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Abstract: Chemokines are chemotactic cytokines that mediate immune cell chemotaxis and lymphoid
tissue development. Recent advances have indicated that chemokines and their cognate receptors play
critical roles in cancer-related inflammation and cancer progression. On the basis of these findings,
the chemokine system has become a new potential drug target for cancer immunotherapy. In this
review, we summarize the essential roles of the complex network of chemokines and their receptors
in cancer progression. Furthermore, we discuss the potential value of the chemokine system as a
cancer prognostic marker. The chemokine system regulates the infiltration of immune cells into the
tumor microenvironment, which induces both pro- and anti-immunity and promotes or suppresses
tumor growth and proliferation, angiogenesis, and metastasis. Increasing evidence indicates the
promising prognostic value of the chemokine system in cancer patients. While CCL2, CXCL10,
and CX3CL1/CX3CR1 can serve as favorable or unfavorable prognostic factors depending on the
cancer types, CCL14 and XCL1 possess good prognostic value. Other chemokines such as CXCL1,
CXCL8, and CXCL12 are poor prognostic markers. Despite vast advances in our understanding of the
complex nature of the chemokine system in tumor biology, knowledge about the multifaceted roles of
the chemokine system in different types of cancers is still limited. Further studies are necessary to
decipher distinct roles within the chemokine system in terms of cancer progression and to validate
their potential value in cancer prognosis.

Keywords: cancer; chemokines; prognostic marker; immune cell recruitment; tumor growth and
proliferation; angiogenesis; metastasis

1. Introduction

The immune system interacts closely with tumor cells over entire stages of cancer progression
from tumor initiation and development to metastasis, facilitating either cancer inhibition or promotion.
The balance of these actions determines the eventual outcomes, which, in cases of clinically poor
outcomes, are the consequences of immune evasion by tumors [1]. The tumor microenvironment
(TME) comprises not only tumor cells, but also immune cells and the surrounding stromal cells.
Interestingly, cancer cells can take advantage of these immune cells to help them escape the host’s
immune system. In addition, the movement of different subsets of immune cells into the TME is
orchestrated by the chemokine system, followed by the regulation of tumor immune responses in a
spatiotemporal manner [2,3], and cancer-related inflammation [4].

Chemokines are a large family of low-molecular-weight (8 to 14 kDa) chemotactic cytokines [5],
which are well-known for their roles in mediating immune cell recruitment [6] and lymphoid tissue
development [7]. Chemokines can also directly impact tumor cells and endothelial cells in the
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TME to regulate tumor cell growth and proliferation, angiogenesis, cancer stem-like cell properties,
invasiveness, and metastasis. Hence, chemokines directly and indirectly influence tumor immunity
and cancer progression, resulting in a substantial impact on cancer therapy and outcomes [8].
Cancer immunotherapy targeting the chemokine system was recently introduced with several
achievements. Mogamulizumab, an anti-CCR4 antibody, was clinically approved for the treatment of
relapsed and refractory adult T cell leukemia-lymphoma [9]. Additionally, plerixafor (also known as
AMD3100), a CXCR4 antagonist, was approved for the mobilization of hematopoietic stem cells for
transplantation in patients with non-Hodgkin’s lymphoma (NHL) or multiple myeloma (MM) [10].
These advances have led to the recognition of chemokines and chemokine receptors as promising
targets for cancer immunotherapy, and therefore, in-depth knowledge about the roles and mechanisms
of the chemokine system in cancer is crucial for the development of drugs for cancer treatment.

Current standard therapies for most cancers do not benefit all patients. Therefore, the identification
of applicable prognostic biomarkers is of great clinical value, not only to improve the therapeutic
outcomes but also to provide novel therapeutic targets. Because of its powerful effects on cancer
progression, the chemokine system is a potential marker that could predict outcomes for cancer patients.
The present review summarizes the essential roles of the complex network of chemokines and their
receptors in cancer progression. Furthermore, we discuss the prognostic value of the chemokine
system, which has been investigated in diverse cancer types.

2. Chemokines and Chemokine Receptors

The chemokine family is divided into four major subfamilies (CC, CXC, CX3C, and C) based
on the number and location of the highly conserved cysteine residues at the N-terminus of the
chemokine ligands and the presence or absence of intervening amino acids. Whereas the CC, CXC,
and CX3C chemokines have zero, one, and three non-conserved amino-acid residues between the first
two cysteine residues, respectively, the C chemokines lack the first and third of the four conserved
cysteine residues [11,12]. A nomenclature system has been developed, in which the chemokine ligands
in the CC, CXC, CX3C, and C subfamilies are named CCL, CXCL, CX3CL, and XCL, respectively.
These chemokines are recognized by seven transmembrane-domain G protein-coupled receptors
(GPCRs), which are categorized and named CCR, CXCR, CX3CR, and XCR, respectively, based on
their chemokine ligand sources [11,12]. Notably, some chemokines are ligands of more than one GPCR,
and conversely, some GPCRs bind to more than one type of chemokines, inducing diverse effects.
The chemokine receptors and their ligand pairings known in humans and mice are listed in Table 1.

As described above, chemokines function as chemoattractants, orchestrating the infiltration of
immune cells to the TME, influencing tumor cell growth and proliferation, angiogenesis, and metastasis,
and therefore contributing to cancer initiation and development [16]. These multifaceted roles of
chemokines and their receptors in cancer progression are discussed in the following section.
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Table 1. Chemokine receptors with their ligand pairings in humans and mice and various kinds of immune cells expressing chemokine receptors [8,13–15].

No. Chemokine Receptors Ligands a Immune Cells Expressing Chemokine Receptors

1 CCR1 CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL13,
CCL14, CCL15, CCL16, CCL23 Th1, Th2, Th9, Th17, TRM cells, DCs, neutrophils, macrophages, monocytes, basophils

2 CCR2 CCL2, CCL7, CCL8, CCL12, CCL13, CCL16 Th1, Th17, Treg, NK cells, iDCs, neutrophils, monocytes, macrophages, MDSCs,
basophils, platelets

3 CCR3 CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL11, CCL13,
CCL15, CCL16, CCL23, CCL24, CCL26, CCL28

Th1, Th2, Th9, Treg cells, neutrophils, macrophages, MDSCs, basophils, platelets, eosinophils,
mast cells

4 CCR4 CCL3, CCL5, CCL17, CCL22 CD8+ T, Th2, Th17, Th22, Treg, skin- and lung-homing T, B cells, iDCs, monocytes,
basophils, platelets

5 CCR5 CCL2, CCL3, CCL4, CCL5, CCL8, CCL11, CCL13, CCL14,
CCL16 CD8+ T, Th1, Th9, Th17, Treg, TEM, TRM, NK cells, DCs, neutrophils, macrophages, monocytes

6 CCR6 CCL20 Th9, Th17, Th22, Treg, TFH, γδT, NK, NKT, B cells, iDCs, iLC

7 CCR7 CCL19, CCL21 Activated T, Th22, Treg, TCM, TN, TRCM, B cells, mDC

8 CCR8 CCL1, CCL4, CCL8, CCL16, CCL17, CCL18 Th2, Treg, skin TRM, γδT cells, macrophages, monocytes

9 CCR9 CCL25 Th17, Th22, gut-homing T, B cells, DCs, pDCs, IgA+ plasma cells, thymocytes

10 CCR10 CCL27, CCL28 Th17, Th22, skin homing T cell, Treg cells, macrophages, IgA+ plasma cells

11 CXCR1 CXCL1, CXCL6, CXCL7, CXCL8 CD8+ TEFF, NK, neutrophils, macrophages, MDSCs, monocytes, basophils, mast cells

12 CXCR2 CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, CXCL8 CD8+ T, NK cells, neutrophils, macrophages, MDSCs, monocytes, basophils, mast cells, platelets

13 CXCR3 CXCL4, CXCL9, CXCL10, CXCL11, CXCL13 CD8+ TCM, activated CD4+ T, Th1, Th9, Th11, Treg, TFH, TEM, NK, NKT, B cells, pDCs, platelets

14 CXCR4 CXCL12 Most T cells, Treg, B cells, iDCs, neutrophils, macrophages, MDSCs, monocytes, platelets, plasma
cells, endothelial cells, precursors of endothelial cells

15 CXCR5 CXCL13 CD8+ TEM, Th17, TCM, TFH, TFR, B cells

16 CXCR6 CXCL16 Th1, Th17, Th22, γδT, NKT, NK, iLC, plasma cells

17 ? CXCL14 DCs

18 ? CXCL15

19 ? CXCL17

20 CX3CR1 CX3CL1 T, NK cells, DCs, macrophages, monocytes, microglia

21 XCR1 XCL1, XCL2 DC, cross-presenting CD8+ DCs

DC, dendritic cell; iDC, immature DC; iLC, innate lymphoid cell; NK cell, natural killer cell; NKT cell, natural killer T cell; MDSC, myeloid-derived suppressor cell; mDC, mature dendritic
cell; pDC, plasmacytoid DC; Th, T helper cell; TCM, central memory T cell; TEFF, effector T cell; TEM, effector memory T cell, TFH, follicular helper T cell; TFR, follicular regulatory T cell;
TN, naïve T cell; TRCM, recirculating memory T cell; Treg, regulatory T cell; and TRM, tissue-resident memory T cell. a, chemokine ligands with black, red, and blue colours represent
chemokine–chemokine receptor interactions that occur in both mice and humans, only humans, and only mice, respectively. Question marks indicate that the respective chemokine
receptors are currently unidentified.
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3. Roles of Chemokine System in Cancer Progression

A number of studies have demonstrated the roles of chemokines and chemokine receptors in
cancer progression. The recent advances in our understanding of the various chemokine systems and
their differential roles in the recruitments of key immune cells, tumor cell growth and proliferation,
angiogenesis, and tumor metastasis are discussed.

3.1. Roles of Chemokine System in Immune Cell Recruitment

Chemokine receptors are expressed in various kinds of immune cells (Table 1). The trafficking of
these cells is directed by chemokine gradients that guide the cells to migrate to locations with high
concentrations of chemokines [16], inducing either pro- or antitumor immune responses in the primary
tumors and metastatic sites [8]. We discuss the roles of chemokines and their receptor networks which
control the recruitment of key immune cells into the TME and demonstrate how the infiltrated cells
regulate the immune response and tumor development.

3.1.1. T Cells

T cells are leukocytes expressing T cell receptors (TCRs) that recognize antigens presented by
the major histocompatibility complex (MHC). T cells are classically divided into CD8+ cytotoxic T
lymphocytes (CTLs) and CD4+ T cells, which recognize peptides presented by MHC class I and MHC
class II, respectively [17]. CD4+ T cells include several T helper (Th) cells, among which Th1 and Th2
are the most important, and other T cell types such as Treg.

CD8+ CTLs are considered critical mediators of the antitumor response [17]. As shown in Table 1,
various chemokine receptors, including CCR4/5, CXCR3, and CX3CR1, are expressed on CD8+ CTLs.
Thus, their corresponding ligands such as CCL5, CXCL9, CXCL10, and CX3CL1 effectively guide
CD8+ CTL mobilization from regional lymph nodes to tumor tissues [18]. CD8+ CTLs have powerful
cytotoxic abilities due to the secretion of effector cytokines or cytotoxic molecules such as perforin and
granzyme B, or interactions of the CD95 (Fas) molecule and its ligand CD95L, ultimately resulting in
apoptosis in tumor cells [19–21]. Due to these antitumor effects, CD8+ CTL expression was reported to
be associated with a favorable prognosis in breast cancer (BC) patients [22].

Th1 cells also have potent antitumor effects in the TME. Chemokines such as CXCL9 and CXCL10
can orchestrate the migration of effector CXCR3+ immune cells such as Th1 cells into the tumor sites,
subsequently shaping both the tumor immunity and therapeutic responses [23–26]. Importantly,
interferon gamma (IFN-γ) produced by Th1 cells not only has direct effects on arresting cellular
proliferation, promoting apoptosis, and reducing angiogenesis but also on improving CTL responses to
robust antitumor immunity [17]. Notably, Th1 immune responses in lymph nodes signify a protective
effect in colon cancer patients [27] and can be considered a marker for prolonged survival in pancreatic
ductal adenocarcinoma (PDAC) patients [28].

By contrast with Th1 cells, Th2 cells have protumor functions. Interleukin (IL)-4 is the signature
cytokine for Th2 cells and functions as either an inducer or an effector cytokine of the cells [29].
The chemokines CCL8, CCL17, and CCL22 have chemoattractions with Th2 cells expressing CCR8 and
CCR4 (Table 1) [25,30,31]. Th2 lymphocytes help B cells produce antibodies and suppress the action of
cytotoxic T cells [16]. Intriguingly, a low circulating level of IL-4 can identify resectable pancreatic
adenocarcinoma patients with better prognosis [32].

Treg cells play an essential role in maintaining self-tolerance and immune homeostasis [33].
The recruitment of Treg cells to TME is mediated by chemotaxis of CCL20/CCR6 [34], CCL22/CCR4 [35],
CCL28/CCR10 [36], and CXCL12/CXCR4 [37,38]. Importantly, Treg cells abate tumor-specific T cell
immunity involving CTLs, Th, natural killer (NK), and natural killer T cells, contributing to tumor
growth and metastasis [33,35,39]. In addition, the cells can promote inflammation in the TME via
expressing inflammatory cytokines [40]. By providing an escape route for cancers from the immune
response, the expression of Treg cells is significantly correlated with worse overall survival (OS) in the
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majority of solid tumors. However, it is associated with better survival in several cancers, including
colorectal, head and neck, or esophageal cancers with unclear mechanisms [41].

3.1.2. Natural Killer Cells

NK cells are well-known to play a role in antitumor immune responses. Their migration to inflamed
tissues including tumor sites involves a series of chemokine receptors such as CCL3-5/CCR5 [42],
CXCL10/CXCR3 [43], and CX3CL1/CX3CR1 [44]. Similar to CTLs, the cell-mediated cytotoxicity
of NK cells also occurs via effector cytokines, cytotoxic molecules, and the Fas pathway [19–21,45].
Moreover, the elimination of tumors mediated by NK cells, subsequently, leads to tumor-specific T cell
responses [45]. Especially, a high infiltration density of NK cells in a tumor nest is associated with
better OS in esophageal cancer [46].

3.1.3. B Cells

B cells are central players in humoral immunity due to their antibody production capacity [47].
Chemokine axes such as CCL19, CCL21/CCR7, CCL20/CCR6, CXCL12/CXCR4, and CXCL13/CXCR5
(Table 1) correlate with B cell infiltration to tumor sites [15,48]. B cells exhibit antitumor
functionality by directly killing tumor cells, producing specific antibodies for tumor antigens, acting as
antigen-presenting cells (APCs) for T cell activation and memory T cell development, and facilitating
CD4+ and CD8+ T cell immune responses [49–53]. However, B cells induce protumor effects by
activating STAT3, promoting tumor angiogenesis and facilitating tumor progression [54]. Due to the
dual roles of B cells, their high density is associated with good outcomes in non-small cell lung cancer
(NSCLC) [55] but poor outcomes in ovarian cancer [56,57].

3.1.4. Dendritic Cells (DCs)

DCs have opposite effects in tumor response depending on their maturation stage. Immature
DCs (iDCs) present antigens to T cells, and then induce immune tolerance including the generation of
inducible Treg cells, T cell anergy and deletion [58]. iDCs are attracted to tumor tissue sites through
CCL20, CXCL12, and CXCL14 chemotaxis [59–62]. Conversely, mature DCs (mDCs) assist the priming
of CD4+ Th cells and CD8+ CTLs, the activation of B cells, and the initiation of adaptive immune
responses [58]. CCL19 attracts mDCs and lymphocytes expressing CCR7 in T cell-rich areas, and
thereby helping DCs meet tumor-associated antigen-specific T cells [63]. Due to their capacity to
mediate T cell immunity, DCs can be used as adjuvants for cancer vaccination [58].

3.1.5. Neutrophils

Neutrophils also have a crucial regulatory role in tumor establishment and development [64].
Chemokines such as CCL2, CCL3, CXCL1, CXCL2, CXCL5, CXCL8, and CXCL12 promote neutrophil
infiltration to tumors [64]. Importantly, neutrophils induce antitumor functions through direct cytotoxicity,
antibody-dependent cellular cytotoxicity, and specific antigen presentation [65]. Nevertheless, neutrophils
can induce genotoxicity and promote excessive angiogenesis and tumor proliferation [65]. Additionally,
neutrophils can facilitate tumor metastasis by forming premetastatic niches and neutrophil extracellular
traps (NETs) [14,64–67]. Intriguingly, since neutrophils have both pro- and antitumor effects, a higher
density of neutrophils is associated with better response to 5-fluorouracil-based therapy in CRC patients [68],
but worse clinical outcomes in the other types of human cancers [69].

3.1.6. Macrophages

Macrophages are attracted to tumor sites expressing chemotactic factors such as CCL2, CCL5,
CCL7, CCL8, CXCL1, and CXCL12 (Table 1) [18,70]. Macrophages have been classified as classical
M1 (antitumor macrophages) and alternative M2 (protumor macrophages) polarized subtypes. M1
macrophages can directly kill tumor cells and produce proinflammatory cytokines [71]. Contrarily,
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tumor-associated macrophages (TAMs) possess the properties of M2-polarized macrophages, produce
immunosuppressive molecules to promote Treg cells, and suppress antitumor immunity [18,71–73].
Indeed, TAMs produce growth factors such as vascular endothelial growth factor (VEGF), fibroblast
growth factor (FGF), and prostaglandin to support angiogenesis and tumor growth [18]. TAMs establish
a niche for cancer stem cells (CSCs) and support the epithelial–mesenchymal transition (EMT), which
leads to cell migration and metastasis [73]. Collectively, macrophages exhibit either anti- or protumor
functions based on their classification (M1 or M2).

3.1.7. Myeloid-Derived Suppressor Cells (MDSCs)

Tumor tissues contain MDSCs, which can suppress innate and adaptive antitumor immunity
and contribute to tumor progression [74,75]. The infiltration of MDSCs into tumors is related to
numerous chemokine and receptor axes such as CCL2, CCL7, CCL8/CCR2, CCL5/CCR5, CXCL1,
CXCL2, CXCL5/CXCR2, and CXCL12/CXCR4 [18]. MDSCs that migrate to tumor sites increase STAT1
activity, leading to low levels of reactive oxygen species (ROS) and high levels of iNOS, NO, and
arginase-1, which inhibit CD8+ T cell functions in a nonspecific manner [72]. Moreover, MDSCs can
endow cancer cells with stem cell-like properties and are linked with cancer stemness [8]. MDSCs also
support tumor angiogenesis by producing angiogenic factors such as VEGF, platelet-derived growth
factor (PDGF), transforming growth factor beta, CXCL8, and matrix metalloproteinases (MMPs) such
as MMP-2 and MMP-9 [18]. Data from one meta-analysis in solid tumors demonstrated that elevated
levels of circulating MDSCs are negatively associated with the survival outcomes in most cancers [76].

Taken together, the chemokine system plays key roles in regulating the infiltration of immune cells
into the TME, which leads to diverse functions in tumor immunity. While CD8+ CTLs, Th1, and NK
cells induce antitumor responses, Th2, Treg cells, and MDSCs stimulate protumor functions, and B cells,
DCs, neutrophils, and macrophages probably exhibit both anti- and protumor effects. Interestingly,
however, one chemokine axis can attract different kinds of immune cells, which generate contrasting
effects. The functional redundancies not only cause difficulties in the development of anticancer drugs
that target the chemokine system but also lead to opposite prognoses. For example, the CCL5/CCR5 axis,
which can recruit CD4+ and CD8+ T cells [77] and NK cells [42], can predict the improved efficiency of
DC-immunotherapy in NSCLC [78]. Nevertheless, this pair also exhibits chemoattraction to TAMs and
MDSCs [79,80], and has been reported to correlate with poor outcomes in BC patients [81].

3.2. Roles of Chemokines in Tumor Growth and Proliferation

Whereas normal cells strictly control the cellular homeostasis by regulating the synthesis and
release of growth factors, tumor cells disrupt the regulatory mechanisms of the host for growth factor
production and, then, sustain their growth and proliferative signals [82]. Numerous studies have
demonstrated that the chemokine system is involved in tumor growth and proliferation through
several mechanisms.

One of the mechanisms by which some chemokines such as CCL2 or CXCL8 promote tumor
growth and proliferation involves acting as autocrine or paracrine growth factors [83–85]. Furthermore,
chemokines including CCL2 and CCL5 contribute to tumor proliferation through the formation of an
immunosuppressive TME by recruiting Treg cells or inflammatory monocytes and macrophages [86–88].

Phosphoinositide 3-kinase (PI3K)/AKT and extracellular signal-regulated protein kinases 1
and 2 (ERK 1/2) pathways are two key cellular signalling involved in tumor cell survival and
proliferation [89,90]. Interestingly, these pathways are utilized by a series of chemokines and their
receptors, such as CCL20/CCR6 [91], CCL25/CCR9 [92], CXCL1/CXCR2 [93], CXCL8/CXCR1-2 [94],
CXCL12/CXCR4 [95], and CX3CL1/CX3CR1 [96], to inhibit apoptosis and promote tumor cell growth and
proliferation. Intriguingly, both the PI3K/AKT and ERK 1/2 pathways induced by interactions between
chemokines and their receptors can lead to nuclear factor kappa B (NF-κB) activation [97]. While the
NF-κB pathway induces the upregulated expression of some chemokines such as CCL2, CCL5, CXCL5,
CXCL8, CXCL10, CXCL12, and CX3CL1, it also participates in the antiapoptotic and proliferative effects
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of CCL5, CCL20, CXCL8, and CXCL12 in pancreatic cancer [98]. Importantly, chemokines can promote
tumor cell survival by regulating the balance between NF-κB-associated pro- and antiapoptosis proteins.
CCR5 and CX3CL1 were demonstrated to promote the expression of antiapoptotic and tumor-promoting
proteins such as Bcl-xl, Bcl-2, and C-IAP1, as well as to reduce the expression of apoptotic proteins
including cleaved caspase-3 and -9, PARP, and Bax via the NF-κB pathway [99,100].

In contrast, chemokines also inhibit tumor growth and proliferation. The term “cellular senescence”
has been used to describe a state of stable and long-term proliferative arrest, despite maintained viability
and metabolic activities [101]. Oncogene-induced senescence (OIS) is a highly stable antiproliferative
response to oncogenic stress and acts as an effective barrier to tumor progression [102,103]. In the early
stages of tumorigenesis, chemokines such as the CXCL1/CXCR2 axis can mediate OIS through NF-κB
signalling to restrict tumor growth. However, in late stages of tumorigenesis, cellular senescence
becomes a source of inflammation, recruiting MDSCs into the inflamed tumor, generating an immune
suppressive microenvironment, and allowing cancer cell growth [103,104]. Moreover, CCL14 attenuates
hepatocellular carcinoma (HCC) cell proliferation by inhibiting cell cycle progression and promoting
apoptosis in vitro and suppresses HCC growth in vivo via the Wnt/β-catenin signalling pathway [105].

Taken together, the functions of chemokines and their receptors in inducing either pro- or
antitumorigenic activities are highly complicated. On the one hand, chemokine systems can
promote tumor growth and proliferation through the autocrine growth factor function, generation of
immunosuppressive TME, and the PI3K/AKT and NF-κB signalling pathways. On the other hand,
they can induce OIS or the Wnt/β-catenin signalling pathway to mitigate tumor development. Hence,
future studies should be more focused on elucidating the underlying action mechanisms for these
chemokine systems to decipher their distinct roles in tumor biology and to discover new targeted
therapies for effective cancer treatment.

3.3. Roles of Chemokine System in Tumor Angiogenesis

Like normal tissues, tumors require sustenance from nutrients, oxygen, and the ability to
excrete metabolic wastes and carbon dioxide, which are addressed by the process of angiogenesis, a
tumor-associated neovasculature [82]. Many chemokine systems have been found to play important
roles in tumor angiogenesis [106].

CXC chemokines, depending on the expression of the glutamic-leucine-arginine (ELR) motif at the
N-terminal, can be classified into ELR+ chemokines with angiogenic effects and ELR− chemokines with
angiostatic effects [107]. Angiogenic ELR+ CXC chemokines comprise CXCL1, CXCL2, CXCL3, CXCL5,
CXCL6, CXCL7, and CXCL8. Chemokines such as CXCL6 and CXCL8 can specifically bind and activate
both CXCR1 and CXCR2 (Table 1), whereas other angiogenic ELR+ CXC chemokines mediate their
angiogenic activity through CXCR2 [108,109]. Although CXCL12 is one of the ELR− CXC chemokines,
it had been exceptionally implicated as a strong angiogenic chemokine [108]. All the angiogenic
CXC chemokines contain a putative cis-element that recognizes NF-κB, leading to tumor-associated
angiogenesis [109]. Furthermore, by working alone or interacting with other angiogenic factors such as
VEGF, basic FGF (bFGF), and prostacyclin, the CXC axes such as CXCL8/CXCR2 and CXCL12/CXCR4
can act in either a direct, parallel, or serial manner to stimulate angiogenesis [109–111]. Interestingly, the
pro-angiogenic effect of VEGF and CXCL8 was demonstrated to be further associated with the activation
of neutrophils [112]. Furthermore, other chemokines such as CCL1, CCL2, CCL3, CCL11, CCL15,
CCL16, CCL23, and CX3CL1 have also been implicated in tumor neovascularization by promoting
migration and differentiation with or without the proliferation of endothelial cells and inducing new
blood vessel formation [113–120]. CCL2 can recruit angiogenic factor-producing leukocytes such as
macrophages into the TME to accelerate angiogenesis [121].

Except for CXCL12, other ELR− members of the CXC chemokine family including CXCL4,
CXCL4L1, CXCL9, CXCL10, CXCL11, and CXCL14 are angiostatic [108,109]. CXCL4L1 is produced by
the nonallelic variant gene of CXCL4 and differs from CXCL4 in only three amino acid residues but has
more potent angiostatic effect than CXCL4 [109]. CXCR3 is a major receptor that has been identified for



Cancers 2020, 12, 287 8 of 25

angiostatic CXC chemokines including CXCL4, CXCL9, CXCL10, and CXCL11. These chemokines are
involved in the recruitment of Th1 cells expressing CXCR3, which acts as a receptor for the inhibition of
angiogenesis [108,109,122]. Interestingly, the angiostatic capabilities of CXCL4 and CXCL10 also come
from their suppression of bFGF and VEGF-induced angiogenesis and their inhibition of endothelial
cell proliferation and chemotaxis [108,123–125]. CXCL14 has been shown to be a potent angiogenesis
inhibitor but its receptor and underlying action mechanism remain unidentified [65,109]. Furthermore,
CCL5 binding to CCR5 has also been demonstrated to mediate anti-angiogenic activity with an
undefined mechanism [126].

In summary, chemokines stimulate or inhibit angiogenesis by the promotion or suppression of
angiogenic factors such as VEGF and bFGF and the migration and proliferation of endothelial cells.
Another way of chemokines to augment angiogenesis is through the recruitment of immune cells that
support angiogenesis to the TME.

3.4. Roles of Chemokine System in Tumor Metastasis

Tumor metastasis is the movement of tumor cells from a primary site to progressively colonize
distant organs and is a major contributor to the death of cancer patients [127]. After growing and
proliferating at the primary tumor site, tumor cells migrate and invade the surrounding extracellular
matrix (ECM), then proceed to enter the bloodstream or lymphatic system, becoming circulating
tumor cells (CTCs). CTCs are disseminated along chemotactic gradients and induce extravasation at
non-random and organ-specific sites, followed by tumor growth and proliferation at the new sites [14].
There are some organs in the body that are more susceptible to tumor metastasis such as the lung,
brain, liver, lymph nodes, and bone marrow while others like the skin, kidneys, and pancreas are
less prone [128]. While the mammalian body has a variety of active cellular highways, chemokines
are considered to act as the “traffic directors” responsible for guiding cells that express appropriate
receptors to specific locations. Metastatic cancer cells can “hijack” the chemokine receptor-regulated
cell migration highway to initiate metastasis at distant sites [128].

At the new distant locations, cancer cells can exploit the chemokine system to establish immune
system suppression and angiogenesis for the formation of a pre-metastatic niche, and to facilitate the
proliferation of metastatic cancer cells [129]. For example, CCL2 stimulates metastatic seeding of BC
cells by increasing the retention of metastasis-associated macrophages [130]. Furthermore, CXCR2
has a key role in metastatic progression, involving the migration of myeloid lineage cells such as
neutrophils, macrophages, and MDSCs to both primary tumors and metastases [131]. Interestingly, in
BC, the CCL5 secreted by lymphatic endothelial cells within the lungs and lymph nodes directs tumor
dissemination into these tissues and promotes metastasis [132].

Cell migration is an integrated multistep process initiated by the process of membrane protrusion,
which is driven by localized polymerization of actin filaments on the submembrane [133]. The binding
of chemokines to their GPCRs activates a series of downstream signalling pathways that regulate
integrin activation (adhesion) and actin cytoskeleton reorganization. This leads to actin polymerization
and F-actin formation, followed by pseudopodia formation and, eventually, more efficient migration
and invasion of tumor cells [134,135]. The CCL5/CCR5, CCL21/CCR7, and CXCL12/CXCR4 axes have
been shown to promote cell migration through this mechanism [136,137].

The EMT is a phenotypic change from polarized epithelial cells to mesenchymal cells, resulting in
the loss of cell-cell adhesion and cell polarity, increased migratory capacity and invasiveness, enhanced
resistance to apoptosis, and substantial promotion of the production of ECM components [138,139]. Two
of the most important properties that promote metastasis, namely invasiveness and stemness, converge
during EMT [140]. Interestingly, various chemokines have been implicated to contribute to EMT
progression in cancer cells. EMT can be induced by CXCL8 and its receptors through overexpression
of the transcription factor Brachyury [141], CCL2 with the enhancement of Snail expression [142], the
CXCL6/CXCR1/2 axis via the PI3K/AKT and Wnt/β-catenin pathways [143], and the CXCL1/LCN2
paracrine axis with the activation of Src signalling [144]. In addition, NF-κB is associated with the EMT
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induced by CCL5 and CCL18 [145,146]. In contrast, CCL28 treatment has been demonstrated to inhibit
cell invasion and EMT in oral squamous cell carcinoma cells [147].

CSCs refer to undifferentiated and self-renewing tumor cells, which have the ability to initiate
heterogeneous tumors and repopulate metastatic outgrowths [140]. Many studies have demonstrated a
correlation between the chemokine system and CSC-like properties in cancer cells. The CXCL12/CXCR4
axis has been well-documented to have various roles in CSCs. The overexpression of CXCR4 or
CXCL12γ, an isoform of CXCL12 found in CD44+/CD133+ prostate CSCs, suggests that one mechanism
by which the CXCR4/CXCL12 axis promotes metastasis in prostate cancer is the maintenance of
stemness in CSCs [148,149]. In addition, CXCR1 blockage reduced CSC properties in clear cell renal
cell carcinoma [150], depleted the CSC population, and reduced systemic metastasis development in
BC cells [151]. CCR5+ BC cells demonstrated several specific features of CSCs, including increased
mammosphere formation, enhanced ability to initiate tumors, and metastatic capacity, as well as
improved DNA repair activity [152].

Briefly, chemokines promote tumor metastasis through their hijacked cell migration highway,
the establishment of a premetastatic niche, formation of pseudopodia, and induction of EMT and
CSC properties. Therefore, chemokines that stimulate tumor metastasis can potentially serve as poor
prognostic markers for cancer patients. Taken together, the chemokine system plays pivotal roles in
regulating immune cell recruitment to the TME, tumor growth and proliferation, angiogenesis, and
metastasis. The representative chemokines and chemokine receptors associated with their multifaceted
roles in cancer progression are delineated in Figure 1.
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Figure 1. Multifaceted roles of chemokines and their receptors in immune cell recruitment, tumor
growth and proliferation, angiogenesis, and metastasis. Chemokines guide the trafficking of different
immune cells expressing their respective receptors into the tumor microenvironment, which induces
both anti- and protumor immunity. Additionally, the chemokine system generally stimulates tumor
growth and proliferation. Chemokines can also regulate angiogenesis with their angiogenic or
angiostatic functions. Furthermore, chemokines are involved in tumor migration to secondary sites to
develop metastasis. CTL, CD8+ cytotoxic T lymphocyte; Th1, T helper cell; NK, natural killer cell; Treg,
regulatory T cell; B, B cell; iDC, immature dendritic cells; mDC, mature dendritic cell; N, neutrophil,
M, macrophage; MDSC, myeloid-derived suppressor cell. The purple arrows show the promotion of
tumor growth and proliferation. The red arrows indicate the angiogenic effect. The red T line indicates
the angiostatic effect. The green arrows indicate the promotion of metastasis. (For detailed information,
please see the text.).
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4. Role of Chemokine System in Cancer Prognosis

So far, this review has described the complicated and multifaceted roles of the chemokine system
in cancer progression. These critical roles of the chemokine system could have value in predicting
OS in cancer patients. We used the PubMed database as the primary source and Google as the
secondary source and searched for relevant articles on the role of chemokine system in cancer prognosis,
published up to October 2019. The following key words were employed in the search: chemokine/s,
prognosis, prognostic, and cancer. There is increasing evidence from retrospective, prospective,
prospective-retrospective studies, which are designed as retrospective analysis of archived tissues
prospectively collected with follow-up data, and even meta-analysis studies to demonstrate the
potential predictive value of the chemokine system for patients with different kinds of cancers. In this
section, we will discuss the roles of chemokines as prognostic factors for cancer patients in correlation
with their roles in disease progression.

4.1. CCL2

Interestingly, a hypothesis suggested that tumor cells produce CCL2 to amplify the recruitment
of monocytes or macrophages, which might kill tumor cells by producing pro-inflammatory
cytokines [153]. Even though CCL2 exhibits angiogenic effects in vivo, the activity is only observed at
certain doses but not at higher doses of CCL2 [154]. Nevertheless, there is a series of results suggesting
that the CCL2-dependent signalling pathway could promote the survival of tumor cells [155,156]
and stimulate metastasis [157–159] and angiogenesis [121]. The dual roles of the CCL2/CCR2 axis in
cancer development can lead to opposite results, as patients with higher CCL2 or CCR2 expression
had significantly better OS in NSCLC [153] but shorter OS and progression-free survival in diffuse
large B cell lymphoma (DLBCL) [160], although evidence about the roles of CCL2/CCR2 in DLBCL is
limited. Further understandings are needed to clarify the value of CCL2/CCR2 as a prognostic factor
in many different cancer types.

4.2. CCL5

The CCL5/CCR5 axis has been demonstrated to promote cancer cell migration through the
recruitment and modulation of inflammatory cell activities, followed by the generation of an
immunosuppressive environment including TAMs and MDSCs in BC [79,80,161]. Data from a
study on BC patients showed that patients with higher serum levels of CCL5 had a greater probability
of lymph node metastasis [81]. Similarly, in stage II BC patients, the positive tumor expression of
CCL5 alone or when combined with the absence of estrogen receptor-α significantly increased the
risk for disease progression [162]. Therefore, CCL5 can be considered a poor prognostic factor for BC,
primarily in stage II patients.

4.3. CCL14

The functions of CCL14 in cancer progression have not been clearly identified. CCL14 promotes
apoptosis, alleviates HCC cell proliferation and growth by inhibiting cell cycle progression through the
Wnt/β-catenin signalling pathway, and contributes to longer OS in HCC patients [105]. Consistently,
high expression of CCL14 genes effectively improved survival times in HCC [163]. In contrast, however,
CCL14 was reported to promote bone marrow infiltration, proliferation, and the polarization of
macrophages, which was considered to be associated with chemoresistance in MM [164]. More studies
are needed to discover the mechanisms of action for this chemokine in cancer development and its
prognostic functions in HCC and other cancer types.

4.4. CCL20

Studies have reported that the CCL20/CCR6 axis plays a key role in the tumor-chemokine
network and promotes tumor progression in HCC and CRC. This axis has been shown to stimulate
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cell proliferation, probably via regulating the expression of p21, p27, and cyclin-D1 [91,165], induce
EMT via PI3K/AKT and Wnt/β-catenin pathways [166], and eventually, promote metastasis [167,168].
The CCL20/CCR6 network facilitates Treg activity and induces immune suppression to mediate cancer
cell elimination and metastasis [34]. With these protumor effects, CCL20 expression in HCC [169] and
the co-expression of CCL20 and CXCL8 in CRC [167] were negatively associated with patient outcomes.

4.5. CCR7

CCR7 has been well-documented to comprehensively promote tumor development in many
cancer types. CCR7 can weaken the host’s antitumor immunity by downregulating IFN-γ mediated
inflammation in melanoma [170]. In addition, CCR7 has been demonstrated to inhibit apoptosis
and stimulate proliferation by promoting G2/M phase progression through the ERK1/2 pathway in
NSCLC [171]. CCR7 also induces tumor angiogenesis by promoting VEGF-C expression in prostate
cancer [172]. Moreover, it enhances the proliferation and migration of endothelial cells and increases
angiogenic capacity via the NF-κB/VEGF pathway in esophageal squamous carcinoma cells (ESCC) [173].
CCR7 has also been found to induce EMT in PDAC and lung cancer (LC) [174,175], promote MMP-2
and -9 expression in bladder cancer [176], and facilitate tumor cell dissemination, migration, and
eventually metastasis formation [177]. With the strong protumor functions, the expression of CCR7 or
CCL21 has been reported to be strongly correlated with poor survival [169,178]. Hence, CCR7 could
become a predictive marker for a number of cancers, including colorectal liver metastasis.

4.6. CXCL1

CXCL1 has been reported to play an important role in CRC progression and metastasis by
inducing glycolysis [179]. CXCL1 is also an ELR+ CXC chemokine that induces angiogenesis by
binding to CXCR2 [109]. In addition, CXCL1 produced by TAMs recruits CXCR2+ MDSCs for the
pre-metastatic niche to stimulate liver metastases in CRC [70]. Moreover, CXCL1 directly represses T
cell infiltration and mitigates sensitivity to immunotherapy in pancreatic cancer [180]. Consistently, due
to the tumor-promoting effects, high CXCL1 expression has been shown to be a risk factor for cancer
prognosis, with poor OS, advanced tumor, node, and metastasis stage, and lymph node metastasis.
This result strongly suggests the prognosis value of CXCL1 for various cancers including CRC,
pancreatic cancer, and others [181]. It has also been suggested that CXCL1 mediates radioresistance by
regulating the DNA damage response in a ROS-dependent manner in ESCC [182].

4.7. CXCL8

CXCL8 has been extensively investigated for its functions in promoting tumorigenesis. CXCL8
can stimulate proliferation and survival via autocrine activation in CRC [183], cervical cancer [184],
and LC [185], or via the ERK1/2 pathway in NSCLC [94]. CXCL8 also promotes angiogenesis and
cell migration, induces EMT in CRC [183,186], attracts and activates MDSCs to form NETs, and
helps tumors evade the immune system [187]. Due to the above protumor effects, high expression of
CXCL8 potentially serves as an unfavorable prognostic marker in numerous human cancers, including
CRC [167,188], cervical cancer [189], and lung adenocarcinoma [190]. Consistently, CXCL8 has also
been a strong predictor for poor outcome in various treatments including chemo-immunotherapy [191]
in pancreatic cancer or aflibercept therapy in metastatic CRC [192].

4.8. CXCL10

CXCL10 has opposing effects on TME. On the one hand, local production of CXCL10 attracts CTLs
into ESCC tissue and probably plays a positive role in patient survival [193]. On the other hand, an
in vitro study showed that monocytes, orchestrated by CXCL10, promote the migration and invasion of
tumor cells in B cell precursor acute lymphoblastic leukemia (ALL), and then stimulate metastasis [194].
Because of the above dual functions, elevated expression of CXCL10 has been associated with favorable
outcomes in ESCC [195], but unfavorable prognosis in DLBCL [196].
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4.9. CXCL12/CXCR4

CXCL12/CXCR4 is a well-investigated axis that is strongly involved in all stages of tumor
progression in many kinds of cancer. CXCL12/CXCR4 plays an important role in the recruitment of Treg

cells into the TME, and contributes to immune suppressive activities and tumor-related inflammation
in HCC and malignant pleural mesothelioma [37,38]. As mentioned above, the CXCL12/CXCR4
pair promotes tumor cell growth and the proliferation of glioblastoma cells via the ERK1/2 and
AKT pathways [95]. In addition, the axis is involved in tumor angiogenesis via VEGF-dependent
mechanisms in BC [197] and glioblastoma [198]. This axis also promotes metastasis mediated by
actin polymerization, pseudopodia formation [199], and EMT induction [200]. Moreover, CXCR4
plays a key role in the self-renewal of CSCs in drug-resistant NSCLC [201]. Due to the powerful
protumor activities of CXCL12/CXCR4 axis, numerous studies have consistently shown that their
expression is associated with poor prognosis for patients in esophageal cancer [202], acute myelogenous
leukemia [203], BC [204,205], HCC [206], and NSCLC [207]. In addition, CXCR4 expression correlates
with the degree of tumor infiltration and promotes a more aggressive phenotype in papillary thyroid
carcinoma [208], and is also a negative prognostic marker for response to chemotherapy in NHL [209].

4.10. CX3CL1/CX3CR1

The CX3CL1/CX3CR1 axis has both tumor-promoting and suppressive effects in cancer progression,
resulting in either favorable or unfavorable prognosis depending on the cancer types. Increased
expression of CX3CL1 has been correlated with a better prognosis, with enhanced recruitment of CD8+ T
and NK cells in gastric adenocarcinoma patients [210]. Furthermore, in HCC patients, CX3CL1/CX3CR1
regulates the cancer cell cycle and tumor progression via the autocrine or paracrine systems, which
is associated with positive outcomes [211]. In contrast, CX3CL1/CX3CR1 has been proven to induce
tumor growth, proliferation, and apoptosis resistance through activating the AKT/NF-κB [100] and
JAK/STAT signalling pathways in PDAC [212]. Therefore, a study in PDAC patients showed evidence
that high expression of the CX3CL1/CX3CR1 axis in tumor tissues led to a poor prognosis for OS [213].

4.11. XCL1

XCL1 attracts CD4+ and CD8+ T cells, neutrophils [214], and NK cells [215]. It probably augments
antitumor responses, and therefore could be crucial in gene transfer immunotherapies in some
cancers [214]. Interestingly, higher serum XCL1 levels at diagnosis and their progressive decline during
chemotherapy were associated with higher survival in ALL [216]. This could be explained by the
progressive decrease of the leukemic burden in the tumor’s response to cancer treatments. However,
this result should be taken into consideration because patients with good predictive factors were also
younger and had lower white blood cell counts [216]. The mechanism of XCL1 in cancer progression
and its role in cancer prognosis should be examined further in future investigations.

In brief, many chemokines and chemokine receptors can act as prognostic markers for cancer
patients. CCL2, CXCL10, and CX3CL1/CX3CR1 can serve as both favorable and unfavorable prognostic
factors for cancers depending on cancer types. While CCL14 and XCL1 have shown only good prognostic
value, other chemokines such as CCL5, CCL20/CCR6, CCR7, CXCL1, CXCL8, and CXCL12/CXCR4
have consistently played the role of poor prognostic markers in different kinds of cancer. The favorable
and unfavorable roles of chemokines as prognostic factors in different types of cancers are summarized
in Table 2. Interestingly, high levels of multiple chemokines were reported to be strongly associated
with worse patient OS in several clinical trials [217–219]. In order to identify and validate multiple
chemokines as promising and predictive tumor-based biomarkers for patient outcomes, further
investigations in various clinical trials of anticancer treatments are necessary.
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Table 2. Roles of chemokine system as prognostic factors in cancers.

Chemokines/Receptors Cancer Types Sites of
Expression Study Types References

Good prognostic markers

CCL2 Non-small cell lung cancer (NSCLC) Tissue Retrospective [153]

CCL14 Hepatocellular carcinoma (HCC) Tissue Retrospective [105]

CXCL10 Esophageal squamous cell carcinoma Tissue Prospective [195]

CX3CL1/CX3CR1 HCC Tissue Prospective [211]

CX3CL1 Gastric adenocarcinoma Tissue Prospective [210]

XCL1 Acute lymphoblastic leukemia Serum Prospective [216]

Poor prognostic markers

CCL2/CCR2 Diffuse large B cell lymphoma (DLBCL) Tissue Prospective [160]

CCL5
Breast cancer (BC) Serum Prospective [81]

Stage II BC Tissue Prospective [162]

CCL20 Colorectal cancer (CRC) Tissue Prospective [167]

CCL20/CCR6 HCC Tissue Prospective [169]

CCL21/CCR7 Colorectal liver metastasis Tissue Prospective [169]

CCR7 Solid tumors Tissue Meta-analysis [178]

CXCL1 Various cancers Tissue, urine,
serum Meta-analysis [181]

CXCL8

CRC Tissue Prospective [167]
CRC Serum Prospective [188]

Cervical Cancer Tissue Prospective [189]
Lung adenocarcinoma Tissue Prospective [190]

CXCL10 DLBCL Serum Prospective-retrospective [196]

CXCL12 Esophageal cancer Tissue Prospective [202]

CXCR4

Acute myelogenous leukemia (AML) AML cells Prospective [203]
Early BC Tissue Prospective-retrospective [205]

BC Tissue Meta-analysis [204]

HCC Circulation
and/or tissues Meta-analysis [206]

NSCLC Tissue Meta-analysis [207]

CX3CL1/CX3CR1 Pancreatic ductal adenocarcinoma Tissue Retrospective [213]

For detailed information, please see the text.

5. Conclusions

It is undeniable that during the past several decades, there have been enormous advances in
our knowledge regarding the functions of the chemokine system in cancer. Accumulating evidence
strongly supports the multifaceted roles of chemokines and their receptors in tumor progression.
Importantly, chemokines act as chemoattractants to recruit both anti- and protumor immune cells
into the TME. Furthermore, most chemokines function as promoting factors for tumor growth and
proliferation, angiogenesis, and metastasis; however, some other chemokines have the opposite effects.
The complicated effects of the chemokine system in cancer could be due to the promiscuity of chemokine
and chemokine receptor interactions. One chemokine-receptor pair can serve as tumor suppressors in
one type of cancer and as tumor promoters in other types of cancer. Therefore, some chemokines such
as CCL2, CXCL10, and CX3CL1/CX3CR1 can be either favorable or unfavorable cancer prognostic
factors depending on the cancer types. In contrast, CCL14 and XCL1 only serve as good prognostic
factors for cancer patient outcomes. However, the chemokines and their receptors that particularly
stimulate tumorigenesis, including CCR7, CXCL1, CXCL8, and CXCL12/CXCR4, could, consequently,
act as poor prognostic markers for cancer patients.

Despite the substantial advances in our understanding of the complex nature of the chemokine
system in tumor biology, knowledge about the multifaceted roles of chemokines and their prognostic
value in different types of cancers, especially in response to diverse anticancer therapies, is still limited.
Nonetheless, a considerable number of chemokine receptor inhibitors targeting different chemokine
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signalling pathways are currently being evaluated in many preclinical studies and clinical trials, with
encouraging results when used in combination with chemotherapy or immune checkpoint therapy.
For the validation of specific chemokines and their receptors as prognostic markers of specific cancer
types, further extensive studies are essential to decipher their distinct roles and the action mechanisms
involved in cancer progression.
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