumour growth inhibitor, ZK 304709, inhibits growth of pancreatic neuroendocrine
 tumours in an orthotopic mouse model. *Gut* 2008, *58*, 261–270, doi:10.1136/gut.2007.146415.
- Wu, Y.; Tedesco, L.; Lucia, K.; Schlitter, A.M.; Garcia, J.M.; Esposito, I.; Auernhammer, C.J.; Theodoropoulou,
 M.; Arzt, E.; Renner, U.; et al. RSUME is implicated in tumorigenesis and metastasis of pancreatic
 neuroendocrine tumors. *Oncotarget* 2016, 7, 57878–57893, doi:10.18632/oncotarget.11081.
- 26 7. Baroni, M.G.; Cavallo, M.G.; Mark, M.; Monetini, L.; Stoehrer, B.; Pozzilli, P. Beta-cell gene expression and
 27 functional characterisation of the human insulinoma cell line CM. *J. Endocrinol.* 1999, 161, 59–68,
 28 doi:10.1677/joe.0.1610059.
- 8. Höpfner, M.; Sutter, A.P.; Gerst, B.; Zeitz, M.; Scherübl, H. A novel approach in the treatment of neuroendocrine gastrointestinal tumours. Targeting the epidermal growth factor receptor by gefitinib (ZD1839). *Br. J. Cancer* 2003, *89*, 1766–1775, doi:10.1038/sj.bjc.6601346.
- Benten, D.; Behrang, Y.; Unrau, L.; Weissmann, V.; Wolters-Eisfeld, G.; Burdak-Rothkamm, S.; Stahl, F.R.;
 Anlauf, M.; Grabowski, P.; Möbs, M.; et al. Establishment of the First Well-differentiated Human Pancreatic
 Neuroendocrine Tumor Model. *Mol. Cancer Res.* 2018, *16*, 496–507, doi:10.1158/1541-7786.mcr-17-0163.
- Mohamed, A.; Romano, D.; Saveanu, A.; Roche, C.; Albertelli, M.; Barbieri, F.; Brue, T.; Niccoli, P.; Delpero,
 J.R.; Garcia, S.; et al. Anti-proliferative and anti-secretory effects of everolimus on human pancreatic
 neuroendocrine tumors primary cultures: is there any benefit from combination with somatostatin analogs?
 Oncotarget 2017, 8, 41044–41063, doi:10.18632/oncotarget.17008.
- Mohamed, A.; Blanchard, M.-P.; Albertelli, M.; Barbieri, F.; Brue, T.; Niccoli, P.; Delpero, J.R.; Monges, G.;
 Garcia, S.; Ferone, D.; et al. Pasireotide and octreotide antiproliferative effects and sst2 trafficking in human
 pancreatic neuroendocrine tumor cultures. *Endocrine-Related Cancer* 2014, 21, 691–704, doi:10.1530/erc-140086.
- Falletta, S.; Partelli, S.; Rubini, C.; Nann, D.; Doria, A.; Marinoni, I.; Polenta, V.; Di Pasquale, C.; Degli Uberti,
 E.; Perren, A.; et al. mTOR inhibitors response and mTOR pathway in pancreatic neuroendocrine tumors. *Endocr. Relat. Cancer* 2016, *23*, 883–891, doi:10.1530/erc-16-0329.
- Yang, Z.; Zhang, L.; Serra, S.; Law, C.; Wei, A.; Stockley, T.L.; Ezzat, S.; Asa, S.L. Establishment and
 Characterization of a Human Neuroendocrine Tumor Xenograft. *Endocr. Pathol.* 2016, 27, 97–103,
 doi:10.1007/s12022-016-9429-4.
- 49 14. Chamberlain, C.E.; German, M.S.; Yang, K.; Wang, J.; VanBrocklin, H.; Regan, M.; Shokat, K.M.; Ducker,
 50 G.S.; Kim, G.E.; Hann, B.; et al. A Patient-derived Xenograft Model of Pancreatic Neuroendocrine Tumors
 51 Identifies Sapanisertib as a Possible New Treatment for Everolimus-resistant Tumors. *Mol. Cancer Ther.* 2018,
 52 17, 2702–2709, doi:10.1158/1535-7163.mct-17-1204.
- Hanahan, D. Heritable formation of pancreatic β-cell tumours in transgenic mice expressing recombinant
 insulin/simian virus 40 oncogenes. *Nat. Cell Biol.* 1985, 315, 115–122, doi:10.1038/315115a0.
- 55 16. Onrust, S.V.; Hartl, P.M.; Rosen, S.D.; Hanahan, D. Modulation of L-selectin ligand expression during an
 56 immune response accompanying tumorigenesis in transgenic mice. *J. Clin. Investig.* 1996, 97, 54–64,
 57 doi:10.1172/jci118406.
- 58 17. Kobayashi, S.; Contractor, T.; Vosburgh, E.; Du, Y.-C.N.; Tang, L.H.; Clausen, R.; Harris, C.R. Alleles of
 59 Insm1 determine whether RIP1-Tag2 mice produce insulinomas or nonfunctioning pancreatic
 60 neuroendocrine tumors. *Oncology* 2019, *8*, 16, doi:10.1038/s41389-019-0127-1.

- Alliouachene, S.; Tuttle, R.L.; Boumard, S.; Lapointe, T.; Berissi, S.; Germain, S.; Jaubert, F.; Tosh, D.;
 Birnbaum, M.J.; Pende, M. Constitutively active Akt1 expression in mouse pancreas requires S6 kinase 1 for
 insulinoma formation. J. Clin. Investig. 2008, 118, 3629–3638, doi:10.1172/JCI35237.
- 64 19. Pelengaris, S.; Khan, M.; I Evan, G. Suppression of Myc-Induced Apoptosis in β Cells Exposes Multiple
 65 Oncogenic Properties of Myc and Triggers Carcinogenic Progression. *Cell* 2002, *109*, 321–334, doi:10.1016/s0092-8674(02)00738-9.
- 67 20. Brubaker, P.L.; Lee, Y.C.; Drucker, D.J. Alterations in proglucagon processing and inhibition of proglucagon
 68 gene expression in transgenic mice which contain a chimeric proglucagon-SV40 T antigen gene. *J. Biol. Chem.*69 1992, 267, 20728–33.
- Rindi, G.; Efrat, S.; Ghatei, M.A.; Bloom, S.R.; Solcia, E.; Polak, J.M. Glucagonomas of transgenic mice express
 a wide range of general neuroendocrine markers and bioactive peptides. *Virchows Arch.* 1991, 419, 115–129,
 doi:10.1007/bf01600225.
- Lines, K.E.; Nunes, R.P.V.; Frost, M.; Yates, C.J.; Stevenson, M.; Thakker, R.V. A MEN1 pancreatic
 neuroendocrine tumour mouse model under temporal control. *Endocr. Connect.* 2017, *6*, 232–242,
 doi:10.1530/ec-17-0040.
- Biondi, C.A.; Gartside, M.G.; Waring, P.; Loffler, K.A.; Stark, M.S.; Magnuson, M.A.; Kay, G.F.; Hayward,
 N.K. Conditional Inactivation of the Men1 Gene Leads to Pancreatic and Pituitary Tumorigenesis but Does
 Not Affect Normal Development of These Tissues. *Mol. Cell. Biol.* 2004, 24, 3125–3131,
 doi:10.1128/mcb.24.8.3125-3131.2004.
- 80 24. Wong, C.; Tang, L.H.; Davidson, C.; Vosburgh, E.; Chen, W.; Foran, D.J.; Notterman, D.A.; Levine, A.J.; Xu,
 81 E.Y. Two well-differentiated pancreatic neuroendocrine tumor mouse models. *Cell Death Differ* 2019, 27,
 82 269–283, doi:10.1038/s41418-019-0355-0.
- 83 25. Glenn, S.T.; Jones, C.A.; Sexton, S.; LeVea, C.M.; Caraker, S.M.; Hajduczok, G.; Gross, K.W. Conditional
 84 deletion of p53 and Rb in the renin-expressing compartment of the pancreas leads to a highly penetrant
 85 metastatic pancreatic neuroendocrine carcinoma. *Oncogene* 2013, *33*, 5706–5715, doi:10.1038/onc.2013.514.
- 86 26. Takano, Y.; Kasai, K.; Takagishi, Y.; Kikumori, T.; Imai, T.; Murata, Y.; Hayashi, Y. Pancreatic
 87 Neuroendocrine Tumors in Mice Deficient in Proglucagon-Derived Peptides. *PLoS ONE* 2015, *10*, e0133812,
 88 doi:10.1371/journal.pone.0133812.
- 89 27. Saloustros, E.; Salpea, P.; Starost, M.; Liu, S.; Faucz, F.R.; London, E.; Szarek, E.; Song, W.-J.; Hussain, M.;
 90 Stratakis, C.A. Prkar1a gene knockout in the pancreas leads to neuroendocrine tumorigenesis. *Endocr. Relat.*91 *Cancer* 2017, 24, 31–40, doi:10.1530/erc-16-0443.
- E Hunter, K.; Palermo, C.; Kester, J.C.; Simpson, K.; Li, J.-P.; Tang, L.H.; Klimstra, D.S.; Vlodavsky, I.; Joyce,
 J.A. Heparanase promotes lymphangiogenesis and tumor invasion in pancreatic neuroendocrine tumors. *Oncogene* 2013, 33, 1799–1808, doi:10.1038/onc.2013.142.
- 95 29. Herrera-Martinez, A.; Van, D.; Dogan, F.; Van, K.P.; Castanño, J.; Feelders, R.; Hofland, L. Utility of a 3D
 96 spheroid cell culture system in neuroendocrine tumors. *Endocr. Abstr.* 2018, doi:10.1530/endoabs.56.p735.
- 97 30. Bresciani, G.; Hofland, L.J.; Dogan, F.; Giamas, G.; Gagliano, T.; Zatelli, M.C. Evaluation of Spheroid 3D
 98 Culture Methods to Study a Pancreatic Neuroendocrine Neoplasm Cell Line. *Front. Endocrinol.* 2019, 10, doi:10.3389/fendo.2019.00682.
- 100 31. Cortez, E.; Gladh, H.; Braun, S.; Bocci, M.; Cordero, E.; Björkström, N.K.; Miyazaki, H.; Michael, I.P.;
 101 Eriksson, U.; Folestad, E.; et al. Functional malignant cell heterogeneity in pancreatic neuroendocrine
 102 tumors revealed by targeting of PDGF-DD. *Proc. Natl. Acad. Sci.* 2016, *113*, E864–E873,
 103 doi:10.1073/pnas.1509384113.
- April-Monn, S.L.; Wiedmer, T.; Skowronska, M.S.; Maire, R.S.; Lena, M.S.; Trippel, M.; Di Domenico, A.;
 Muffatti, F.; Andreasi, V.; Capurso, G.; et al. 3D Primary Cell Culture: A Novel Preclinical Model For
 Pancreatic Neuroendocrine Tumors (PanNETs). *Neuroendocrinology* 2020, doi:10.1159/000507669.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).