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Abstract: Neoadjuvant chemotherapy (NACT) is used in locally advanced breast cancer to reduce
tumour burden prior to surgical resection. However, only a subset of NACT treated patients will
respond to treatment or achieve a pathologic complete response (pCR). This multicenter, prospective
study (CTRIAL-IE (ICORG) 10-11 study) evaluated circulating microRNA as novel non-invasive
prognostic biomarkers of NACT response in breast cancer. Selected circulating microRNAs (Let-7a,
miR-21, miR-145, miR-155, miR-195) were quantified from patients undergoing standard of care
NACT treatment (n = 114) from whole blood at collected at diagnosis, and the association with NACT
response and clinicopathological features evaluated. NACT responders had significantly lower levels
of miR-21 (p = 0.036) and miR-195 (p = 0.017), compared to non-responders. Evaluating all breast cancer
cases miR-21 was found to be an independent predictor of response (OR 0.538, 95% CI 0.308–0.943,
p < 0.05). Luminal cancer NACT responders were found to have significantly decreased levels of
miR-145 (p = 0.033) and miR-21 (p = 0.048), compared to non-responders. This study demonstrates
the prognostic ability of miR-21, miR-195 and miR-145 as circulating biomarkers stratifying breast
cancer patients by NACT response, identifying patients that will derive the maximum benefit
from chemotherapy.

Keywords: breast; microRNA; neoadjuvant; chemotherapy; prognostic; biomarker

Cancers 2020, 12, 1820; doi:10.3390/cancers12071820 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0003-1763-7422
https://orcid.org/0000-0002-5854-0339
https://orcid.org/0000-0002-3155-0334
http://dx.doi.org/10.3390/cancers12071820
http://www.mdpi.com/journal/cancers
https://www.mdpi.com/2072-6694/12/7/1820?type=check_update&version=2


Cancers 2020, 12, 1820 2 of 12

1. Introduction

Adjuvant chemotherapy has been used in the management of breast cancer for several decades,
and the current therapeutic protocols are dependent on the molecular subtype, disease stage and
assessments of other clinicopathological factors influencing the potential for response (such as age
and health). Neoadjuvant chemotherapy (NACT) is used in locally advanced breast cancer to reduce
the tumour burden prior to surgery, increasing the number of patients suitable for breast conserving
surgery. It also provides a unique opportunity for an in vivo assessment of how the tumour responds
to chemotherapy. Pathological complete response (pCR) is the complete eradication of the tumour
following the NACT treatment regimen. While studies have shown that pCR is associated with
improved survival, this varies according to clinicopathological features and molecular subtype [1,2].
It has recently been reported that only 19.2% of patients will achieve a pCR [3]. The majority of patients
exhibit only a partial or poor response to NACT, and currently there is no reliable, clinically validated
biomarker to help clinicians stratify patients that will respond.

The introduction of molecular profiling resulted in the subdivision of breast cancer into at least 4
broad biologic subtypes, each with prognostic and therapeutic significance [4,5]. This insight into the
fundamental molecular heterogeneity of breast cancer provides an explanation for the considerable
variation observed in response to NACT. While limited molecular subtyping has been adopted into
clinical practice to inform decision making in relation to therapeutic strategy, the comprehensive
characterization of molecular subtypes requires whole genome profiling, and is not routinely performed
in the clinical setting. The expression of the oestrogen receptor (OR), progesterone receptor (PR) and
Her2/neu receptors (HER2+), which are routinely measured by immunohistochemistry (IHC), and are
frequently used as practical, surrogate markers of the breast cancer biologic subtype [6].

Response to NACT has been shown to vary by breast cancer subtype, tumour grade and stage,
with the highest complete response rates in the HER2+ (non-luminal) subtype [1–3]. Subtype specific
therapy, such as trastuzumab, significantly increases the pCR rates in HER2 receptor positive breast
cancers [7,8]. Response to NACT has a major impact on the risk of recurrence and survival, with patients
that have a complete response having an over 90% five-year overall survival [1]. Although the role of
chemotherapy in breast cancer is accepted, the majority of patients who get this treatment derive only
a partial or no benefit, with non-responders having very poor outcomes [1,9]. Recently, non-invasive
biomarkers found in blood (“liquid biopsies”) have been proposed as a possible way to not only
distinguish breast cancer subtypes, but also to predict response to therapy. MiRNAs are short
non-coding RNA, with a functional role in post-transcriptional regulation of gene expression [10,11].
Dysregulated miRNA expression has been shown in multiple cancers, and miRNA quantification
for disease characterization is under investigation in clinical settings for many diseases [12–14].
Many miRNA, including targets investigated here, have previously been shown to be dysregulated
(compared to healthy controls, either circulating and/or tumours), in breast cancer patients [15–21].
There is also evidence that miRNA expression/level profiles can accurately classify the breast cancer
subtype, and can predict subtype specific survival [12,15,22–24]. Correspondingly, specific patterns
of miRNA expression have been used to identify hormone receptor and HER2 receptor status [22].
Furthermore, it has been demonstrated that miRNA expression can effect response or resistance to
systemic chemotherapy in breast cancer [25]. Recently, the profiling of circulating miRNA (ct miRNA
found in plasma) to stratify NACT responders (from non-responders) in Her2+ patients (NeoALTTO
study) has yielded four circulating miRNA signatures associated with pathologic complete response
(pCR) [26].

The aim of our prospective translational study was to determine if any of a predefined panel of
circulating miRNAs (Let-7a, miR-21, miR-145, miR-155, miR-195), extracted from whole blood collected
at diagnosis, could predict NACT responders from non-responders. The secondary endpoint tested
was to determine if selected circulating miRNA found in blood at breast cancer diagnosis could predict
NACT response, in any of the four clinically relevant breast cancer subtypes.
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2. Materials and Methods

2.1. Study Cohort and Disease Classification

Following ethical approval and informed patient consent, a multicentre, prospective translational
study was established (CTRIAL-IE (ICORG) 10-11 study). Consecutive non-metastatic breast cancer
patients undergoing the standard of care NACT for breast cancer were included. Clinicopathological
details were obtained and recorded in a prospective database, with all patient details blinded from both
investigators and research staff. All patients were aged 18 years or over, and gave written informed
consent. Patients with distant metastatic disease at the time of the presentation were excluded. Response
to NACT was based on the Miller–Payne classification, with patients who had a complete response or
>90% reduction in primary tumour size (Grade 4 and 5) categorized as “responders”, while patients
with <90% reduction in primary tumour size (Grades 1–3) were categorized as “non-responders”.

2.2. Breast Cancer Subtypes

Breast cancer subtypes were defined using OR, PR and HER2 receptor status. Luminal cancer is
defined as (OR and/or PR+ve, HER2−ve), luminal B HER2 is defined as (OR and/or PR+ve, HER2+ve),
HER2+(non-luminal) as (OR and PR−ve, HER2+ve), and triple negative as (OR and PR−ve, HER2−ve),
according to the standard clinical pathological guidelines [4]. As Ki67 was not routinely reported,
the luminal subtype could not be separated into true luminal A and luminal B. As per American Society
of Clinical Oncology (ASCO) guidelines (ALLRED score >2, or more than 1% stain positive), the OR
and PR receptor status were determined independently by clinical pathologists, as per standard clinical
guidelines. The HER2 receptor status was identified by HerceptestTM (DAKO Agilent pathology
solutions, Santa Clara, CA, USA), with a score of 3+ considered to be positive. Any 2+ inconclusive
results were confirmed using FISH (fluorescent in situ hybridization) testing, as per ASCO guidelines,
with a HER2/CEP17 > 2.0 considered amplified.

2.3. Blood Collection and Analysis Cohort Details

Samples were collected from May 2011 to April 2014, from 8 centres across Ireland. Whole blood
was collected at a single timepoint: at breast cancer diagnosis (in Ethylenediaminetetraacetic acid
(EDTA) tubes), prior to standard of care NACT and surgery. From the total recruited cohort (n = 124),
9 samples were removed from miRNA analysis (no reliable detection of target miRNA), and 1
patient with grade 1 cancer was likewise removed from analysis (miRNA levels and cancer-related
clinicopathological analysis). A study enrolment flow diagram illustrates the cohort recruitment and
sample analysis workflow (Figure S1).

2.4. miRNA Panel

The levels of a panel of five miRNAs were selected for evaluation, on the basis of their reported
relevance to breast cancer (Table 1) [15–20,22]. Two additional miRNAs (miR-16 and miR-425) were
utilized as validated endogenous controls, having previously been demonstrated to be stably expressed
in both breast cancer tissue, and have stable levels in the blood of breast cancer patients [18,19,27].
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Table 1. Target and control miRNA panel and published association with breast cancer.

miRNA of Interest Previous Association with Breast Cancer

Let 7a Elevated levels in circulation in breast cancer

miR-21 Increased levels in breast tumour tissue
Moreover, increased in: colorectal, pancreatic, gastric, lymphomas

miR-145 Decreased levels in breast tumour tissue
miR-155 Increased levels in breast tumour tissue
miR-195 Increased levels in circulation in breast cancer
miR-16 Validated endogenous circulating control (in breast cancer patients)

miR-425 Validated endogenous circulating control (in breast cancer patients)

2.5. RNA Isolation

Total RNA was extracted from whole blood (1 mL) using Trizol (as per the manufacturer’s
instructions). RNA concentrations were determined using spectrophotometry (NanoDrop ND-1000
Technologies Inc., Wilmington, DE, USA), as previously described [18].

2.6. RQ-PCR

TaqMan assays were used, as per the manufacturer’s instructions, for the relative quantification
PCR (RQ-PCR) of the indicated target miRNA (miRNA: Taqman assay ID- miR-195: 000494; miR-155:
002623; miR-145: 002278; miR-21: 000397; Let-7a: 000377; miR-10b: 002218) and the endogenous
control (miR-16: 000391; miR-425: 001104), as previously described (TaqMan Fast Universal Master
Mix (2X), No AmpErase UNG: Applied biosystems, Foster City, CA, USA, cat:4367846) [18]. Assays
were performed using an AB7900HT (Applied Biosystems), using standard conditions as per the
manufacturer’s instructions. Moreover, miRNA expression levels were normalized using endogenous
controls. All reactions were performed in triplicate (with each individual assay performed using
technical triplicates). Raw fluorescence data from RQ-PCR were exported into the software package
QBasePlus, and relative quantification was determined.

2.7. Analysis of miRNA Expression/Levels

Reliable detection of the five target miRNAs was performed on 114 at-diagnosis samples (n = 114).
Moreover, miRNA expression levels were calculated using QbasePlus software (geNorm method),
with results normalized to the two control miRNAs. For all miRNA (controls and targets) the threshold
standard deviation for intra- and inter-assay replicates was 0.3. PCR amplification efficiencies were
calculated for each candidate reference miRNA using the formula E = (10−1/slope

− 1) × 100, using the
slope of the plot of quantification cycle (Cq) versus the log input of cDNA (10-fold dilution series).
Notably, miRNA assays, and initial analysis, were performed blinded (to patient details).

2.8. Statistical Analysis

Data were analysed using R statistical software version 3.2.3. Non-parametric statistics were used,
due to evidence of non-normally distributed data and non-ignorable outliers. The Kruskal–Wallis test
was used to compare medians among multiple groups and the two-sample Wilcoxon rank sum test
was used for all two-sample comparisons. A univariate logistic regression analysis was also performed.
Results with a p value < 0.05 were considered statistically significant.

2.9. Ethical Approval

This study was conducted with ethical approval from Galway University Hospital and National
University of Ireland Galway (approvals: C.A.151, 02/2008; and C.A.1012, 01/2014), and from the
research ethics committees of the participating centres. All subjects gave their informed consent for
inclusion before participation in the study.
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2.10. Data Availability Statement

The data that support the findings of this study are available on request from the corresponding
author. The data are not publicly available due to privacy or ethical restrictions.

3. Results

3.1. Patient Demographics

The clinicopathological details of the patient cohort are shown (Table 2), and the median age of
patients was 55 years old (range 25–76). The luminal subtype was the most common subtype (n = 61,
49.2%), followed by triple negative (n = 25, 20.2%), luminal B HER2 (n = 22, 17.7%), with HER2+

(non-luminal) being the least common (n = 16, 12.9%). Following standard of care NACT, 45.2% (n = 56)
of patients were found to be responders, with a complete pathological response seen in 25.8% (n = 32)
of patients. As expected, the highest complete response rates (within each subtype) were seen in the
HER2+ (non-luminal) breast cancer subtype (68.8%, n = 11), followed by triple negative (64%, n = 16),
luminal B HER2 (59.1%, n = 13) and luminal (26.2%, n = 16), respectively.

Table 2. Neoadjuvant chemotherapy patient cohort: Clinicopathological details.

Total Patients Analyzed n = 114

Median age (range) 55 years (25–76)

Grade: n = (%)
1 1 (0.9%)
2 62 (54.4%)
3 50 (43.8%)

Unknown (at time of analysis) 1 (0.9%)

Lymph node (pre op): n = (%)
Positive 72 (63.2%)

Negative 41 (36.8%)

Surgery: n = (%)
WLE 63 (55.2%)

Mastectomy 50 (43.9%)
NA 1 (0.9%)

Subtype: n = (%)
Luminal 57 (49.2%)

Luminal HER2 20 (17.7%)
HER2+ 14 (12.9%)

Triple negative 23 (20.2%)

Pathological complete response: No. (%)
Yes 51 (44.7%)
No 60 (52.6%)

Unknown 3 (2.6%)

3.2. Relationship of Circulating miRNA Levels to Clinicopathological Parameters

The association between the five target miRNAs and clinicopathological parameters, including
grade, lymph node status at diagnosis, hormone receptor status, and HER2 receptor status is shown
(Table 3). MiR-195 levels were significantly higher in grade 2 compared to grade 3 breast cancers
(p = 0.016). Increased miR-195 levels were significantly associated with OR positive breast cancers
(p = 0.014), while no significant variation in miR-195 levels was seen in relation to PR or HER2 receptor
status. No significant variation in levels was seen in any of the variables for Let-7a, miR-21, miR-145 or
miR-155 (Table 3).
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Table 3. Relationship of target miRNA on clinicopathological details.

Target
miRNA

Grade Lymph Node
Status OR Status PR Status HER2 Status

2 3 +Ve −Ve +Ve −Ve +Ve −Ve +Ve −Ve

Let 7a
p = 0.112 p = 0.443 p = 0.242 p = 0.545 p = 0.407

(n = 59, n = 50) (n = 70, n = 40) (n = 71, n = 39) (n = 59, n = 52) (n = 32, n = 79)

miR-21
p = 0.124 p = 0.752 p = 0.090 p = 0.164 p = 0.783

(n = 61, n = 49) (n = 71, n = 40) (n = 73, n = 39) (n = 59, n = 53) (n = 34, n = 78)

miR-145
p = 0.968 p = 0.075 p = 0.406 p = 0.063 p = 0.877

(n = 60, n = 48) (n = 71, n = 38) (n = 71, n = 39) (n = 58, n = 52) (n = 32, n = 78)

miR-155
p = 0.217 p = 0.621 p = 0.483 p = 0.986 p = 0.593

(n = 60, n = 50) (n = 71, n = 40) (n = 73, n = 39) (n = 59, n = 53) (n = 34, n = 78)

miR-195
p = 0.016 p = 0.252 p = 0.014 p = 0.580 p = 0.477

(n = 61, n = 49) (n = 71, n = 40) (n = 74, n = 38) (n = 59, n = 53) (n = 32, n = 80)

Levels of the target miRNAs in each breast cancer subtype were then investigated (Figure 1).
No significant differences in miRNA levels were seen between the breast cancer subtypes for any of
the target miRNA (Let-7a, p = 0.670; miR-145, p = 0.910; miR-155, p = 0.913; miR-195, p = 0.087; miR-21,
p = 0.287).
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Figure 1. Levels of indicated miRNAs in the specified breast cancer subtypes. No significant
association between the target miRNA level and any breast cancer subtype was found. Luminal, n = 57;
Luminal B Her2, n = 20; Her2+, n = 14; Triple negative, n = 23.

3.3. Relationship of Circulating miRNA in Responders versus Non-Responders

The relationship between the target miRNAs’ levels and the tumour bed response to NACT in
responders compared to non-responders was assessed. A significantly lower (p = 0.036) median level
of miR-21 was seen in the responders (n = 51) compared to non-responders (n = 58). For miR-195,
a significant difference (p = 0.017) in median level can also be seen between responders (n = 50) and
non-responders (n = 59). No significant difference between responders and non-responders was seen
for Let 7a (p = 0.254), miR-145 (p = 0.978) or miR-155 (p = 0.825) levels (Figure 2).
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Figure 2. Relationship between the target miRNAs levels and tumour bed response to NACT in
responders compared to non-responders. Responders n = 51, Non-responders n = 58. p < 0.05
considered significant.

Using univariate logistic regression analysis, miR-21 was found to be an independent predictor
of responders (OR 0.539, 95% CI 0.308–0.943, p < 0.05) (Figure 3A). For every unit increase in miR-21
levels, the odds ratio of being a non-responder versus a responder is 1.86 times higher. Using a
univariate logistic regression analysis, for every unit increase in miR-195 levels, the odds ratio of
being a non-responder relative to a responder is 1.78 times higher, however this was not found to be a
significant effect (at significance level 0.05; OR 0.561, 95% CI 0.285–1.104, p < 0.1) (Figure 3B). Let 7a,
miRNA-145 and miRNA-155 were not found to be predictors of responders (Figure S2). Investigating
the sensitivity and specificity of the individual miRNA, only miR-195 displayed moderate diagnostic
accuracy (Table S1).
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response. (A) For miRNA-21 every unit increase miRNA-21, the odds ratio of being a non-responder
relative to a responder is 1.86 (1/0.538) times higher. (B) miRNA-195—with every unit increase in
miRNA-195, the odds ratio of being a non-responder relative to a responder is 1.78 (1/0.561) times
higher. Observations = n (indicated for each).
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3.4. Relationship of Individual Target miRNA Response to NACT in Different Breast Cancer Subtypes

The variation in levels of each target miRNA by response to NACT was assessed in the indicated
breast cancer subtypes. Considering only the luminal subtype, a significant decrease in the miR-21 level
is observed in responders compared to non-responders (p = 0.048) (Figure 4A). No significant difference
in miR-21 levels was observed based on the response to NACT within any of the other three subtypes.
For miR-145, there are significantly lower levels in responders compared to non-responders, in luminal
breast cancers (p = 0.033) (Figure 4B). No significant difference in miR-145 levels was observed based
on the response to NACT in any of the other three subtypes. No significant in difference in the levels of
Let 7a, miR-195 or miR-155 in response to NACT was observed in any subtype (Figure S3).
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Figure 4. Variation in levels of each target miRNA by response to NACT was assessed in the four breast
cancer subtypes. (A) miRNA-21 patients with low levels had a higher response rate in Luminal cancers.
(B) miRNA-145 patients with low levels had a higher response rate in Luminal cancers. Luminal
(responders n = 15, non-responders n = 41), Luminal B Her2 (responders n = 12, non-responders n = 7),
Her2+ (non-luminal) (responders n = 10, non-responders n = 3), Triple negative (responders n = 14,
non-responders n = 9). p < 0.05 considered significant.

4. Discussion

In this multicentre, prospective translational trial, we evaluated miRNA levels in serially collected
whole blood, for their ability to predict response to standard of care NACT. In this analysis, the circulating
levels of five target miRNAs were assessed at the time of diagnosis, prior to NACT, and evaluated
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in relation to tumour characteristics, biologic features and NACT response. We demonstrated that
levels of miR-21 and miR-195, in whole blood at presentation, is altered between NACT responders
and non-responders. Using a univariate logistic regression analysis, miRNA-21 was found to be
an independent predictor of having a response to NACT. Notably, miR-21 and miR-145 levels had
significant variations in levels between responders compared to non-responders in the Luminal breast
cancer subtype. These results support recent findings from the NeoALTTO study, which investigated the
differentially expressed miRNA isolated from the plasma of Her2+ breast cancer patients. Their study,
using two independent cohorts, found a prognostic value of circulating miR-145 (Trastuzumab at
week 2; AUC 0.81) and miR-195 (Lapatinib + Trastuzumab at week 2; not included in the final
multivariate model) in predicting pCR in Her2+ breast cancer patients [26]. In our study, no significant
association was seen between any of the five target miRNAs and any of the breast cancer subtypes,
although miR-195 was significantly elevated in OR positive breast cancers, compared to OR negative
breast cancers.

MiRNAs have been shown as potential diagnostic biomarkers in breast cancer, with all selected
targets in this study shown to be altered in breast cancer patients compared to controls. For both
miR-21 and miR-195, it has been established that higher expression levels are associated with breast
cancer and poor outcome [17,18,28,29]. Our study not only adds to the growing evidence of the use of
miRNA as biomarkers, but is the first to demonstrate that both miR-21 and miR-195 could be potential
predictors of response to NACT. Previous studies have also examined the role of miRNA in predicting
the response to NACT, and have found that miRNA could be potential biomarkers to predict response.
In one study, a group of circulating miRNA were found to exhibit strong correlation with response
to NACT [30]. Another study assessing the miRNA levels before and after NACT discovered that a
significant variation in miR-34a was seen between patients with a partial response, compared to patients
with a complete response in HER2+ (non-luminal) and triple negative breast cancer subtypes [31].
Overall, this highlights the potential of miRNAs alone, or with additional markers, to predict which
patients will respond to NACT.

In our study, a breast cancer subtype specific response to NACT was also identified, with elevated
miR-21 and miR-145 levels significantly associated with non-responders compared to responders in the
luminal breast cancer subtype. For in vitro studies, an elevated miR-21 expression has been shown to
be associated with chemoresistance in a luminal breast cancer cell line [32]. In another study, the ability
of circulating miRNA to predict response to NACT in luminal breast cancers was assessed, and it
was found that circulating miR-19a and miR-205 in serum may predict for chemosensitivity versus
chemoresistance in the luminal breast cancer subtype [33]. The luminal breast cancer subtype is known
to have the lowest levels of response to NACT; although there are small numbers in our study, we have
shown the possibility of using miRNA for identifying which luminal breast cancers will respond to
NACT, and further validation with a larger cohort of patients is warranted.

The miRNA targets investigated were selected for this study based on the current published data
during the study design. The use of predefined miRNA may have limited the potential of this study,
with multiple new targets identified, since it could not be assessed in this study. A recent study found
up to 48 publications on circulating miRNA in breast cancer alone [34]. Our work advances this by
confirming that specific whole blood isolated miRNA are viable markers for pCR. The lowest rates of
recurrence have been seen in luminal cancers that have a pCR [35]. By combining miRNA with clinical
and pathological markers, this may increase specificity, and using a combination of markers, it may
be possible to make a predictive score for response to treatment, resulting in a more personalized
approach to patient care.

5. Conclusions

This study has shown again that miRNA are readily detectable in the circulation of breast cancer
patients, and for the first time, their potential as biomarkers in predicting response to standard of care
NACT. Using a multicentre, prospective translational trial, the ability of a panel of five pre-selected
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target miRNAs to predict response to standard of care NACT was assessed. Importantly, miR-21 and
miR-195 were shown to have significantly reduced levels in patients that responded to standard of care
NACT. Furthermore, an intrinsic breast cancer subtype specific to the significant variation in miR-21
and miR-145 expression levels was found to be a predictor of response to NACT. Using a combination
of miRNAs alone, or in addition with other clinicopathological factors, may provide an accurate test to
assess which patients will benefit from NACT. In this analysis, the miRNA levels at time of diagnosis
was used to assess response to standard of care NACT, and may provide a way, in the future, to select
the appropriate therapy for patients.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/7/1820/s1,
Figure S1: Study Enrollment and analysis Flow Diagram, Figure S2: Univariate analysis of Let 7a, miRNA-145 and
miRNA-155 expression as an independent predictor of response, Figure S3: Variation in expression of each target
miRNA by response to NACT was assessed in the four breast cancer subtypes, Table S1: Diagnostic accuracy of
miRNA and complete response.
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