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Abstract: Improving the therapeutic efficacy of conventional anticancer drugs represents the best hope
for cancer treatment. However, the shortage of druggable targets and the increasing development of
anticancer drug resistance remain significant problems. Recently, membrane transport proteins have
emerged as novel therapeutic targets for cancer treatment. These proteins are essential for a plethora
of cell functions ranging from cell homeostasis to clinical drug toxicity. Furthermore, their association
with carcinogenesis and chemoresistance has opened new vistas for pharmacology-based cancer
research. This review provides a comprehensive update of our current knowledge on the functional
expression profile of membrane transport proteins in cancer and chemoresistant tumours that may
form the basis for new cancer treatment strategies.
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1. Introduction

In mammalian cells, the plasma membrane is a selectively permeable barrier that creates an
intracellular environment and maintains cell stability and homeostasis. The proper functioning of the
plasma membrane is dependent on a group of membrane transport proteins that permit the selective
transport of essential substances for the survival and development of the organism [1]. To date,
three different types of membrane transport proteins have been described: (1) ATP-powered pumps or
ATPases which actively transport solutes against their electrochemical gradients; (2) channel proteins
which facilitate the passive diffusion of ions following their electrochemical gradients; and (3) facilitators
which move solutes either up or down their gradients. When the gates of the transporters are open,
the selective flux of metabolites and ions occurs that affects a wide range of cellular processes such as
membrane potential (due to the ion exchange), cell volume (due to the water permeation coupled to
ion transport), and cell signaling (due to the impact on the function of ions/metabolites or intracellular
effectors). All of these events are critical in determining cell fate to survival, death, or malignant
transformation [2]. Another important role of membrane transport proteins is to maintain a balance
between toxicity and effectiveness of chemotherapeutics by controlling drug uptake, disposition,
and clearance [3–6]. Therefore, disturbance in the expression profile of membrane transport proteins is
often associated with tumourigenesis and/or chemoresistance [7,8]. In this review, we will discuss the
correlations between membrane transporters (pumps and channels) and cancer progression as well as
chemoresistance (Appendix A).
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2. Membrane Pumps

Membrane pumps are transmembrane proteins that facilitate the active transport of various
substances against their electrochemical gradients. Mechanistically, membrane pumps can be divided
into two main categories: primary and secondary active transporters. Through ATP hydrolysis,
primary active transporters move solutes against their electrochemical gradients. These pumps are
often uniporters which are involved in the active transport of a single molecule across the cell membrane.
Instead, secondary active transporters utilize the energy stored in the electrochemical gradient of ions
across the plasma membrane that was generated by the primary active transporters. Therefore, in this
type of transport, the transfer of one molecule down its gradient is coupled to the movement of
another molecule against its gradient (Figure 1A). Depending on the direction of transport, two types
of secondary active transporters have been described: antiport pumps that transport two molecules in
opposite directions and symport pumps that move both molecules in the same direction (Figure 1B) [9].
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Figure 1. Different types of ion transport. (A) Active and secondary transport: Primary active
transporter uses ATP to move ions across the membrane [A and B], against their electrochemical
gradients to create an electrochemical gradient. Secondary active transporter uses the electrochemical
gradient generated by primary active transporters to move one molecule down its gradient [B] while
transporting another molecule against its electrochemical gradient [C]. (B) Uniporter, antiporter,
and symporter: Uniporter carries one molecule or ion in one direction. Antiporter carries two different
molecules or ions in opposite directions. Symporter also carries two different molecules or ions in the
same direction.

The crucial role of membrane pumps in conducting the active transport of a wide range of
substrates including ions, amino acids, large polypeptides, and essential metabolites highlights their
indispensable function in maintaining cellular homeostasis [10]. Moreover, membrane pumps are
also involved in drug uptake and efflux that impact disposition and cytotoxic effects of anticancer
drugs [11,12]. In this context, membrane transporters can act as importers and mediate the transport
of drugs into the cell or function as exporters and pump substances outside the cell. In cancer,
altered expression of membrane pumps often correlates with chemoresistance (Appendix A) [13–15].
The following sections will highlight the relationship between membrane pumps and cancer progression
as well as chemoresistance.

2.1. Na+/K+-ATPase

The plasma membrane sodium pump (Na+/K+-ATPase) is a hetero-dimeric complex that consists
of catalytic a- and regulatory b-subunits (Figure 2). Four different isoforms of a-subunit and three
isoforms of b-subunit exist in human cells [16–18]. Functionally, Na+/K+-ATPase is a ubiquitous P-type
ATPase transporter that exchanges three Na+ for two K+, thus establishing plasma membrane potential.
The generated membrane potential is further required for accelerating the central cellular processes
including secondary active transport of metabolites and cell excitability [19,20]. Na+/K+-ATPase
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is naturally activated and deactivated by ATP and cardiotonic steroids (e.g., ouabain, digitoxin),
respectively [21,22]. Over the last decades, an association between Na+/K+-ATPase and etiology of
several malignancies, including breast, non-small cell lung cancer, glioblastoma, and melanoma has
been established [23,24]. For instance, the expression level of a-subunit (isoforms 1 and 3) is increased
in various cancers, therefore its pharmacological inhibition has been proposed to improve cancer
therapy [25–27]. Specifically, several studies demonstrated that the a1-subunit of Na+/K+-ATPase is
highly expressed in glioblastomas and that its inhibition decreases cell proliferation and migration
while increasing survival of the orthotopic patient-derived xenograft mouse model of human
glioblastoma [28–31]. Similarly, pharmacological inhibition of a1-subunit reduces tumour progression
and induces apoptosis in prostate cancer [32] and lung cancer cells [33]. Furthermore, Rajasekaran et al.
reported that the expression level of β1-subunit is markedly reduced in renal cell carcinoma and
that its ectopic expression inhibits the invasiveness and motility of these cells. For the mechanism,
authors showed that elevated Na+/K+-ATPase positively impacts E-cadherin-mediated formation of
tight junctions and epithelial cell polarity [34,35]. Likewise, reduced β1-subunit correlates with poorly
differentiated breast (MDA435), colon (SW480), pancreas (MiaPaCa-2), and kidney (MSV-MDCK)
cancer cells. This evidence suggests that the Na+/K+-ATPase β1-subunit plays a tumour-suppressor
role in cancer [36,37].
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Na+/K+-ATPase with ouabain reduced the intracellular accumulation of cisplatin by 50% in a 2008 
ovarian carcinoma cell line [39], suggesting that low Na+/K+-ATPase is linked to cisplatin resistance. 
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Figure 2. Na+-, K+-ATPase overall structure. (A) Na+-, K+-ATPase consists of a catalytic α subunit and a
regulatoryβ subunit. Theα subunit consists of 10 transmembrane helices, harboring 3 different cytoplasmic
domains: the actuator responsible for dephosphorylation (shown in red); the nucleotide-binding,
responsible for ATP binding (shown in blue); and the phosphorylation domains (shown in cyan).
The β subunit consists of one transmembrane helix with a large glycosylated extracellular domain
(shown in hexagon orange boxes). ECM = extracellular milieu; CYT = cytoplasm. (B) Overall domain
architecture of Na+/K+ transporter in the Na+-bound state (Protein Data Bank [PDB] code 4HQJ).
Catalytic α subunit is colored in blue, β subunit is shown in yellow, and Na+ ions are shown in red.

In addition to its significance in cell proliferation and invasion, Na+/K+-ATPase is also emerging as
an effective therapeutic target to overcome chemoresistance [38]. The first line of evidence was reported
in 1991 when Andrews et al. showed that the pharmacological inhibition of Na+/K+-ATPase with
ouabain reduced the intracellular accumulation of cisplatin by 50% in a 2008 ovarian carcinoma cell
line [39], suggesting that low Na+/K+-ATPase is linked to cisplatin resistance. Further investigations
demonstrated that inhibition of Na+/K+-ATPase expression and function promotes cisplatin-resistance
in leukemia [40], non-small lung cancer [41,42], and prostate cancer cell lines [43]. For example,
Na+/K+-ATPase is significantly reduced in cisplatin-resistant BHY oral squamous cell carcinoma cells,
and its further inhibition exacerbates the cisplatin-resistant phenotype [44]. Similarly, Na+/K+-ATPase
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is considerably reduced in oxaliplatin-resistant ovarian carcinoma cells C10B, therefore its ectopic
expression enhances oxaliplatin accumulation and promotes oxaliplatin-mediated cell death [45].
Together, these findings reveal that Na+/K+-ATPase may serve as a potential therapeutic target for
the treatment of chemoresistant malignancies. However, further investigations are required for the
development of a novel and high-affinity molecule to target Na+/K+-ATPase for cancer treatment.

2.2. SERCA

The Sarco/endoplasmic reticulum Ca2+ ATPase (SERCA) is a P-type ATPase located in the
sarcoplasmic reticulum (SR) within myocytes [46]. In humans, three genes encoding three major
paralogs of SERCA (SERCA 1, 2, and 3) have been described. In total, 11 different isoforms (SERCA1a–1b,
SERCA2a–2c, and SERCA-3a–3f) of SERCA are variably expressed across human cells and tissues [47].
For example, SERCA2b is ubiquitously expressed while the expression of SERCA1a and SERCA 2a
is restricted to skeletal and cardiac muscles, respectively [48]. Structurally, SERCA isoforms show
a modular architecture consisting of three cytosolic domains responsible for ATP binding and
hydrolysis and one transmembrane domain involved in Ca2+ binding and transport (Figure 3) [49].
Functionally, SERCA pumps two Ca2+ ions from the cytosol into the SR lumen coupled with the
hydrolysis of a single ATP, therefore establishing a 1000-fold Ca2+ gradient across the SR and cytosolic
compartments [50,51].
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Figure 3. The overall structure of SERCA (Sarco/endoplasmic reticulum Ca2+ ATPase) pump.
(A) The topology of SERCA showing 10 transmembrane segments (TMS (transmembrane segment)
11 is found only in SERCA2b), with a large cytoplasmic N-terminal, large cytoplasmic loops, and a
luminal C-terminal. (B) Overall 3D-architecture of SERCA transporter in the E2-state complexed with a
Thapsigargin derivative Boc-(phi)Tg (Protein Data Bank [PDB] code 3NAN). Cytoplasmic and luminal
loops are shown in gray, TMSs are shown in blue, and Tg inhibitor is shown in red. CYT = cytoplasm;
ER lumen = endoplasmic reticulum lumen.

The proper maintenance of the SR Ca2+ gradient is vital in a vast array of cellular functions, such
as cell proliferation, invasion, and cell death [52–54]. Given the significance of the above functions
in cancer development, dysregulated SERCA is associated with various cancers [55]. For instance,
Prasad et al. demonstrated that SERCA2 knockout mice are highly susceptible to developing
squamous-cell carcinoma, emphasizing the link between impaired SERCA and carcinogenesis [56].
Furthermore, the expression profile of SERCAs is highly diverse in human carcinomas [57,58].
For example, downregulated SERCA2 plays a key role in the progression of lung and thyroid
cancers [59,60]. On the contrary, the upregulation of SERCA2 in colorectal carcinoma is correlated with
serosal invasion, lymph node metastasis, and advanced tumour stage [61]. Like SERCA2, SERCA3
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expression is differentially altered in various cancer types. For instance, SERCA2 levels are reduced
in colorectal carcinoma and breast cancers [62–65], while they increase in myeloid leukemia [66] and
gastric cancer [63].

Interestingly, the aberrant expression of SERCAs is also associated with chemoresistance.
In this aspect, several studies reported that SERCA1–3 are markedly decreased in cisplatin-resistant
MDAH-2774 ovarian cancer cell lines [67], and in low-level cisplatin-resistant non-small-cell lung
cancer cells H1339 [68]. A link between altered SERCA and cancer has led to the development of
several modulators to either activate/restore or inhibit SERCA for the treatment of different cancers
with dysregulated or impaired SERCA. The generated drugs have been used in cancer therapy either
individually or in combination with chemotherapeutics [69,70]. Indeed, various inhibitors of SERCA
such as thapsigargin, cyclopiazonic acid, and curcumin have been widely used as anticancer drugs in
numerous cancers. Furthermore, short-chain fatty acids (e.g., butyrate, valerate, and caproate) and
resveratrol have been shown to induce SERCA3 expression and inhibit cell survival in gastrointestinal
carcinoma and breast cancer, respectively [63,71]. A curcumin analog F36 is an example of a SERCA
inhibitor which has been shown to reduce the proliferation of colorectal cancer cells through inhibiting
SERCA2 expression [72]. More recently, the small molecule CXL017 has been demonstrated as a potent
anticancer drug in several chemoresistant leukemia cell lines [73–75]. However, further studies are
required to confirm the effectiveness of CXL017 in other cancers and to test whether CXL017 can
promote the effectiveness of conventional chemotherapeutics.

2.3. Vacuolar ATPase (V-ATPase)

Vacuolar ATPase (V-ATPase) is a large multi-subunit P-type ATPase, present in both vacuolar
membranes and plasma membranes and which is involved in controlling cellular pH [76].
Structurally, V-ATPase consists of two domains. First is a peripherally associated domain V1 composed of
eight (A–H) isoforms which is responsible for ATP hydrolysis. The second subunit is a membrane-associated
domain V0 which is made of six different subunits (a, c, c’, c”, d, e) and is responsible for proton translocation
(Figure 4) [77,78]. Among these subunits, V0a plays critical roles in membrane distribution and activity
range as well as in fine-tuning of the pump [79,80]. Functionally, ATP binding and hydrolysis by the V1
domain are coupled with 360◦ rotation of the V0 domain and active transport of 2–4 cytosolic H+ across
the membrane [81,82]. The proper functioning of the V-ATPase is essential for the control of cytosolic,
organellar, and extracellular milieu pH which, in turn, is necessary for the appropriate regulation of
cellular processes including cell survival and growth [83,84]. Hereby, disturbances in the expression
and/or function of V-ATPase have been associated with many diseases, including cancer [85–87].

In tumours, the expression level of V-ATPase is often upregulated [83]. For instance, V-ATPase is
highly expressed in cervical adenocarcinoma compared to normal tissues and is negatively correlated
with patient survival [88]. In gastric cancer, overexpression of the V1A subunit is linked to tumour
grade advancement, vascular invasion, and lymph node metastasis as well as reduced patient
survival [89]. Similarly, V-ATPase is found upregulated in several aggressive cancers, including
breast [90], melanoma [91,92], esophageal [93,94], and pancreatic cancers [95] that further highlights its
potential as a prognostic biomarker for advanced metastatic cancers. Based on the subcellular location
of the V-ATPase, two mechanisms have been proposed for promoting cancer progression and metastasis
in different malignancies. First, in melanoma, breast, and prostate cancers, V-ATPase is located in the
plasma membrane where it is responsible for creating an acidic extracellular environment critical for
matrix metalloprotease- and protease-mediated cell growth and invasion [96–99]. Second, in bladder
and breast cancers, the vacuolar V-ATPase promotes lysosomal acidification, lysosomal trafficking to
the cell surface, and secretion of premetastatic peptides such as cathepsins A and B, leading to tumour
metastasis [100,101].

Furthermore, overexpression of V-ATPase has been reported to be closely associated with the
development of chemoresistance [102,103]. For example, overexpression of V-ATPase is associated with
the development of cisplatin resistance in human epidermoid cancer cells (KB/PC4), human prostate
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cancer cells (P/CDP5) [104], and cisplatin- and vincristine-resistance in leukemia HL-60 cells [105].
Therefore, treatment with V-ATPase inhibitors restores the chemosensitivity of tumour cells through
disrupting the pH gradient between the cytoplasm and lysosomal compartment [106–108]. It was
shown that treatment with V-ATPase inhibitors omeprazole and esomeprazole restored sensitivity
to cisplatin, vinblastine, and fluorouracil (5-FU) in chemoresistant melanoma and colon cancer
cells [109]. Furthermore, the application of V-ATPase inhibitor Archazolid induced apoptosis in
trastuzumab-resistant breast cancer cells [110]. Together, these findings proved the clinical potential of
V-ATPases as both prognostic markers and therapeutic targets for cancer.
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Figure 4. Overall structure of the V0 domain of V-ATPase. (A) Topology of V0 domain showing its 9
transmembrane segments with large cytoplasmic N-terminal and C-terminal domains. (B) The overall
architecture of the V0 domain of V-ATPase (Protein Data Bank [PDB] code 6C6L), showing all known
components of the V0 domain, including subunits a (in red), d (in cyan), e (in blue), f (in pink), and the
c-ring (in wheat). CYT = cytoplasm; ER lumen = endoplasmic reticulum lumen. Modified from
Roh et al. 2018.

3. Ion Channels

Ion channels are gated aqueous pores involved in the selective movement of ions across
biological membranes. In this type of transport, ions are passively moved down their electrochemical
gradient [111]. Depending on the mode of activation, ion channels are classified into two classes,
voltage-gated ion channels and ligand-gated ion channels. The voltage-gated ion channels open
following changes in the membrane potential while the ligand-gated ion channels open in the presence
of extracellular ligands, intracellular second messengers, or chemical factors [112]. Once gates of
ion channels are open, ion exchanges across the cellular membranes occur that will result in the
redistribution of membrane charges and/or activation of endogenous messengers. Therefore, activation
of ion channels triggers various signaling pathways essential for cellular processes ranging from
membrane excitability to cell survival [2]. Hereby, alterations in the expression or function of ion
channels are associated with multiple human diseases, including cancer. In this regard, many ion
channels are considered oncogenic proteins which are often associated with chemoresistance [7,8,113].
Recently, several excellent reviews have described the role of organellar channels in cancer progression
and therapy [114–117]. Therefore, this review will focus on the significance of plasma membrane ion
channels in cancer progression and chemoresistance.

3.1. Ca2+ Channels

Ca2+ is a universal second messenger that is vital for the proper functioning of the organism [118].
Thus, its cellular level is always subjected to tight regulations, mainly by the activity of three plasma
membrane Ca2+ channels, voltage-gated Ca2+ channels, Orai-mediated store-operated channels,
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and transient receptor potential-mediated Ca2+ channels. It has been revealed that disruption
in the expression or function of these channels is often correlated with carcinogenesis and/or
chemoresistance [119,120]. Hence, targeting their expression level or function may serve as an
effective strategy to improve cancer treatment. In this section, we will provide examples of the role of
Ca2+ channels in cancer progression and chemoresistance.

3.1.1. Voltage-Gated Ca2+ Channels (VGCC)

VGCCs (CaV) are Ca2+ channels that open in response to membrane depolarization. Each CaV

consists of a central a1 subunit and three auxiliary subunits, a2δ, b, and g, in a 1:1:1:1 ratio. In mammals,
ten distinct members are grouped into three phylogenetic subfamilies: CaV1 (four different isoforms,
CaV1.1–4), CaV2 (three different isoforms, CaV2.1–3), and CaV3 (three different isoforms, CaV3.1–3) [121].
Historically, VGCCs are restricted to exciting cells, however, several CaV channels are functionally
expressed in non-excitable cancer cells [7]. Interestingly, alterations in the expression and/or function
of different members of the CaV subfamilies have been observed in various cancers, suggesting their
role in tumour progression, differentiation, and invasion [122–125]. For instance, CaV1.2 encoded by
the human CACNA1C gene is predominantly expressed in oesophageal squamous cell carcinoma
and is correlated with tumour cell differentiation [126]. Likewise, CaV1.3 encoded by the human
CACNA1D gene is overexpressed in prostate and endometrial cancers [127,128]. Hereby, the CaV1
inhibitor BK10040 was reported to reduce proliferation and induce apoptosis in cancer cells such as
A459 (lung adenocarcinoma) and MiaPaCa2 (pancreatic cancer cells) cell lines. Together, these pieces
of evidence reveal the oncogenic role of the CaV1 subfamily in human cancers.

As members of the CaV1 subfamily, different CaV2 channels have been reported to be dysregulated
in cancer. For example, CaV2.3 encoded by the human CACNA1E gene is upregulated in Wilm’s
tumours (a rare childhood kidney cancer), and its expression level is associated with reduced relapse-free
survival [129]. Similarly, CaV3.1 and CaV3.2 are highly expressed in human laryngeal carcinoma
and glioblastoma, respectively, and their inhibition (using siRNA or mibefradil) causes cell cycle
arrest and apoptosis [130,131]. Moreover, the functional expression of CaV channels has been also
shown to be associated with chemoresistance. For example, overexpression of the regulatory subunit
α2δ (encoded by human CACN12D3 gene) sensitized esophageal squamous cell carcinoma cell lines
to cisplatin-induced cell death. Therefore, genetic silencing of α2δ promoted cisplatin resistance
in vitro and in vivo [132]. Likewise, a combination of mibefradil (a blocker of CaV3 subfamily) and
carboplatin synergistically inhibited the growth of platinum-resistant ovarian cancer cell lines A2780Cis
and IGROV-1, suggesting that a combinatorial drug therapy using CaV inhibitors and conventional
chemotherapeutics may serve as an effective treatment for ovarian cancer [133].

3.1.2. Orai-Mediated Store-Operated Ca2+ Entry

Orai proteins are highly selective Ca2+ channels that open in response to reduced ER Ca2+

levels. Hence, these channels are called store-operated channels (SOC). Currently, three Orai isoforms
have been described (Orai1, Orai2, and Orai3), and each of them consists of six subunits that form
a single pore [134]. In cancer, the altered expression profile of Orai isoforms is linked to cancer
progression [120,135–137]. For instance, Orai1 is predominantly upregulated in gastrointestinal stromal
tumours and its inhibition (using shRNA or 2-aminoethyl diphenylborate (2-APB) and SKF-96365)
decreased proliferation and induced apoptosis in GIST-T1 cells [138]. Similarly, in esophageal squamous
cell carcinoma, Orai1 upregulation is correlated with poor overall and recurrence-free survival, therefore
its knockdown suppresses tumour growth and metastasis in nude mice xenograft [139]. Like Orai1,
upregulated Orai3 has been reported in many cancers. For instance, in breast and non-small lung
adenocarcinoma, elevated Orai3 plays essential roles in cell cycle progression, proliferation, apoptosis
evasion, and invasion [140,141]. Similar observations have been made in prostate cancer where
Orai3 overexpression is positively correlated with aggressive cancer phenotypes and poor clinical
prognosis [137].



Cancers 2020, 12, 1624 8 of 31

Furthermore, the expression profile of Orai channels has been associated with chemoresistance
in many cancers [142]. For example, Orai1 expression is upregulated in cisplatin-resistant ovary
carcinoma cells compared to their parental cells, and its pharmacological inhibition by 2-APB enhances
cisplatin-induced cell death in resistant cell lines [143]. In hepatocellular carcinoma, blockade of
Orai1 by SiRNA or SKF-96365 enhances cytotoxicity of 5-FU, whereas its ectopic expression induces
resistance to 5-FU [144]. Similarly, in pancreatic adenocarcinoma cells, siRNA-mediated silencing
of Orai1 enhances 5-FU- and gemcitabine-induced cell death [145]. Moreover, the Orai3 level is
upregulated in breast cancer patients and is correlated with poor response to chemotherapy and
poor patient outcome. Likewise, Orai3 overexpression in T47D breast cancer cells confers resistance
to pro-apoptotic agents (thapsigargin and staurosporine) and chemotherapeutics (cisplatin, 5-FU,
and paclitaxel) [146].

3.1.3. TRP-Mediated Ca2+ Transport

The transient receptor potential (TRP) family of ion channels consists of 28 distinct members divided
into seven subfamilies: TRPC (Canonical), TRPV (Vanilloid), TRPM (Melastatin), TRPML (Mucolipin),
TRPP (Polycystin), TRPA (Ankyrin), and TRPN (No mechanoreceptor potential C, nompC) [147].
Structurally, TRP channels show a modular architecture which consists of four concatenated subunits,
each composed of six transmembrane segments (TMS) with a channel pore located between TMS 5/6 as
well as cytoplasmic N- and C-termini (Figure 5) [148]. Functionally, TRP channels operate as sensory
transduction ion channels, which means they sense and translate environmental stimuli into various
signal transduction pathways essential for several cellular processes ranging from survival to cell
death [149]. TRP channels mediate these effects mainly by changing the intracellular concentration
of Ca2+, either directly by conducting Ca2+ entry or indirectly by changing membrane potential
and providing a driving force for Ca2+ entry by other channels [150,151]. Therefore, disruptions
in the functional expression of TRP channels have been associated with several diseases, including
cancer [152–156]. The following sections will focus on the major subfamilies of TRP channels TRPC,
TRPV, and TRPM.

Cancers 2020, 12, x 8 of 31 

observations have been made in prostate cancer where Orai3 overexpression is positively correlated 
with aggressive cancer phenotypes and poor clinical prognosis [137]. 

Furthermore, the expression profile of Orai channels has been associated with chemoresistance in 
many cancers [142]. For example, Orai1 expression is upregulated in cisplatin-resistant ovary carcinoma 
cells compared to their parental cells, and its pharmacological inhibition by 2-APB enhances cisplatin-
induced cell death in resistant cell lines [143]. In hepatocellular carcinoma, blockade of Orai1 by SiRNA 
or SKF-96365 enhances cytotoxicity of 5-FU, whereas its ectopic expression induces resistance to 5-FU 
[144]. Similarly, in pancreatic adenocarcinoma cells, siRNA-mediated silencing of Orai1 enhances 5-FU- 
and gemcitabine-induced cell death [145]. Moreover, the Orai3 level is upregulated in breast cancer 
patients and is correlated with poor response to chemotherapy and poor patient outcome. Likewise, 
Orai3 overexpression in T47D breast cancer cells confers resistance to pro-apoptotic agents (thapsigargin 
and staurosporine) and chemotherapeutics (cisplatin, 5-FU, and paclitaxel) [146]. 

3.1.3. TRP-Mediated Ca2+ Transport 

The transient receptor potential (TRP) family of ion channels consists of 28 distinct members 
divided into seven subfamilies: TRPC (Canonical), TRPV (Vanilloid), TRPM (Melastatin), TRPML 
(Mucolipin), TRPP (Polycystin), TRPA (Ankyrin), and TRPN (No mechanoreceptor potential C, 
nompC) [147]. Structurally, TRP channels show a modular architecture which consists of four 
concatenated subunits, each composed of six transmembrane segments (TMS) with a channel pore 
located between TMS 5/6 as well as cytoplasmic N- and C-termini (Figure 5) [148]. Functionally, 
TRP channels operate as sensory transduction ion channels, which means they sense and translate 
environmental stimuli into various signal transduction pathways essential for several cellular 
processes ranging from survival to cell death [149]. TRP channels mediate these effects mainly by 
changing the intracellular concentration of Ca2+, either directly by conducting Ca2+ entry or 
indirectly by changing membrane potential and providing a driving force for Ca2+ entry by other 
channels [150,151]. Therefore, disruptions in the functional expression of TRP channels have been 
associated with several diseases, including cancer [152–156]. The following sections will focus on 
the major subfamilies of TRP channels TRPC, TRPV, and TRPM. 

 
Figure 5. Topology diagram and 3D structure of TRPM2. (A) Topology of TRPM2 showing its 6 
transmembrane segments (TMS), a channel pore between TMS 5 and 6, and cytoplasmic N- and C-
termini. N-terminal harbors 4 TRPM homology domains (shown in gray). C-terminal has a short 
coiled-coil region (CCR, shown in yellow) followed by the NUDT9H domain (shown in orange) 
which is the homolog of soluble mitochondrial ADPRase NUDT9. A functional TRPM2 is composed 
of four homotetramers TRPM2 (x4) and requires binding and hydrolysis of ADP-ribose (ADPR) by 
NUDT9-H. ECM = extracellular milieu; CYT = cytoplasm. (B) Overall domain architecture of TRPM2 
(Protein Data Bank [PDB] code 6CO7), showing the extracellular view of four units of TRPM2 
surrounding the channel pore (shown in different colors: blue, purple, marine, and light blue, “—” 
in a clockwise direction). 

Figure 5. Topology diagram and 3D structure of TRPM2. (A) Topology of TRPM2 showing its
6 transmembrane segments (TMS), a channel pore between TMS 5 and 6, and cytoplasmic N- and
C-termini. N-terminal harbors 4 TRPM homology domains (shown in gray). C-terminal has a short
coiled-coil region (CCR, shown in yellow) followed by the NUDT9H domain (shown in orange) which
is the homolog of soluble mitochondrial ADPRase NUDT9. A functional TRPM2 is composed of four
homotetramers TRPM2 (x4) and requires binding and hydrolysis of ADP-ribose (ADPR) by NUDT9-H.
ECM = extracellular milieu; CYT = cytoplasm. (B) Overall domain architecture of TRPM2 (Protein
Data Bank [PDB] code 6CO7), showing the extracellular view of four units of TRPM2 surrounding
the channel pore (shown in different colors: blue, purple, marine, and light blue, “—” in a clockwise
direction).
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TRPC

The TRPC subfamily includes seven members (TRPC1–7) which are ubiquitously expressed and
play important roles in the regulation of several Ca2+-dependent cellular processes [157]. In cancer,
TRPCs display diverse functional expressions. For instance, increased expression of TRPC1 in
human breast ductal adenocarcinoma samples compared to the adjacent non-tumoural tissues
strongly correlates with tumour progression and invasion [158], therefore its silencing suppresses
TRPC1-mediated Ca2+ entry and reduces cell proliferation [159,160]. Similar observations were
established in other cancers including glioblastoma, pancreas, and colon cancers [161]. Moreover, TRPC3
is overexpressed in human ovarian cancer tissues, and its blockade decreases in vitro and in vivo
growth of ovarian cancer cells [162]. Further studies show that TRPC3 has a predominant role in
the proliferation and migration of a variety of tumour cells, including melanoma, lung, and bladder
carcinoma cell lines [163]. Similarly, TRPC6 has been reported to be upregulated in various cancers,
including glioma [164], gastric cancer [165], and breast cancer [166], whereby its silencing reduced
growth and migration of cultured cells as well as tumour formation and metastasis in nude mice
xenografts. Together, these findings highlight that the increased expression levels of TRPCs 1, 3, and 6 are
strongly associated with malignant phenotypes of human cancers. On the contrary, TRPC4 is markedly
downregulated in renal cell carcinoma cell lines and is correlated with tumour angiogenesis [167].
Therefore, pharmacological activation of TRPC4 by englerin A inhibits growth of A-498 and A-673
cells, suggesting that TRPC4 plays a tumour suppressor activity in renal cancer [168].

Moreover, the altered expression profile of various members of the TRPC subfamily has been
associated with chemoresistance. For instance, TRPC1 expression is significantly decreased in
cisplatin-resistant (A2780 and SKOV3) and carboplatin-resistant (A2780) ovarian cancer cell lines,
suggesting that the reduced expression of TRPC1 is linked to chemoresistance [169]. On the contrary,
TRPC5 has increased in 5-FU-resistant colorectal cancer cells HCT-8/5-FU and LoVo/5-FU cell lines,
therefore blockade of TRPC5 promotes chemosensitivity in these cells [170]. Similarly, TRPC5 expression
was induced following doxorubicin treatment in MCF-7, T47D, and MDA-MB-231 breast cancer cells,
and its inhibition restored the cytotoxic effects of doxorubicin [171]. Furthermore, elevated TRPC5 in
circulating exosomes negatively correlates with chemotherapy outcome in colorectal and breast cancer
patients [172], suggesting that increased TRPC5 is associated with chemoresistance. Similarly, TRPC6
was induced by doxorubicin treatment in Huh7 and HepG2 hepatocellular carcinoma cells, therefore
its inhibition enhanced doxorubicin-induced cell death [173], suggesting that high TRPC6 level is
associated with chemoresistance in hepatocarcinoma cell lines.

TRPM

The TRPM subfamily consists of eight members, TRPM1–8, and each member represents different
Ca2+ permeability, ranging from Ca2+- impermeable channels (TRPM4/5, see Na+ channels below) to
highly Ca2+-permeable channels (TRPM6/7) [174]. Altered expression or function of TRPM channels
is associated with the etiology of various cancers. For instance, decreased TRPM1 is linked to the
aggressiveness of melanoma tumours and poor overall survival of melanoma patients, suggesting a
tumour suppressor role for TRPM1 [175–177]. In contrast, upregulated TRPM2 is correlated with poor
overall survival in patients with neuroblastoma and gastric cancer [178,179]. Furthermore, inhibition
of TRPM2 expression or function decreased growth and invasion of various cancer cells, including
breast, gastric, pancreatic, prostate, head and neck, melanoma, neuroblastoma, leukemia, and lung
cancers [180–182]. Similarly, TRPM3 has been found upregulated in clear cell renal cell carcinoma
cell lines 786-O or A498 and its knockdown or inhibition suppressed growth of tumours generated
from renal carcinoma cells in orthotopic xenograft mouse models, suggesting an oncogenic role for
TRPM3 in renal cancer [183]. Like TRPM2, TRPM7 is overexpressed in various malignancies [184].
For example, upregulated TRPM7 in pancreatic [185,186], breast [158], ovarian [187], and bladder [188]
cancers is correlated with tumour progression and aggression as well as poor overall survival of cancer
patients, suggesting a protumour effect of TRPM7. Similarly, TRPM8 is predominantly overexpressed
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in breast [158,189], pancreas [190,191], and prostate [192,193] cancers where its expression correlates
with increased cancer cell proliferation and invasion as well as reduced apoptosis and poor patient
survival. In contrast, TRPM8 activation by menthol (a natural ligand for TRPM8) reduced survival of
melanoma cells, suggesting its anticancer role in melanoma [194].

Furthermore, the altered expression of several TRPM channels has been associated with anticancer
drug resistance. For instance, inhibition of TRPM2 expression or function increased the cytotoxic effect
of paclitaxel and doxorubicin in breast and gastric cancer cells [178,195]. A similar effect was observed
in TRPM2-depleted neuroblastoma cell lines following treatment with doxorubicin [179]. On the
contrary, TRPM7 is downregulated in doxorubicin-resistant colon cancer cell line LoVo-R, therefore its
silencing confers further resistance against doxorubicin, suggesting that the reduced expression of
TRPM7 is linked to doxorubicin resistance in these cells [196]. A similar chemoresistance-promoting
effect was observed for TRPM8 in several cancers. For example, TRPM8 overexpression induces
resistance to paclitaxel in prostate cancer cells [197]. Moreover, TRPM8 knockdown in osteosarcoma
cells enhances the cytotoxic effect of epirubicin [198]. These pieces of evidence suggest that elevated
TRPM8 promotes chemoresistance in prostate cancer and osteosarcoma cell lines.

TRPV

All six members of the TRPV subfamily show variable permeability to Ca2+. While TRPV1–V4
are modestly permeable to Ca2+, TRPV5 and TRPV6 represent high Ca2+ selectivity. In cancer,
the expression profile of TRPV channels is highly contextualized; therefore, depending on the cell and
tumour type, TRPV channels can act as both tumour promoters and suppressors [199]. For instance,
TRPV1 expression is significantly decreased in melanoma tissues and is inversely related to patient
survival. Hereby, activation of TRPV1 expression or function inhibits in vitro and in vivo proliferation
of melanoma cells [200]. Similar observations have been made in colorectal and renal cancer cells,
therefore TRPV1 activation in those cells inhibited proliferation and induced apoptosis [201–203].
Furthermore, TRPV1 depletion causes the spontaneous growth of intestinal tumours, highlighting
the tumour suppressor function of TRPV1 in intestinal cancer [204]. On the contrary, TRPV1 was
found overexpressed in prostate and breast cancers, therefore its inhibition decreased cancer cell
survival [205–207]. Together, these findings suggest that TRPV1 can act as both a suppressor and an
oncogene, based on the biological context.

Furthermore, enhanced expression of TRPV2 in triple-negative breast cancer [208], bladder
cancer [209], and esophageal squamous cell carcinoma [210] is linked to cancer progression and poor
patient survival. Conversely, reduced TRPV2 expression has been detected in advanced glioma,
therefore its exogenous overexpression negatively affected the in vitro and in vivo proliferation of
glioma cells, indicating that in different cancers, TRPV2 may function either as a tumour promoter or
tumour suppressor [211]. TRPV3 was also found upregulated in colorectal and lung tumours [212,213]
and its inhibition caused cell cycle arrest and decreased cancer cell proliferation [212]. Similarly, elevated
levels of TRPV4 in breast, gastric, ovarian, and colon cancers correlates with increased cancer cell
proliferation, invasion, and poor patient survival [214–216]. On the contrary, the expression level
of TRPV4 is significantly reduced in advanced endothelial and skin cancers [211,217], suggesting
that TRPV4 exhibits both oncogenic or tumour suppressor effects depend on the cancer type [218].
Moreover, TRPV5 was found downregulated in lung [219] and renal [220] tumours, and its reduced
expression correlates with poor overall survival and short relapse-free survival of lung cancer
patients [219]. On the other hand, upregulated TPPV6 in various cancers, including breast, colon,
prostate, parathyroid, and thyroid cancers, enhanced tumour development and progression [221,222].
However, TRPV6 was reported to be downregulated in other cancers such as esophageal [223],
lung [219], and renal [220] cancers, indicating a dual function for TRPV6 as a tumour suppressor or
tumour promoter in different cancer types.



Cancers 2020, 12, 1624 11 of 31

In addition to the biological roles and prognostic values, TRPVs have been reported to be involved
in the regulation of chemoresistance. In this regard, activation of the TRPV1 channel has been shown
to enhance the cytotoxic effects of 5-FU [224], cisplatin [225], and doxorubicin [226] in MCF-7 breast
cancer cells. Similar effects were observed in bladder cancer cell lines 5637 and T24 after pirarubicin
treatment in the presence of activated TRPV1 [227]. Using a molecular dynamic simulation of TRPV1,
Ortega-Guerrero et al. demonstrated that TRPV1 channels can mediate doxorubicin diffusion and
promote doxorubicin resistance [228], highlighting the therapeutic benefit of TRPV1 activation for
improving the efficacy of the conventional chemotherapy drugs. Moreover, overexpression of TRPV2
in MZC glioma cells induces spontaneous chemoresistance [229]. Similarly, TRPV2 activation enhances
the cytotoxic effects of temozolomide (TMZ), carmustine (BCNU), and doxorubicin in U87MG and
MZC glioma cell lines [230]. TRPV2 activation also promotes bortezomib-induced cell death in RPMI
and U166 melanoma-derived cell lines [231], suggesting that combinatorial treatments using TRPV2
activators and chemotherapeutics may represent an effective strategy to improve cancer therapy.
In contrast, increased expression of TRPV6 in prostate cancer cell lines LNCaP and PC-3 correlates
with resistance to cisplatin and thapsigargin, hence TRPV6 inhibition enhances cytotoxic effect of these
drugs [232].

3.2. K+ Channels

Potassium channels (K+ channels) are a diverse and ubiquitous group of ion channels involved in
the maintenance and regulation of K+ gradients. Given the essential role of K+ in the control of cell
homeostasis and functions, the proper functioning of K+ channels is crucial for a wide array of cellular
functions, ranging from membrane excitability to cell proliferation, migration, and apoptosis [233].
Currently, 78 K+ channels have been identified and divided into four main classes based on their
structural and biophysical characteristics: voltage-gated K+ channels (Kv) [234], Ca2+- activated K+

channels (KCa) [235], inwardly rectifying K+ channels (Kir) [236], and two-pore domain K+ channels
(K2P) [237]. Kv, KCa, and Kir channels have a modular structure which consists of four subunits that
contribute equally to the formation of a central tetrameric pore. The only observed structural difference
is that each subunit of Kv and KCa consists of six transmembrane segments (TMSs), while Kir subunits
possess two TMSs [238]. On the other hand, K2P channels consist of two subunits, each possessing
four TMSs harboring two pore domains, which function as a dimer to form a pseudotetrameric pore
(Figure 6) [239].

Alterations in the functional expression of K+ channels have been associated with the etiology
of many cancers [240,241]. For instance, Kv1.1 is markedly upregulated in human medulloblastoma
and its knockdown reduces in vitro cell growth and improves survival of tumour-bearing mice [242].
Similarly, KCa3.1 is upregulated in various cancers, including intrahepatic cholangiocarcinoma [243],
breast cancer [244], and clear cell renal carcinomas [245], and its expression level correlates with tumour
progression and poor patient survival. Likewise, elevated expression of Kir2.1 in advanced gastric
cancer is associated with both in vitro and in vivo invasion and metastasis [246]. K2P2.1 is upregulated
in prostate cancer and its knockdown induces cell cycle arrest and inhibits cell proliferation [247].
Furthermore, K+ channels show differential expression patterns between different cancers and within
the same cancer. For instance, Kv11.1 is overexpressed in HT-29 colorectal cancer cells while it was
found downregulated in lung carcinoma A549 cells [248]. Likewise, Kv1.3 is upregulated in LNCaP
while its expression is reduced in PC3 prostate cancer cells [249].
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Figure 6. Structural classification of K+ channels. (A) Left: the voltage-sensitive (Kv) and
calcium-sensitive K+ (Kca) channels show a similar structure with six transmembrane segments
(TMS) and a pore-domain formed by TMS 5 and 6, shown in red. The Kv channels differ in that they
contain a voltage sensor in TMS4, shown in cyan. Right: A top view of Kv and Kca channels, showing
the six TMS of each of the four subunits and their corresponding pore-forming loops, shown in red.
The functional channel is a tetramer protein (x4). (B) Left: a lateral view of monomers of an inward
rectifier potassium channel (Kir), showing two TMS connected by a pore-forming loop, shown in red.
Right: a top view of Kir channel, showing the convergence of four units of Kir channels to the channel
pore. The functional channel is a tetramer protein (x4). (C) Left: topology of a two-pore domain
potassium channel (K2P), showing four TMS and two pore domains. Right: a top view of K2P channel,
showing the convergence of two units of K2P to form the channel pore. The functional channel is a
dimer protein (x2).
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Moreover, the expression profile of K+ channels can be used to predict cancer cell response to
anticancer drugs. The expression level of KCa1.1 channel is reduced in cisplatin-resistant ovarian
cancer cells and its knockdown further promotes resistance to cisplatin [250]. Similarly, downregulated
KCa2.3 is correlated with platinum resistance in ovarian cancer tissues and poor overall survival of
ovarian cancer patients [251]. Reduced expression of KCa3.1 is associated with cisplatin-resistant in
epidermoid cancer cells, therefore KCa3.1 activation enhances cisplatin-induced apoptosis in these
cells [252]. Furthermore, increased Kv1.5 enhances the cytotoxic effects of doxorubicin in gastric cancer
cells, hereby its inhibition promotes chemoresistance [253]. This evidence indicates that decreased
expression or activity of several K+ channels is positively correlated with chemoresistance, therefore K+

channel activators can enhance the therapeutic efficacy of conventional chemotherapy drugs. On the
contrary, elevated expression of a few K+ channels has been shown to limit the efficacy of various
chemotherapeutics. Therefore, inhibition of Kv10.1 promotes doxorubicin- and paclitaxel-induced
cell death in breast cancer cell lines [254]. Likewise, Kv11.1 inhibition was reported to enhance the
cytotoxic effects of cisplatin in colorectal cancer cells [255]. Together, these findings suggest that
activation or inhibition of K+ channels may represent an effective therapeutic approach for improving
cancer treatment.

3.3. Na+ Channels

Sodium channels (Na+ channels) are crucial for membrane excitability and cell communication.
Depending on their mode of activation, two distinct classes of Na+ channels have been described,
voltage-gated sodium channels (VGSC or NaV channels) which open in response to changes in
membrane voltage, and ligand-gated sodium channels (LGSC or NaL channels) which are activated by
the binding of specific ligands. The following sections focus on the significance of Na+ channels in
cancer progression and their impacts on chemoresistance.

3.3.1. VGSCs (NaV Channels)

NaV channels consist of one pore-forming α1 subunit and one or more regulatory β subunits.
There are nine different α1 subunits, NaV1.1 to NaV1.9, which all show a modular structure consisting
of four domains (I–IV), each of which contains six transmembrane segments (TMSs) (Figure 7). The four
domains form a pseudotetramer around a central pore. One or two out of four β subunits (β1–β4)
can associate with α1 subunits to regulate biophysical properties and membrane stability of the
channel [256]. Various combinations of α1 and β subunits generate nine functionally distinct NaV

channels which are variably expressed across human cells and tissues [257]. In addition to the common
role of NaV channels in excitable cells, the functional expression of NaV in various non-excitable cells
contributes to the regulation of cell functions such as cell proliferation, invasion, and apoptosis [258].

In cancer, NaV expression is often upregulated, therefore inhibitors of NaV channels have
been shown to decrease cancer cell invasion [259]. For example, NaV1.1 and NaV1.3 are highly
expressed in ovarian cancer cells, while NaV1.2 and NaV1.4 are predominantly overexpressed in highly
metastatic ovarian cancer cells compared to low-metastatic cells [260]. Furthermore, expression of
NaV1.5 is increased in several cancers, including ovarian [260], colon [261], and breast cancers [262],
therefore its inhibition significantly impairs in vitro and in vivo invasion of breast cancer cells [262].
Similarly, upregulated NaV1.6 was observed in primary cervical cancer cells, and its blockade inhibited
invasion of those cells [263]. Furthermore, elevated expression of NaV1.7 induces growth and invasion
of prostate [264], gastric [265], and endometrial [266] cancer cells. Like α1 subunits, the expression
level of non-pore-forming β subunits of NaV channels is altered in various cancers. For instance,
the expression level of the β1 subunit is negatively correlated with breast cancer cell migration,
hence its overexpression promotes cell adhesion and reduces migration of MDA-MB-231 cells [267].
On the contrary, the β1 subunit was upregulated in breast cancer specimens compared to non-cancer
tissues, where its overexpression promoted breast tumour growth and metastasis to the liver and
lungs. This evidence suggests that the expression level of β1 subunits can differentially affect cancer
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progression depending on the tumour cells and tumour microenvironment [268]. A similar controversy
has been observed for the β2 subunit, more particularly, overexpression of the β2 subunit induces
migration and invasion of LNCaP prostate cancer cells while it inhibits in vivo tumour formation
and reduces tumour volume [269]. This example further emphasizes the context-specific effects of
β subunits in cancer. Furthermore, expression of β4 subunit is markedly decreased in thyroid [270],
breast [271], and cervical [272] cancers, and its overexpression promotes growth and metastasis
in MDA-MB-231 breast cancer cells, suggesting that β4 plays a tumour suppressor role in these
cancers [271].
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Figure 7. NaV channel structure. (A) The topology of the α subunit of NaV channel, showing 24
transmembrane segments (TMS) and four domains (D1–4). Each domain consists of 6 TMS, a pore
between the 5/6 TMS, and TMS4 as a voltage sensor (shown in cyan). (B) Overall 3D-architecture
of the α-subunit of eukaryotic NaV channel (Protein Data Bank [PDB] code 5XOM). Left: the side
view of the NaV channel domains D1 (red), D2 (salman), D3 (smudge), and D4 (purple) are shown
with N- and C-terminal domains colored in orange and yellow, respectively. Glycosylations located in
the extracellular loops of D1 and D3 are represented by green sticks. Right: the extracellular view of
the NaV channel showing four domains surrounding the channel pore. ECM = extracellular milieu;
CYT = cytoplasm.

Furthermore, the functional expression of NaV channels has been also indicated to be associated
with the chemosensitivity of cancer cells [273]. For instance, NaV inhibitor lidocaine enhances the
inhibitory effects of cisplatin on breast tumour metastasis and suppresses in vivo formation of lung
colonies [274,275]. Lidocaine also enhanced the cytotoxic effects of cisplatin in hepatocellular carcinoma
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while inhibiting both tumour growth and metastasis [276]. On the contrary, Tran et al. reported that
increased expression of NaV channels sensitizes breast cancer to taxol [277]. Likewise, Adashi et al.
showed that the expression level of the β3 subunit increased in colon cancer cells following doxorubicin
treatment. Together, this evidence suggests that NaV channels can differentially alter cell responses to
anticancer drugs [278].

3.3.2. LGSCs (NaL Channels)

NaL channels are activated by the binding of specific ligands. H+-NaL and Ca2+-NaL channels are
the two well-known examples of NaL channels. H+-NaL channels are a group of voltage-insensitive
Na+ channels called acid-sensing ion channels (ASICs). Currently, eight subunits of ASICs have been
described: ASIC1a, ASIC1b1, ASIC1b2, ASIC2a, ASIC2b, ASIC3, ASIC4, and ASIC5. Each subunit
consists of two transmembrane segments that assemble into homo or heterotrimeric complexes around
a central pore [279]. ASICs are widely expressed in human cells and tissues, and their expression has
been reported to be associated with the etiology of various cancers. For example, ASIC1 and ASIC3
are functionally expressed in the plasma membrane of lung cancer cells, where they contribute to the
acidosis-induced cell proliferation and migration [280]. Upregulated ASIC1 and ASIC3 in prostate
cancer cells promote in vitro migration and in vivo tumour metastasis [281]. Furthermore, expression
levels of ASIC1 and ASIC2 correlate with the progression of low-grade gliomas to high-grade glioma;
therefore, their inhibition decreases in vitro migration of glioma cells [282]. Increased ASIC1 has been
also reported in glioblastoma, where its inhibition decreases cell migration [283]. In breast cancer
cells, ASIC1 knockdown inhibits in vivo tumour growth and metastasis [284]. Together, this evidence
suggests that ASIC channels function as tumour promoters in different cancers.

Furthermore, ASIC1a is highly expressed in 5-FU- and doxorubicin-resistant hepatocellular cancer
cell lines (Bel7402/FU and HepG2/DOXO) compared to their parental cells (Bel7402 and HepG2).
Hereby, inhibition of ASIC1a by amiloride sensitizes Bel7402/FU and HepG2/DOXO cells to 5-FU and
doxorubicin, respectively. Furthermore, exogenous overexpression of ASIC1a in Bel7402 and HepG2
cell lines promotes resistance to 5-FU and doxorubicin. These findings suggest that inhibitors of ASIC
channels may serve as potential anticancer drugs by improving chemotherapy [285].

Two common Ca2+-NaL channels are TRPM4 and TRPM5, which are monovalent-selective ion
channels highly permeable to Na+. These channels open in response to increased intracellular
Ca2+ levels. The altered expression profile of TRPM4 and TRPM5 has been associated with
the etiology of several cancers. For instance, TRPM4 is increased in cervical and prostate
cancers, and its downregulation reduces cancer cell proliferation and migration [286–288].
Similarly, upregulated TRPM5 in several cancers including gastric cancer is linked to poor patient
survival. Furthermore, in highly metastatic melanoma cancer cells, TRPM5 expression promotes
spontaneous lung metastasis [289]. Together, these studies provide evidence on the tumourigenic effect
of Ca2+-NaL channels in human cancers.

4. Conclusions

Despite advancements in cancer therapy, cancer remains the second leading cause of death
worldwide. Nevertheless, over the last few decades, targeted therapy has played a substantial role in
improving the overall survival of cancer patients. Since the late 1990s, several small molecules and
antibodies raised against specific tumourigenic proteins have been developed and approved by the U.S.
Food and Drug Administration (FDA). However, the lack of druggable targets, compounded by severe
toxicity profiles, has imposed a significant roadblock for anticancer drug discovery. Hereby, a growing
number of studies are being conducted in order to discover novel and effective therapeutic targets
for different malignancies. Recently, profound evidence has elucidated that proteins embedded in
mammalian plasma membranes may unlock the fundamental basis for understanding carcinogenesis
and disarming chemoresistance. Importantly, most ion channels and pumps are located in the
plasma membrane and may serve as accessible and druggable targets for cancer treatment. In this
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regard, several studies have revealed a direct link between the functional dysregulation of membrane
transporters and cancer development. Thus, many membrane transporters have been established
as potential therapeutic candidates for cancer treatment. A growing body of evidence suggests
that modulation of the expression and function of membrane transport proteins not only impacts
cancer progression but also alters the cytotoxic effects of chemotherapeutics in different cancers.
Given the diverse mechanisms of chemoresistance operating in human malignancies, discovering
new therapeutic targets to enhance the efficacy of chemotherapy is crucial for improving patient
outcomes. In this review, we emphasized the strong correlation between membrane transport proteins
and carcinogenesis by focusing on three main aspects (Figure 3). First, the expression profile of
membrane transporters is often altered in cancers, suggesting that membrane transporters may serve
as valuable prognostic and diagnostic markers that can be clinically used to improve cancer detection
and to monitor cancer progression. Second, the expression and functional patterns of membrane
transporters correlate with response to chemotherapy and patient prognosis. Therefore, drugs that can
modulate the expression or/and activity of membrane transporters may hold anticancer therapeutic
potential, alone or in combination with conventional chemotherapeutics. Third, the strategic location
of membrane transporters makes them easily accessible to pharmacological interventions.

Here we presented evidence on the impact of dysregulated membrane transporters on cancer
growth, apoptosis, migration, and response to chemotherapy drugs. However, the extensive studies on
the biological roles of membrane transporters in cancer are contrasted by a massive lack of information
about their intrinsic properties and structural diversity. Hereby, recognizing the intrinsic regulation,
gating kinetics, and structural diversity of membrane transporters is a key step toward uncovering
their fundamental impacts on cancer progression and chemoresistance. Furthermore, the therapeutic
approaches used to target different transporters have been discussed here; however, the lack of specific
and potent drugs that can target distinct membrane transporters limits the therapeutic potential of
these proteins. More importantly, developing novel drugs targeting membrane transporters requires
further understanding of the biological function and structure of these proteins. Therefore, a better
understanding of their structure and function may provide greater insights into their role in cancer
progression and treatment as well as pave the way for the development of novel anticancer drugs and
improvement of current chemotherapy efficacy.
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Appendix A

Table A1. Summary of membrane transporter proteins in various cancers, their expression profile,
and their role in chemotherapeutic resistance.

Membrane
Transport Protein Type of Cancer Cell Lines

Level of
Expression
or Activity

Chemoresistance

Ovarian 2000, CB10 Cisplatin [39], oxaliplatin [45]
Leukemia NIH/3T3 Cisplatin [40]

Lung PC-14, SBC-1 Cisplatin [41,42]
Prostate LNCaP Cisplatin [43]

Na+/K+ ATPase

Squamous BHY

Low

Cisplatin [45]
Ovarian MDAH-2774 Cisplatin [67]

SERCA Lung H1339 Low Cisplatin [68]
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Table A1. Cont.

Membrane
Transport Protein Type of Cancer Cell Lines

Level of
Expression
or Activity

Chemoresistance

Epidermoid KB/PC4 Cisplatin [104]
Prostate P/CDP5 Cisplatin [104]

Leukemia HL-60 Cisplatin, vincristine [105]
Melanoma Mel P, Mel M

Colon Colo1, Colo2
Cisplatin, vinblastine, & 5-FU [109]

V-ATPase

Breast SKRB3, JIMT-1

Hight

Trastuzumab [110]
Ovarian A2780 Carboplatin [133]

CaV3
Prostate LNCaP, PC3

Hight
Thapsigargin, Paclitaxel [290]

Ovarian A2780 Cisplatin [143]
Hepatocellular HepG2 5-FU [144]Orai1

Pancreas Panc1
Hight

5-FU, gemcitabine [145]
Orai3 Breast cancer T47D Hight Cisplatin, 5-FU, paclitaxel [146]

TRPC1 Ovarian A2780, SKOV3 Low Cisplatin, Carboplatin [169]
Colorectal HCT-8, LoVo 5-FU [170]

TRPC5 Breast MCF7, T47D, MDA231
High

Doxorubicin [171]
TRPC6 Hepatocellular Huh7 and HepG2 High Doxorubicin [173]

Breast MCF7, MDA231 Doxorubicin, paclitaxel [195]
Neuroblastoma SH-SY5Y Doxorubicin [179]TRPM2

Gastric AGS, MKN45
High

Doxorubicin, paclitaxel [178]
TRPM7 Colon LoVo Low Doxorubicin [196]

Prostate LNCaP Paclitaxel [197]
TRPM8 Bone MG-63, U2OS

High
Epirubicin [198]

Breast MCF7 Cisplatin [225], Doxorubicin [226], 5-FU [224]
TRPV1 Bladder 5637, T24

High
Pirarubicin [227]

Glioma U87MG, MZC Carmustine, temozolomide, doxorubicin [230]
TRPV2 Melanoma RPMI and U166 Low Bortezomib [231]
TRPV6 Prostate LNCaP High Cisplatin, thapsigargin [232]
KCa1.1 Ovarian A2780 Low Cisplatin [250]
KCa3.1 Epidermoid KB, KCP-4 Low Cisplatin [252]
Kv1.5 Gastric SGC7901 Low Doxorubicin [253]

Kv10.1 Breast MDA-MB-435S High Doxorubicin, paclitaxel [254]
Kv11.1 Colorectal HCT116 High Cisplatin [255]

NaV
Breast cancer MCF7, MDA231,

MDA468, 4T1 High Cisplatin [274,275], Taxol [277]

Hepatocellular HepG2 Cisplatin [276]
H+-NaL – ASIC1a Hepatocellular BEL-7402, HepG2 High Doxorubicin, 5-FU [285]

The switch between the green and orange colors indicates a change in the type of membrane transport protein.
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225. Nur, G.; Nazıroğlu, M.; Deveci, H.A. Synergic prooxidant, apoptotic and TRPV1 channel activator effects of
alpha-lipoic acid and cisplatin in MCF-7 breast cancer cells. J. Recept. Signal. Transduct. 2017, 37, 569–577.
[CrossRef]
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