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Abstract: The evolution of next-generation sequencing technology has resulted in a generation of
large amounts of cancer genomic data. Therefore, increasingly complex techniques are required to
appropriately analyze this data in order to determine its clinical relevance. In this study, we applied a
neural network-based technique to analyze data from The Cancer Genome Atlas and extract useful
microRNA (miRNA) features for predicting the prognosis of patients with lung adenocarcinomas
(LUAD). Using the Cascaded Wx platform, we identified and ranked miRNAs that affected LUAD
patient survival and selected the two top-ranked miRNAs (miR-374a and miR-374b) for measurement
of their expression levels in patient tumor tissues and in lung cancer cells exhibiting an altered
epithelial-to-mesenchymal transition (EMT) status. Analysis of miRNA expression from tumor
samples revealed that high miR-374a/b expression was associated with poor patient survival rates.
In lung cancer cells, the EMT signal induced miR-374a/b expression, which, in turn, promoted EMT
and invasiveness. These findings demonstrated that this approach enabled effective identification and
validation of prognostic miRNA markers in LUAD, suggesting its potential efficacy for clinical use.
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1. Introduction

Lung cancer ranks first among all cancer types in incidence and mortality, accounting for 18.4% of
cancer-related deaths worldwide [1]. Despite the continued development of novel treatment methods,
including targeted and immuno-oncology therapies, which have significantly improved the survival
rate of lung cancer patients, the 5-year survival rate of these patients remains <20% [2]. Therefore,
identification and validation of prognostic markers useful for screening patients most likely to respond
to a given therapy are urgently needed.

Prognostic markers include gene mutations, single-nucleotide polymorphisms of genes or
regulatory elements, as well as levels of proteins, mRNAs, and noncoding RNAs. In particular,
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advances in global transcriptome analysis have promoted attempts to exploit RNA-expression levels
as prognostic markers. For example, the analysis of reverse transcription-polymerase chain reaction
(RT-PCR) data obtained from 147 patients with non-small cell lung cancer (NSCLC), the most common
type of lung cancer, identified a six-gene signature (STX1A, HIF1A, CCT3, HLA-DPB1, MAFK,
and RNF5) as a prognostic marker of poor patient outcomes [3]. In another study, microarray data
from formalin-fixed paraffin-embedded (FFPE) samples from 55 NSCLC patients revealed a 59-gene
prognostic signature [4]. Microarray profiling of microRNAs (miRNAs) in 104 lung adenocarcinoma
(LUAD; a major subtype of NSCLC) patient samples revealed that high hsa-mir-155 and low hsa-let-7a-2
expression correlated with poor patient survival [5]. These attempts were groundbreaking but not
particularly successful, possibly due to their small sample sizes, inconsistent platforms, inappropriate
feature-processing steps, or lack of reliably robust methods for effectively analyzing high-dimensional
data [6].

miRNAs, as the most extensively studied noncoding RNAs, are small single-stranded RNAs
(19–25 nucleotides in length) and endogenous suppressors of target genes [7,8]. Their sequences are
complementary to the 3′-untranslated regions (3′-UTRs) of target mRNAs and bind to these regions
through Watson–Crick base pairing. Perfect matched binding of miRNAs to 3′-UTRs leads to mRNA
degradation, whereas imperfect matched binding leads to translational repression. By suppressing
target gene expression or protein translation, miRNAs regulate diverse physiological and pathological
conditions, including cancer [8]. miRNAs can either promote or repress cancer development and
progression according to their target genes. Moreover, numerous miRNAs can act as oncogenes
by negatively regulating tumor suppressors. For example, miR-21 expression is upregulated in
colon cancer and promotes cell growth and invasion by repressing the tumor suppressor PTEN [9].
miR-183 is overexpressed in colon cancer and represses EGR1, which encodes a transcription factor
that acts as a tumor suppressor, to promote tumor cell migration [10]. Conversely, tumor-suppressor
miRNAs can inhibit tumorigenesis, epithelial-to-mesenchymal transition (EMT), and metastasis by
suppressing oncogenes. In lung cancer, let-7 controls cellular proliferation by negatively regulating
the KRAS oncogene [11]. Additionally, miR-200 family members suppress EMT, migration, invasion,
and metastasis of lung cancer cells by directly repressing ZEB1, a gene encoding an EMT-inducing
transcription factor [12]. These represent examples of attempts to use miRNAs as biomarkers for cancer
detection, diagnosis, prognosis, and drug efficacy [13].

We recently developed a novel prognosis-associated feature-selection framework called Cascaded
Wx (CWx), an artificial neural network-based algorithm that ranks features (genes) according to cancer
patient survival by training neural networks with high- and low-risk cohorts in a cascading fashion [6].
We used CWx to analyze information for LUAD patients (n = 507) among transcriptome data from
The Cancer Genome Atlas (TCGA; 20,501 genes) and demonstrated the superiority of CWx to other
models for identifying prognosis-related genes. In the present study, we applied the CWx platform to
analyze LUAD TCGA miRNA-expression data to identify miRNA features associated with LUAD
patient survival. Combined with NanoString miRNA assays in FFPE lung tumor samples, we validated
the efficacy of several miRNAs selected by CWx for use as prognostic markers to predict survival in
LUAD patients.

2. Results

2.1. CWx Ranks miRNA Features Associated with Survival of LUAD Patients

The CWx framework, which was originally developed to predict prognostic marker genes
(mRNAs) [6], was adapted to analyze miRNA-expression (miRNA sequencing) data from 192 LUAD
patients obtained from TCGA (Figure 1A). Among a total of 809 miRNAs, 197 (CWx miRNAs) were
identified and ranked according to their prognostic potential CWx scores (Figure 1B and Table S1).
To gain insight into the biological functions of these CWx miRNAs, we performed an Ingenuity Pathway
Analysis (IPA) (Figure 1C). Canonical pathways that were significantly enriched in the CWx miRNA list
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were “cancer drug resistance by drug efflux” (p = 9.77× 10−6), “Th1 pathway” (p = 3.21 × 10−3), “Th1 and
Th2 activation pathway” (p = 1.06 × 10−2), and “regulation of the EMT pathway” (p = 1.55 × 10−2),
suggesting that many of the CWx miRNAs are relevant to cancer development and progression,
especially to cancer immunity and EMT.
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374a- or miR-374b-expression levels. Of these 180 patients, high miR-374a and miR-374b levels were 
detected in 33.3% and 59.4% of patients, respectively. High expression of miR-374a was associated 
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Figure 1. The CWx platform predicts miRNA features associated with lung adenocarcinomas (LUAD)
patient survival. (A) Overview of the CWx miRNA-selection procedure. The number of samples
(patients) was reduced through three cascading processes involving different criteria. Different cut-offs
(3-year, 2- vs. 4-year, and 1- vs. 5-year) were used to categorize samples into high- or low-risk classes
at the first, second, and the final steps, respectively. Additionally, the number of input miRNAs was
reduced by ~50% at each step according to the prognostic potential (CWx score) of given miRNAs.
(B) List of the CWx-miRNAs. The top 20 miRNAs predicted through the CWx platform are listed in
the table along with their CWx scores. (C) IPA of the CWx miRNAs. CWx miRNAs (n = 197) were
analyzed using the IPA tool to estimate enriched canonical pathways. Significantly enriched pathways
(p < 0.05) are presented in the graph.

2.2. MiR-374a and MiR-374b Are Poor Prognostic Markers in LUAD

Among the CWx miRNAs, we selected the two top-ranked miRNAs (miR-374a and miR-374b) for
further investigation. First, using NanoString, we measured the expression levels of these miRNAs in
FFPE tumor samples obtained from 180 surgically resected LUAD patients (Table 1 and Figure 2A).
The expression levels of miR-374a and miR-374b varied across samples and correlated positively with
each other (Spearman’s ρ = 0.220; p = 0.003). To investigate the effects of miR-374a and miR-374b
on the survival of LUAD patients, samples were divided into two groups according to miR-374a- or
miR-374b-expression levels. Of these 180 patients, high miR-374a and miR-374b levels were detected
in 33.3% and 59.4% of patients, respectively. High expression of miR-374a was associated with
advanced pathological stage, and miR-374b was associated with smoking status (Table 1; p = 0.059 and
p < 0.001, respectively). Additionally, Kaplan–Meier survival analysis demonstrated that high miR-374a
expression tended to be associated with shorter recurrence-free survival (RFS) and overall survival (OS)
(p = 0.059 and p = 0.082, respectively) of LUAD patients (Figure 2B and Figure S1). Moreover, patients
with high miR-374b expression showed slightly shorter RFS than those with low miR-374b expression
(p = 0.085), although there was no difference in OS between the two groups (p = 0.449; Figure 2B and
Figure S1). We then assessed the risk factors affecting RFS and OS using the Cox proportional hazards
regression method. We found that high miR-374a expression was related to poor RFS [hazard ratio
(HR), 1.642; 95% confidence interval (CI): 0.995–2.709; p = 0.053) and OS (HR, 1.804; 95% CI: 1.084–3.003;
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p = 0.023) (Tables S2 and S3); however, the effect of miR-374b on patient survival was minimal and
not statistically significant. Nevertheless, it should be noted that the combination of the two miRNAs
(miR-374a and miR-374b) enhanced the prognostic value for LUAD (Figure 2C). Patients with high
expression levels of both miR-374a and miR-374b (374a/b_high) showed shorter RFS than those with
low expression levels of both miRNAs (374a/b_low; p = 0.049). Interestingly, miR-374a and miR-374b
showed cancer-stage-specific effects on OS. In patients with stage I disease, high expression of miR-374a
and miR-374b were associated with better OS (miR-374a, p = 0.012; and miR-374b, p = 0.002) (Figure
S2A), which is a similar finding to that reported previously [14]. By contrast, in patients with stage II
LUAD, high expression of miR-374a and miR-374b showed a tendency toward poorer OS (miR-374a,
p = 0.104; and miR-374b, p = 0.203) (Figure S2B). These results suggested that the combination of
miR-374a and miR-374b can be used as a prognostic marker in LUAD.

Table 1. Baseline characteristics of LUAD patients stratified based on miR-374a or miR-374b expression.

Variables
All Patients

(n = 180)
hsa-miR-374a-5p hsa-miR-374b-5p

Low (n = 120) High (n = 60) p Low (n = 73) High (n = 107) p

Age, years 63.78 (28–85) 0.463 0.791
<65 94 (52.2%) 65 (69.1%) 29 (30.9%) 39 (41.5%) 55 (58.5%)
≥65 86 (47.8%) 55 (64.0%) 31 (36.0%) 34 (39.5%) 52 (60.5%)

Gender 0.916 0.312
Male 97 (53.9%) 65 (67.0%) 32 (33.0%) 36 (37.1%) 61 (62.9%)

Female 83 (46.1%) 55 (66.3%) 28 (33.7%) 37 (44.6%) 46 (55.4%)

Smoking 0.739 <0.001
Never smoker 101 (58.0%) 66 (65.3%) 35 (34.7%) 51 (50.5%) 50 (49.5%)

Current +
Ex-smoker 73 (21.3%) 29 (54.7%) 24 (45.3%) 22 (30.1%) 51 (69.9%)

Differentiation
grade 0.939 0.180

Well differentiated 49 (27.2%) 31 (63.3%) 18 (36.7%) 23 (46.9%) 26 (53.1%)
Moderately 102 (56.7%) 70 (68.6%) 32 (31.4%) 41 (40.2%) 61 (59.8%)

Poorly +
Undifferentiated 29 (16.1%) 19 (65.5%) 10 (34.5%) 9 (31.0%) 20 (69.0%)

Pathological stage 0.059 0.135
I 109 (61.2%) 77 (70.6%) 32 (29.4%) 47 (43.1%) 62 (56.9%)
II 33 (18.6%) 22 (66.7%) 11 (33.3%) 14 (42.4%) 19 (57.6%)

III + IV 36 (20.2%) 19 (52.8%) 17 (47.2%) 10 (27.8%) 26 (72.2%)

Tumor size 0.134 0.510
<3 cm 106 (58.9%) 76 (71.7%) 30 (28.3%) 46 (43.4%) 60 (56.6%)

3≤ T <7 cm 68 (37.8%) 40 (58.8%) 28 (41.2%) 24 (35.3%) 44 (64.7%)
≥7 cm 6 (3.3%) 4 (66.7%) 2 (33.3%) 3 (50.0%) 3 (50.0%)

Vascular invasion 0.907 0.852
No 152 (84.4%) 105 (69.1%) 47 (30.9%) 63 (41.4%) 89 (58.6%)

Yes or unknown 28 (15.6%) 15 (53.6%) 13 (46.4%) 10 (35.7%) 18 (64.3%)

Lymphatic invasion 0.758 0.889
No 114 (63.3%) 76 (66.7%) 38 (33.3%) 48 (42.1%) 66 (57.9%)

Yes or unknown 66 (36.7%) 44 (66.7%) 22 (33.3%) 25 (37.9%) 41 (62.1%)

Perineural invasion 0.969 0.949
No 169 (93.9%) 115 (68.0%) 54 (32.0%) 71 (42.0%) 98 (58.0%)

Yes or unknown 11 (6.1%) 5 (45.5%) 6 (54.5%) 2 (18.2%) 9 (81.8%)

EGFR mutation 0.104 0.737
No or unknown 116 (64.4%) 77 (66.4%) 39 (33.6%) 45 (18.9%) 71 (45.6%)

Yes 63 (35.6%) 42 (66.7%) 21 (33.3%) 28 (33.3%) 35 (2.2%)

Disease recurrence 0.128 0.053
No 113 (62.8%) 80 (38.8%) 33 (61.2%) 52 (46.0%) 61 (54.0%)
Yes 67 (37.2%) 40 (44.4%) 27 (55.6%) 21 (31.3%) 46 (68.7%)

Disease survival 0.155 0.407
Survival 115(63.9%) 81(70.4%) 34(29.6%) 44(38.3%) 71(61.7%)

Death 65(36.1%) 39(60.0%) 26(40.0%) 29(44.6%) 36(55.4%)
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Figure 2. miR-374a and miR-374b are markers of poor prognosis in LUAD patients. (A) NanoString
analysis of miR-374a and miR-374b in LUAD samples. miR-374a- and miR-374b-expression levels
were measured in formalin-fixed paraffin-embedded (FFPE) tumors from LUAD patients (n = 180).
(B) Recurrence-free survival (RFS) of LUAD patients based on miR-374a and miR-374b expression.
LUAD patients were divided into two groups (high and low) based on expression levels of miR-374a
(left) or miR-374b (right) obtained from NanoString. (C) RFS of LUAD patients based on miR-374a and
miR-374b expression. LUAD patients were divided into three groups: 374a/b_high, high expression of
both miR-374a and miR-374b; 374a/b_middle, low expression of one; and 374a/b_low, low expression of
both miR-374a and miR-374b according to NanoString.

2.3. MiR-374a and MiR-374b Are Regulated by the ZEB1/miR-200 Feedback Loop

Epithelial cancer cells undergoing EMT acquire motility and invasiveness and finally metastasize
to distant secondary sites [15]. Thus, EMT-related genes are closely associated with treatment
response and survival of cancer patients [16,17]. miR-374a and miR-374b reportedly promotes EMT in
breast [18], pancreatic [19], gastric [20], and lung cancer [21], whereas they also reportedly suppress
EMT in bladder [22] and ovarian cancer [23]. To clarify the association between miR-374a/b and EMT,
we measured levels of miR-374a and miR-374b in murine lung cancer cells in which EMT status had
been manipulated by ZEB1 and miR-200 [12]. ZEB1 overexpression induces EMT in epithelial-like
cells (393P), and ZEB1 knockout or miR-200 overexpression suppresses EMT in mesenchymal-like cells
(344SQ). In this system, both miR-374a and miR-374b levels were increased by ZEB1 overexpression and
decreased by ZEB1 knockout or miR-200 overexpression (Figure 3A–C). Similar results were observed
in human lung cancer cells, where ZEB1 overexpression enhanced both miR-374a and miR-374b
expression in HCC827 cells (Figure 3D), and use of the miR-200b mimic suppressed the expression of
these miRNAs in A549 cells (Figure 3E). These results implied that miR-374a and miR-374b expression
can be controlled by the ZEB1/miR-200 feedback loop, a potent EMT regulator.
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and miR-374a- and miR-374b-expression levels were measured by qRT-PCR. Data represent the mean +

SD (n = 3). ** p < 0.01; two-tailed Student’s t test.

2.4. MiR-374a and MiR-374b Promote EMT, Migration, and Invasion of Lung Cancer Cells

To investigate the effects of miR-374a and miR-374b on lung cancer cells, we transfected A549
human lung cancer cells with miR-374a and miR-374b mimics (Figure 4A). The miR-374a and miR-374b
mimics slightly enhanced mRNA levels of SNAI1 and SNAI2 (mesenchymal markers) and inhibited
those of CDH1, INADL, and CRB3 (epithelial markers) (Figure 4B). Additionally, Western blot indicated
that miR-374a and miR-374b enhanced ZEB1 and vimentin protein levels, indicating that miR-374a
and miR-374b partially induced EMT in lung cancer cells (Figure 4C). In spheroid invasion assays, the
miR-374a and miR-374b mimics promoted the invasion of A549 and H1792 cancer-cell spheroids into
collagen gels (Figure 4D and Figure S3A). Furthermore, miR-374a and miR-374b enhanced cancer cell
migration in wound-healing assays (Figure 4E and Figure S3B). These results suggested that miR-374a
and miR-374b promote EMT, migration, and invasion of lung cancer cells.
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Figure 4. miR-374a and miR-374b promote epithelial-to-mesenchymal transition (EMT), migration, and
invasion of lung cancer cells. (A) qRT-PCR of miR-374a and miR-374b in miR-374-mimic transfected
cells. A549 cells were transiently transfected with miR-374a or miR-374b mimics, and miR-374a (left)
and miR-374b (right) -expression levels were measured by qRT-PCR. Expression levels were normalized
to that of the small-nucleolar RNA RNU6B. Relative values to those of A549 cells transfected with
negative control (set to 1.0) are presented. Data represent the mean + SD (n = 3). ** p < 0.01; two-tailed
Student’s t test. (B) qRT-PCR of EMT markers in miR-374-mimic transfected cells. A549 cells were
transiently transfected with miR-374a or miR-374b mimic, and mRNA-expression levels of EMT markers
were measured by qRT-PCR. Expression levels were normalized to that of RPL32. Relative values to
those of A549 cells transfected with negative control (set to 1.0) are presented. Data represent the mean
+ SD (n = 3). * p < 0.05, ** p < 0.01; two-tailed Student’s t test. (C) Western blots of EMT markers in
miR-374-mimic transfected cells. A549 cells were transiently transfected with miR-374a or miR-374b
mimics, and protein levels of EMT markers were measured by Western blot. Actin was used as a
loading control. Densitometric quantification is presented below the blots. (D) Spheroid invasion assay
in miR-374-mimic transfected cells. Spheroids made from hanging-drop cultures of miR-374-mimic
transfected A549 cells were seeded on collagen gels and then cultured for 24 h. A549 cells were labeled
with mCherry by retroviral infection. Spheroid invasion ratios (ratio of whole cell area to the central
spheroid area) were measured using ImageJ software. Box-and-whisker plots denote median and
upper/lower quartiles + 1.5× interquartile range. Con, n = 8; 374a, n = 26; 374b, n = 12. P, two-tailed
Student’s t test. Original magnification, 100×. (E) Wound-healing assay in miR-374-mimic transfected
A549 cells. Cells were subjected to scratch wounds and then incubated for 24 h with mitomycin C
(1 µg/mL) to block proliferation-related effect. Wound-healing rates [1−(wound area ratio of 24 h to
that at 0 h)] were measured using ImageJ software (n = 12). P, two-tailed Student’s t test. Original
magnification, 50×.

2.5. MiR-374a and MiR-374b Induce Gene-Expression Signatures Related to EMT and Invasiveness

To analyze global changes in the transcriptome profile influenced by miR-374a and miR-374b,
we performed RNA-sequencing analysis using miR-374a- and miR-374b-transfected A549 cells.
Figure 5A shows the significantly upregulated (n = 169) or downregulated genes (n = 120; |fold
change| ≥ 2, adjusted p ≤ 0.05, and average Transcripts Per Million ≥ 1) in both miR-374a- and in
miR-374b-transfected cells relative to control cells. Rank–rank hypergeometric overlap analysis [24]
revealed that two expression profiles (miR-374a vs. control and miR-374b vs. control) were significantly
correlated (Figure 5B). We then uploaded the list of commonly upregulated or downregulated genes
in both profiles (total: 289 genes) to the IPA system and explored the canonical pathways related to
these genes. IPA analysis revealed canonical pathways, such as “ERK5 signaling (p = 1.48 × 10−4)”,
“NGF signaling (p = 1.72 × 10−3)”, and “CD27 signaling (p = 2.82 × 10−3)” showing positive z-scores,
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suggesting that these pathways were activated in miR-374a/b-overexpressing cells. By contrast, “death
receptor signaling (p = 3.45 × 10−3)” and “PTEN signaling (p = 4.33 × 10−3)” showed negative z-scores,
suggesting that these pathways were inactivated in miR-374a/b-overexpressing cells (Figure 5C).
To further analyze the signaling pathways involved in the molecular and cellular phenotypes affected
by miR-374a and miR-374b, we performed Gene Set Enrichment Analysis (GSEA) and identified
enriched or over-represented gene signatures in RNA-sequencing profiles (Figure 5D). As expected,
“multi-cancer invasiveness” and “epithelial-mesenchymal transition” signatures were enriched in both
datasets (miR-374a vs. control and miR-374b vs. control). We then selected several genes commonly
included in the two signatures (COL3A1, THY1, GREM1, SPOCK1, THBS2, TIPM3, COL5A1, SERR4, and
COL11A1) and measured their mRNA-expression levels in miR-374a/b-overexpressing A549 and H1792
cells (Figure 5E and Figure S3C). The results indicated that the levels of most of the signature genes
were elevated by miR-374a/b overexpression. This provided a molecular transcriptomic explanation
for the observed miR-374a- and miR-374b-mediated EMT and invasiveness of lung cancer cells.
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Figure 5. miR-374a and miR-374b induce gene signatures related to EMT and invasiveness. (A) Heatmap
showing RNA-sequencing data obtained from miR-374a/b-overexpressing or control A549 cells.
Commonly upregulated or downregulated genes in both miR-374a- and miR-374b-overexpressing
cells as compared with controls are presented in the heatmap (|fold change| ≥ 2, adjusted p ≤ 0.05,
and average Transcripts Per Million ≥ 1). Yellow: increased expression; blue: decreased expression.
(B) Heatmap showing rank–rank hypergeometric overlap analysis of two profiling datasets (miR-374a
vs. control and miR-374b vs. control). (C) IPA of genes differentially regulated by miR-374a/b. The
top 500 commonly upregulated or downregulated genes in both profiles (a total of 1000 genes) were
analyzed using the IPA tool to estimate enriched canonical pathways. The top five significantly
enriched pathways are presented in the graph. (D) GSEA of differentially expressed genes in miR-374a-
or miR-374b-overexpressing cells as compared with controls. The gene signatures “multi-cancer
invasiveness” and “epithelial-mesenchymal transition” were enriched in both profiles. (E) qRT-PCR of
EMT and invasiveness signature genes in miR-374-mimic transfected cells. A549 cells were transiently
transfected with miR-374a or miR-374b mimics, and expression levels of the signature genes were
measured by qRT-PCR. Expression levels were normalized to that of RPL32. Relative values to those in
A549 cells transfected with negative control (set to 1.0) are presented. Data represent the mean + SD
(n = 3). * p < 0.05, ** p < 0.01; two-tailed Student’s t test.
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3. Discussion

Identification and validation of clinically applicable prognostic markers that accurately predict
patient survival or drug response are crucial to achieving better treatment outcomes and improved
survival rates in lung cancer. For this purpose, numerous studies have been conducted over the course
of decades. Recently, one study demonstrated both circulating tumor cells exhibiting an active EMT
status (vimentin+ and EGFR+) and tumoral expression of AXL mRNA as prognostic factors for OS
and RFS of patients with early stage resectable NSCLC [25]. Using a different approach, we applied
a neural network-based CWx framework to extract miRNA markers most highly associated with
LUAD patient survival, profiled their expression levels in LUAD patient samples using NanoString
technology, validated their effects on patient survival, and elucidated their functions in lung cancer
cells. The results identified miR-374a and miR-374b, both EMT-related miRNAs, as potential prognostic
markers associated with poor survival in LUAD patients.

Machine learning algorithms are useful for analyzing large volumes of data, such as genetic
information produced by next-generation sequencing (NGS) technologies. Support vector machines [26],
decision trees [27], and random forest [28] algorithms have been frequently adopted to extract
prognostic features from high-throughput NGS profiling data [29–32]. Recently, we proposed that
the CWx framework demonstrated enhanced feature-selection efficiency and increased accuracy in
prognostic predictability as compared with previous algorithms [6]. Previous studies report that
miRNA signatures show predictive, diagnostic, and prognostic value and are capable of enhancing the
efficacy and feasibility of low-dose computed tomography screening in lung cancer patients [33,34].
These experimental results suggest that miRNAs can be used as effective lung cancer biomarkers.
Therefore, we expanded the previously developed CWx framework for the analysis of miRNA profiling
data and successfully extracted miRNA features associated with LUAD patient survival. Moreover,
the top miRNAs identified by CWx were validated experimentally and clinically to demonstrate their
prognostic potential.

miR-374 family members (miR-374a, -374b, and -374c) play indispensable regulatory roles in
diverse physiological and pathological processes, including cancer development and metastasis [35].
In triple-negative breast cancer, miR-374a is upregulated relative to levels in non-tumor tissues
and promotes cell proliferation, migration, and tumor progression in vivo by targeting arrestin-β1
(ARRB1) [36]. Additionally, miR-374a activates Wnt/β-catenin signaling by directly targeting WIF1,
PTEN, and WNT5A, thereby promoting breast cancer metastasis [18]. In hepatocellular carcinoma cells,
miR-374a promotes cell growth by targeting MIG-6 (ERRFI1), a negative regulator of EGFR signaling [23].
Moreover, miR-374b promotes cellular proliferation and inhibits apoptosis in gastrointestinal stromal
tumors by targeting PTEN and activating PI3K/AKT signaling [37].

By contrast, miR-374a and miR-374b reportedly suppress the progression of some cancers.
miR-374b suppresses the migration and invasion of bladder cancer cells by targeting ZEB2,
an EMT-inducing transcription factor [22], and suppresses cell proliferation, migration, and EMT in
ovarian cancer by targeting FOXP1 [23]. Even in LUAD cells, miR-374a suppresses cell proliferation
and invasion by targeting TGF-α (TGFA) [38], and in early stage NSCLC, high expression of miR-374a
is associated with improved survival rates [14]. These conflicting roles of miR-374a and miR-374b
were clarified in a study performed by Zhao et al. [39] in NSCLC cells, identifying dual stage-specific
roles of miR-374a: suppression of cell growth, migration, invasion, and metastasis by targeting cyclin
D1 (CCND1) in early-stage NSCLC while also targeting PTEN in advanced-stage NSCLC. Therefore,
high miR-374a expression in early stage NSCLC is associated with improved patient survival rates,
but in advanced NSCLC, it is associated with shorter survival, which is similar to the findings of the
present study.

The CWx platform has predicted multiple other candidate miRNAs beyond miR-374a and
miR-374b as associated with LUAD patient survival. Of these, let-7f is a member of the let-7 family,
which includes well-known tumor-suppressor miRNAs that target oncogenes, such as MYC, RAS,
and CCND1 [40]. miR-101 inhibits lung cancer proliferation and metastasis by targeting ZEB1 [41],
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and miR-200c is an EMT-inhibitory miRNA that also targets ZEB1 [12]. Additionally, miR-21 is an
oncogenic miRNA targeting PTEN and frequently upregulated in solid tumors [42]. These findings
suggest that miRNA features derived through the CWx platform are related to cancer development and
metastasis. Further studies are needed to validate the pathophysiological functions of these miRNA
features in LUAD.

In summary, we conducted an integrated study that included machine learning, clinical sample
profiling, and cellular experiments to predict and validate prognostic miRNA markers associated
with LUAD patient survival. The results identified miR-374a and miR-374b as promoting cancer cell
invasion through their elevated expression in LUAD patients and association with poor prognosis.
We anticipate that the proposed CWx miRNAs will be useful as LUAD-specific prognostic markers
following further experimental and clinical evaluation.

4. Materials and Methods

4.1. Data Acquisition

miRNA-expression data from 192 LUAD patients were obtained from TCGA via the firebrowse
website (http://firebrowse.org/). These data contained normalized expression (reads per million) levels
of 1,046 known miRNAs extracted from LUAD tissues. Of these miRNAs, 237 exhibiting no expression
(or no changes between samples) were discarded. Therefore, expression values from a total of 809
miRNAs were used to extract core miRNAs associated with the prognosis of LUAD patients using the
CWx algorithm.

4.2. CWx Analysis

The CWx algorithm was used to identify prognosis-associated miRNAs in 192 TCGA LUAD
patients. First, patients were divided into high- (n = 98) and low-risk (n = 94) groups depending on
whether they had survived for 3 years (Figure 1A). The number of miRNAs (features) was also reduced
by ~50% at this step, after which the same process was conducted with different survival cut-offs
(Figure 1A). Finally, 197 miRNAs were ranked according to CWx scores (the higher the CWx score, the
more relevant to the prognosis).

4.3. Cell Culture

Cell lines 393P, 344SQ (murine lung cancer), A549, and H1792 (human lung cancer) were cultured
in RPMI 1640 (Welgene, Gyeongsan, Korea) with 10% fetal bovine serum (FBS; HyClone, Logan, UT,
USA) at 37 ◦C in the presence of 5% CO2. Murine lung cancer cells were established and transfected
with ZEB1 and miR-200 as described in our previous studies [12,43]. A549 cells were transduced with
the pLMP-mCherry retroviral vector (a gift from Ken Scott, Baylor College of Medicine, Houston, TX,
USA) to allow visualization via a red fluorescence signal. hsa-miR-374a mimic, hsa-miR-374b mimic,
and negative controls were obtained from BIONEER (Daejeon, Korea) and transiently transfected into
A549 or H1792 cells using TransIT-X2 transfection reagent (Mirus Bio, Madison, WI, USA) according to
manufacturer instructions. For wound-healing assays, scratches were made with a 1000-µL pipette
tip when cells became confluent in 6-well plates, and cells were cultured in complete media with
10% FBS in the presence of mitomycin C (1 µg/mL; Sigma-Aldrich, St. Louis, MO, USA) to block
proliferation-related effects. After 24 h, the wound area was measured using Image J software (National
Institutes of Health, Bethesda, MD, USA).

4.4. Quantitative RT-PCR (qRT-PCR)

We used WelPrep total RNA isolation reagent (Welgene) to isolate total RNA from cultured
cells. To quantitate mRNA-expression levels, cDNA was first synthesized from total RNA by reverse
transcription using the ELPIS RT Prime kit (Elpis-Biotech, Daejeon, Korea), and quantitative PCR assays
was performed using a BioFACT A-Star real-time PCR kit including SFCgreen I (BioFACT, Daejeon,
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Korea) with the AriaMx real-time PCR system (Agilent Technologies, Santa Clara, CA, USA). mRNA
levels were normalized to that of a housekeeping gene [ribosomal protein L32 (RPL32)]. qRT-PCR
primers used in this study are listed in Table S4. To quantitate cellular miRNA levels, we used an
HB miR Multi Assay kit (Heimbiotek, Seongnam, Korea) and normalized miRNA levels to that of
RNU6B snoRNA.

4.5. RNA Extraction from FFPE Tumors

LUAD patients (n = 180) who underwent surgical resection with a curative aim were retrospectively
selected at Seoul St. Mary’s Hospital, Yeouido St. Mary’s Hospital, Bucheon St. Mary’s Hospital, or
Uijeongbu St. Mary’s Hospital of Catholic Medical Center (Seoul, Korea). This study was approved
by the institutional review board of Catholic Medical Center (No. UC17SESI0073). Total RNA was
extracted from FFPE tumors from these patients using a miRNeasy FFPE kit (QIAGEN, Hilden,
Germany) according to manufacturer instructions. RNA quantity and quality were assessed using
a DS11 spectrophotometer (Denovix, Wilmington, DE, USA) and a fragment analyzer (Advanced
Analytical Technologies, Ankeny, IA, USA).

4.6. MiRNA-Expression Profiling by NanoString

To measure miR-374a and miR-374b levels in FFPE samples, we performed an nCounter microRNA
expression assay (NanoString Technologies, Seattle, WA, USA) using the human miRNA v3 assay kit by
Philekorea (Seoul, Korea). Oligonucleotide-tagged miRNAs were hybridized with the human miRNA
code set for 18 h at 65 ◦C, and the individual fluorescence intensity of target miRNAs was quantified
using the nCounter digital analyzer, which was also used to obtain images of fluorescent reporters.
miRNA data were normalized and analyzed using nSolver software (NanoString Technologies).

4.7. Western Blot

To isolate cellular proteins, cells were incubated with lysis buffer [50 mM Tris-HCl (pH 7.4), 150 mM
EDTA, and 1% Triton X-100] containing protease inhibitors (Sigma-Aldrich). After electrophoresis
(SDS-PAGE), proteins were transferred onto polyvinylidene difluoride (PVDF) membranes, and protein
blots were incubated with primary antibodies and horseradish peroxidase-conjugated secondary
antibodies (Cell Signaling Technology, Danvers, MA, USA). Protein bands were visualized with a
PicoEPD (Enhanced Peroxidase Detection) Western reagent kit (Elpis-Biotech). We used antibodies
against ZEB1 (#sc-25388; Santa Cruz Biotechnology, Dallas, TX, USA), vimentin (#sc-5565; Santa Cruz
Biotechnology), and actin (#BS6007M; Bioworld Technology, St. Louis Park, MN, USA).

4.8. Spheroid Invasion Assay

Spheroid invasion assays were performed as described previously [44]. Briefly, to create spheroids,
lung cancer cells (1 × 105 cells/5 mL) in 20% METHOCEL (Sigma-Aldrich) and 1% Matrigel (BD
Biosciences, Franklin Lakes, NJ, USA) were hung on the lid of 15 cm dishes (50 µL/drop) and incubated
at 37 ◦C for 2 days. Spheroids were then harvested in a 15 mL tube, which was placed in the incubator
for 30 min to allow the spheroids to settle. Spheroids were mixed gently with collagen solution
(3 mg/mL collagen in 0.5× phosphate-buffered saline and 0.01 N NaOH) and then implanted in the
center of each well of a 12-well plate. After the collagen gels polymerized, the wells were filled with cell
culture media. After 24 to 48 h, invading cells were observed under a Leica DMi8 inverted microscope
(Leica Microsystems, Wetzlar, Germany), and the invasion ratio was calculated by dividing the total
invasion area by the central spheroid area measured using Image J software (National Institutes
of Health).



Cancers 2020, 12, 1890 12 of 14

4.9. RNA Sequencing

Total RNA was isolated from A549 cells transfected with miR-374a mimic, miR-347b mimic,
or negative control in triplicate using an AccuPrep Universal RNA Extraction kit (BIONEER).
NGS-based RNA sequencing for global mRNA transcriptome profiling was performed as described
previously [44]. Briefly, after assessing the quantity and quality of RNA samples, a total RNA library
was constructed using the Illumina TruSeq stranded mRNA sample prep kit (Illumina, San Diego, CA,
USA). Indexed libraries were then submitted to Illumina NovaSeq (Illumina), and paired-end (2 × 100
bp) sequencing was performed by Macrogen (Seoul, Korea). Octopus-toolkit [45] was used to analyze
RNA-sequencing data.

5. Conclusions

We analyzed LUAD TCGA miRNA data using CWx, an artificial neural network-based algorithm,
and identified miRNA features associated with LUAD patient survival. Combined with NanoString
miRNA assays using FFPE lung tumor samples, we identified and validated miR-374a and miR-374b
as prognostic markers for predicting the survival of LUAD patients. Both miR-374a and miR-374b
promoted EMT and the invasiveness of lung cancer cells through the induction of gene-expression
signatures related to these phenotypes, suggesting their potential efficacy as LUAD prognostic markers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/7/1890/s1,
Figure S1: miR-374 and miR-374b are poor prognostic markers in LUAD patients, Figure S2: The effects of miR-374a
and miR-374b on patient overall survival are cancer stage-specific, Figure S3: miR-374a and miR-374b promote
invasion of H1792 lung cancer cells, Table S1: The CWx miRNA list, Table S2: Univariate and multivariate analysis
using the Cox proportional hazards model for recurrence-free survival, Table S3: Univariate and multivariate
analysis using the Cox proportional hazards model for overall survival, Table S4: Sequences of qRT-PCR primers
used in this study.

Author Contributions: Conceptualization, S.P., Y.H.K. and Y.-H.A.; methodology, S.P., K.K. and Y.H.K.; validation,
J.S.K., S.L., S.E.K. and J.H.H.; formal analysis, Y.-H.A.; investigation, J.S.K., S.H.C., S.L., S.E.K. and Y.-H.A.; data
curation, J.S.K., S.H.C., S.P. and K.K.; writing—original draft preparation, J.S.K. and Y.-H.A.; writing—review
and editing, S.H.C., J.H.H., Y.H.K. and Y.-H.A.; supervision, Y.H.K. and Y.-H.A.; funding acquisition, Y.H.K. and
Y.-H.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a grant from the National R&D Program for Cancer Control, Ministry of
Health & Welfare, Republic of Korea (1720100 to Y.H.K.), and by the National Research Foundation of Korea (NRF)
grant funded by the Korea government (MSIT) (NRF-2019R1F1A1057968 and 2020R1A5A2019210 to Y.-H.A.).
This study was also supported by the Health Fellowship Foundation (to J.S.K.).

Conflicts of Interest: S.P. is employed by Deargen Inc. The other authors declare no conflicts of interest.

References

1. Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018:
GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J.
Clin. 2018, 68, 394–424. [CrossRef]

2. Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2019, 69, 7–34. [CrossRef]
3. Boutros, P.C.; Lau, S.K.; Pintilie, M.; Liu, N.; Shepherd, F.A.; Der, S.D.; Tsao, M.S.; Penn, L.Z.; Jurisica, I.

Prognostic gene signatures for non-small-cell lung cancer. Proc. Natl. Acad. Sci. USA 2009, 106, 2824–2828.
[CrossRef]

4. Xie, Y.; Xiao, G.; Coombes, K.R.; Behrens, C.; Solis, L.M.; Raso, G.; Girard, L.; Erickson, H.S.; Roth, J.;
Heymach, J.V.; et al. Robust gene expression signature from formalin-fixed paraffin-embedded samples
predicts prognosis of non-small-cell lung cancer patients. Clin. Cancer Res. 2011, 17, 5705–5714. [CrossRef]

5. Yanaihara, N.; Caplen, N.; Bowman, E.; Seike, M.; Kumamoto, K.; Yi, M.; Stephens, R.M.; Okamoto, A.;
Yokota, J.; Tanaka, T.; et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis.
Cancer Cell 2006, 9, 189–198. [CrossRef]

6. Shin, B.; Park, S.; Hong, J.H.; An, H.J.; Chun, S.H.; Kang, K.; Ahn, Y.H.; Ko, Y.H.; Kang, K. Cascaded Wx:
A novel prognosis-related feature selection framework in human lung adenocarcinoma transcriptomes.
Front. Genet. 2019, 10, 662. [CrossRef]

http://www.mdpi.com/2072-6694/12/7/1890/s1
http://dx.doi.org/10.3322/caac.21492
http://dx.doi.org/10.3322/caac.21551
http://dx.doi.org/10.1073/pnas.0809444106
http://dx.doi.org/10.1158/1078-0432.CCR-11-0196
http://dx.doi.org/10.1016/j.ccr.2006.01.025
http://dx.doi.org/10.3389/fgene.2019.00662


Cancers 2020, 12, 1890 13 of 14

7. Ha, M.; Kim, V.N. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [CrossRef]
8. Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 2016, 1, 15004.

[CrossRef]
9. Wu, Y.; Song, Y.; Xiong, Y.; Wang, X.; Xu, K.; Han, B.; Bai, Y.; Li, L.; Zhang, Y.; Zhou, L. MicroRNA-21 (Mir-21)

promotes cell growth and invasion by repressing tumor suppressor PTEN in colorectal cancer. Cell Physiol.
Biochem. 2017, 43, 945–958. [CrossRef]

10. Sarver, A.L.; Li, L.; Subramanian, S. MicroRNA miR-183 functions as an oncogene by targeting the
transcription factor EGR1 and promoting tumor cell migration. Cancer Res. 2010, 70, 9570–9580. [CrossRef]
[PubMed]

11. Johnson, S.M.; Grosshans, H.; Shingara, J.; Byrom, M.; Jarvis, R.; Cheng, A.; Labourier, E.; Reinert, K.L.;
Brown, D.; Slack, F.J. RAS is regulated by the let-7 microRNA family. Cell 2005, 120, 635–647. [CrossRef]
[PubMed]

12. Gibbons, D.L.; Lin, W.; Creighton, C.J.; Rizvi, Z.H.; Gregory, P.A.; Goodall, G.J.; Thilaganathan, N.; Du, L.;
Zhang, Y.; Pertsemlidis, A.; et al. Contextual extracellular cues promote tumor cell EMT and metastasis by
regulating miR-200 family expression. Genes Dev. 2009, 23, 2140–2151. [CrossRef] [PubMed]

13. Hayes, J.; Peruzzi, P.P.; Lawler, S. MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol. Med.
2014, 20, 460–469. [CrossRef] [PubMed]

14. Vosa, U.; Vooder, T.; Kolde, R.; Fischer, K.; Valk, K.; Tonisson, N.; Roosipuu, R.; Vilo, J.; Metspalu, A.; Annilo, T.
Identification of miR-374a as a prognostic marker for survival in patients with early-stage nonsmall cell lung
cancer. Genes Chromosomes Cancer 2011, 50, 812–822. [CrossRef]

15. Kalluri, R.; Weinberg, R.A. The basics of epithelial-mesenchymal transition. J. Clin. Investig. 2009, 119,
1420–1428. [CrossRef]

16. Creighton, C.J.; Gibbons, D.L.; Kurie, J.M. The role of epithelial-mesenchymal transition programming in
invasion and metastasis: A clinical perspective. Cancer Manag. Res. 2013, 5, 187–195. [CrossRef]

17. George, J.T.; Jolly, M.K.; Xu, S.; Somarelli, J.A.; Levine, H. Survival outcomes in cancer patients predicted by
a partial EMT gene expression scoring metric. Cancer Res. 2017, 77, 6415–6428. [CrossRef]

18. Cai, J.; Guan, H.; Fang, L.; Yang, Y.; Zhu, X.; Yuan, J.; Wu, J.; Li, M. MicroRNA-374a activates Wnt/beta-catenin
signaling to promote breast cancer metastasis. J. Clin. Investig. 2013, 123, 566–579.

19. Ma, L.; Shao, Z.; Zhao, Y. MicroRNA-374a promotes pancreatic cancer cell proliferation and epithelial to
mesenchymal transition by targeting SRCIN1. Pathol. Res. Pract. 2019, 215, 152382. [CrossRef]

20. Xu, X.; Wang, W.; Su, N.; Zhu, X.; Yao, J.; Gao, W.; Hu, Z.; Sun, Y. miR-374a promotes cell proliferation,
migration and invasion by targeting SRCIN1 in gastric cancer. FEBS Lett. 2015, 589, 407–413. [CrossRef]
[PubMed]

21. Wang, Y.; Xia, H.; Zhuang, Z.; Miao, L.; Chen, X.; Cai, H. Axl-altered microRNAs regulate tumorigenicity
and gefitinib resistance in lung cancer. Cell Death Dis. 2014, 5, e1227. [CrossRef] [PubMed]

22. Wang, S.; Zhang, G.; Zheng, W.; Xue, Q.; Wei, D.; Zheng, Y.; Yuan, J. MiR-454-3p and miR-374b-5p suppress
migration and invasion of bladder cancer cells through targetting ZEB2. Biosci. Rep. 2018, 38, BSR20181436.
[CrossRef]

23. Li, H.; Liang, J.; Qin, F.; Zhai, Y. MiR-374b-5p-FOXP1 feedback loop regulates cell migration,
epithelial-mesenchymal transition and chemosensitivity in ovarian cancer. Biochem. Biophys. Res. Commun.
2018, 505, 554–560. [CrossRef]

24. Plaisier, S.B.; Taschereau, R.; Wong, J.A.; Graeber, T.G. Rank-rank hypergeometric overlap: Identification
of statistically significant overlap between gene-expression signatures. Nucleic Acids Res. 2010, 38, e169.
[CrossRef] [PubMed]

25. de Miguel-Pérez, D.; Bayarri-Lara, C.I.; Ortega, F.G.; Russo, A.; Moyano Rodriguez, M.J.; Alvarez-Cubero, M.J.;
Maza Serrano, E.; Lorente, J.A.; Rolfo, C.; Serrano, M.J. Post-surgery circulating tumor cells and AXL
overexpression as new poor prognostic biomarkers in resected lung adenocarcinoma. Cancers 2019, 11, 1750.
[CrossRef] [PubMed]

26. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011,
2, 27. [CrossRef]

27. Chou, H.L.; Yao, C.T.; Su, S.L.; Lee, C.Y.; Hu, K.Y.; Terng, H.J.; Shih, Y.W.; Chang, Y.T.; Lu, Y.F.; Chang, C.W.;
et al. Gene expression profiling of breast cancer survivability by pooled cDNA microarray analysis using
logistic regression, artificial neural networks and decision trees. BMC Bioinform. 2013, 14, 100. [CrossRef]

http://dx.doi.org/10.1038/nrm3838
http://dx.doi.org/10.1038/sigtrans.2015.4
http://dx.doi.org/10.1159/000481648
http://dx.doi.org/10.1158/0008-5472.CAN-10-2074
http://www.ncbi.nlm.nih.gov/pubmed/21118966
http://dx.doi.org/10.1016/j.cell.2005.01.014
http://www.ncbi.nlm.nih.gov/pubmed/15766527
http://dx.doi.org/10.1101/gad.1820209
http://www.ncbi.nlm.nih.gov/pubmed/19759262
http://dx.doi.org/10.1016/j.molmed.2014.06.005
http://www.ncbi.nlm.nih.gov/pubmed/25027972
http://dx.doi.org/10.1002/gcc.20902
http://dx.doi.org/10.1172/JCI39104
http://dx.doi.org/10.2147/CMAR.S35171
http://dx.doi.org/10.1158/0008-5472.CAN-16-3521
http://dx.doi.org/10.1016/j.prp.2019.03.011
http://dx.doi.org/10.1016/j.febslet.2014.12.027
http://www.ncbi.nlm.nih.gov/pubmed/25554419
http://dx.doi.org/10.1038/cddis.2014.186
http://www.ncbi.nlm.nih.gov/pubmed/24832599
http://dx.doi.org/10.1042/BSR20181436
http://dx.doi.org/10.1016/j.bbrc.2018.09.161
http://dx.doi.org/10.1093/nar/gkq636
http://www.ncbi.nlm.nih.gov/pubmed/20660011
http://dx.doi.org/10.3390/cancers11111750
http://www.ncbi.nlm.nih.gov/pubmed/31703465
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1186/1471-2105-14-100


Cancers 2020, 12, 1890 14 of 14

28. Zhang, J.; Hadj-Moussa, H.; Storey, K.B. Current progress of high-throughput microRNA differential
expression analysis and random forest gene selection for model and non-model systems: An R implementation.
J. Integr. Bioinform. 2016, 13, 306. [CrossRef]

29. Yao, D.; Yang, J.; Zhan, X.; Zhan, X.; Xie, Z. A novel random forests-based feature selection method for
microarray expression data analysis. Int. J. Data Min. Bioinform. 2015, 13, 84–101. [CrossRef]

30. Freres, P.; Wenric, S.; Boukerroucha, M.; Fasquelle, C.; Thiry, J.; Bovy, N.; Struman, I.; Geurts, P.; Collignon, J.;
Schroeder, H.; et al. Circulating microRNA-based screening tool for breast cancer. Oncotarget 2016, 7,
5416–5428. [CrossRef]

31. Wenric, S.; Shemirani, R. Using supervised learning methods for gene selection in RNA-seq case-control
studies. Front. Genet. 2018, 9, 297. [CrossRef]

32. Park, S.; Shin, B.; Sang Shim, W.; Choi, Y.; Kang, K.; Kang, K. Wx: A neural network-based feature selection
algorithm for transcriptomic data. Sci. Rep. 2019, 9, 10500. [CrossRef] [PubMed]

33. Sozzi, G.; Boeri, M.; Rossi, M.; Verri, C.; Suatoni, P.; Bravi, F.; Roz, L.; Conte, D.; Grassi, M.; Sverzellati, N.;
et al. Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer
screening: A correlative MILD trial study. J. Clin. Oncol. 2014, 32, 768–773. [CrossRef] [PubMed]

34. Montani, F.; Marzi, M.J.; Dezi, F.; Dama, E.; Carletti, R.M.; Bonizzi, G.; Bertolotti, R.; Bellomi, M.; Rampinelli, C.;
Maisonneuve, P.; et al. miR-Test: A blood test for lung cancer early detection. J. Natl. Cancer Inst. 2015,
107, 63. [CrossRef] [PubMed]

35. Bian, H.; Zhou, Y.; Zhou, D.; Zhang, Y.; Shang, D.; Qi, J. The latest progress on miR-374 and its functional
implications in physiological and pathological processes. J. Cell Mol. Med. 2019, 23, 3063–3076. [CrossRef]

36. Son, D.; Kim, Y.; Lim, S.; Kang, H.G.; Kim, D.H.; Park, J.W.; Cheong, W.; Kong, H.K.; Han, W.; Park, W.Y.;
et al. miR-374a-5p promotes tumor progression by targeting ARRB1 in triple negative breast cancer. Cancer
Lett. 2019, 454, 224–233. [CrossRef]

37. Long, Z.W.; Wu, J.H.; Cai, H.; Wang, Y.N.; Zhou, Y. MiR-374b promotes proliferation and inhibits apoptosis
of human GIST cells by inhibiting PTEN through activation of the PI3K/Akt pathway. Mol. Cells 2018, 41,
532–544. [PubMed]

38. Wu, H.; Liu, Y.; Shu, X.O.; Cai, Q. MiR-374a suppresses lung adenocarcinoma cell proliferation and invasion
by targeting TGFA gene expression. Carcinogenesis 2016, 37, 567–575. [CrossRef] [PubMed]

39. Zhao, M.; Xu, P.; Liu, Z.; Zhen, Y.; Chen, Y.; Liu, Y.; Fu, Q.; Deng, X.; Liang, Z.; Li, Y.; et al. Dual roles of
miR-374a by modulated c-Jun respectively targets CCND1-inducing PI3K/AKT signal and PTEN-suppressing
Wnt/beta-catenin signaling in non-small-cell lung cancer. Cell Death Dis. 2018, 9, 78. [CrossRef]

40. Balzeau, J.; Menezes, M.R.; Cao, S.; Hagan, J.P. The LIN28/let-7 pathway in cancer. Front. Genet. 2017, 8, 31.
[CrossRef]

41. Han, L.; Chen, W.; Xia, Y.; Song, Y.; Zhao, Z.; Cheng, H.; Jiang, T. MiR-101 inhibits the proliferation and
metastasis of lung cancer by targeting zinc finger E-box binding homeobox 1. Am. J. Transl. Res. 2018, 10,
1172–1183. [PubMed]

42. Feng, Y.H.; Tsao, C.J. Emerging role of microRNA-21 in cancer. Biomed. Rep. 2016, 5, 395–402. [CrossRef]
[PubMed]

43. Ahn, Y.H.; Gibbons, D.L.; Chakravarti, D.; Creighton, C.J.; Rizvi, Z.H.; Adams, H.P.; Pertsemlidis, A.;
Gregory, P.A.; Wright, J.A.; Goodall, G.J.; et al. ZEB1 drives prometastatic actin cytoskeletal remodeling by
downregulating miR-34a expression. J. Clin. Investig. 2012, 122, 3170–3183. [CrossRef]

44. Kim, J.S.; Kim, E.J.; Lee, S.; Tan, X.; Liu, X.; Park, S.; Kang, K.; Yoon, J.S.; Ko, Y.H.; Kurie, J.M.; et al. MiR-34a
and miR-34b/c have distinct effects on the suppression of lung adenocarcinomas. Exp. Mol. Med. 2019, 51,
1–10. [CrossRef] [PubMed]

45. Kim, T.; Seo, H.D.; Hennighausen, L.; Lee, D.; Kang, K. Octopus-toolkit: A workflow to automate mining of
public epigenomic and transcriptomic next-generation sequencing data. Nucleic Acids Res. 2018, 46, e53.
[CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1515/jib-2016-306
http://dx.doi.org/10.1504/IJDMB.2015.070852
http://dx.doi.org/10.18632/oncotarget.6786
http://dx.doi.org/10.3389/fgene.2018.00297
http://dx.doi.org/10.1038/s41598-019-47016-8
http://www.ncbi.nlm.nih.gov/pubmed/31324856
http://dx.doi.org/10.1200/JCO.2013.50.4357
http://www.ncbi.nlm.nih.gov/pubmed/24419137
http://dx.doi.org/10.1093/jnci/djv063
http://www.ncbi.nlm.nih.gov/pubmed/25794889
http://dx.doi.org/10.1111/jcmm.14219
http://dx.doi.org/10.1016/j.canlet.2019.04.006
http://www.ncbi.nlm.nih.gov/pubmed/29902839
http://dx.doi.org/10.1093/carcin/bgw038
http://www.ncbi.nlm.nih.gov/pubmed/27207663
http://dx.doi.org/10.1038/s41419-017-0103-7
http://dx.doi.org/10.3389/fgene.2017.00031
http://www.ncbi.nlm.nih.gov/pubmed/29736210
http://dx.doi.org/10.3892/br.2016.747
http://www.ncbi.nlm.nih.gov/pubmed/27699004
http://dx.doi.org/10.1172/JCI63608
http://dx.doi.org/10.1038/s12276-018-0203-1
http://www.ncbi.nlm.nih.gov/pubmed/31827074
http://dx.doi.org/10.1093/nar/gky083
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	CWx Ranks miRNA Features Associated with Survival of LUAD Patients 
	MiR-374a and MiR-374b Are Poor Prognostic Markers in LUAD 
	MiR-374a and MiR-374b Are Regulated by the ZEB1/miR-200 Feedback Loop 
	MiR-374a and MiR-374b Promote EMT, Migration, and Invasion of Lung Cancer Cells 
	MiR-374a and MiR-374b Induce Gene-Expression Signatures Related to EMT and Invasiveness 

	Discussion 
	Materials and Methods 
	Data Acquisition 
	CWx Analysis 
	Cell Culture 
	Quantitative RT-PCR (qRT-PCR) 
	RNA Extraction from FFPE Tumors 
	MiRNA-Expression Profiling by NanoString 
	Western Blot 
	Spheroid Invasion Assay 
	RNA Sequencing 

	Conclusions 
	References

