

—NCI-H460 --NCI-H460/MX20

Figure S1. Dose-response curve of A) XH-14A, B) XH-14B and C) XH-14C on drug-selected ABCG2overexpressing cell lines (NCI-H460/MX20) and its parental drug-sensitive cell line (NCI-H460) with gradient concentrations. Each point with error bar represents the mean \pm SD of the cytotoxicity with different concentrations calculated from at least three independent experiments performed in triplicate.

Figure S2. The vanadate sensitive ABCG2 transporter specific ATPase activity does not change by XH-14C. Gradient concentration of XH-14C $(0-40 \mu \mathrm{M})$ as x -axis and ABCG2 ATPase activity represented in percentage of basal activity as y-axis was plotted. The small inner figure plotted the lower concentrations $(0-0.5 \mu \mathrm{M})$ of $\mathrm{XH}-14 \mathrm{C}$ versus ATPase activity. The points with error bar represent the mean \pm SD calculated from three independent experiments.

Figure S3. Docking simulation of XH-14C and paclitaxel with ABCB1. A. Best scoring poses of XH-14C and paclitaxel in the drug binding pocket of ABCB1. $\mathrm{XH}-14 \mathrm{C}$ was depicted as cyan sticks and paclitaxel was depicted as yellow sticks. ABCB1 (4M2T) was depicted as colored tubes. B. Details of the positions of XH14 C and paclitaxel with ABCB 1 binding pocket.

Table S1. The cytotoxicity of ABCG2 substrates with or without combination of a reversal agent.

Treatment	$\mathrm{IC}_{50}{ }^{1}(\mu \mathrm{M})\left(\mathrm{RF}^{2}\right)$	
	NCI-H460	NCI-H460/MX20
Mitoxantrone	0.039 ± 0.005 (1.00)	36.55 ± 4.53 (937)
+ XH-14A ($3 \mu \mathrm{M}$)	0.055 ± 0.003 (1.41)	34.28 ± 4.13 (879)
+ XH-14B (3 ${ }^{\text {M }}$)	0.051 ± 0.008 (1.31)	38.49 ± 3.55 (987)
+ XH-14C ($3 \mu \mathrm{M}$)	0.041 ± 0.006 (1.05)	36.85 ± 3.95 (945)
+ Ko143 (3 $\mu \mathrm{M}$)	0.043 ± 0.004 (1.10)	$0.089 \pm 0.0040^{\#}(2.28)$
Topotecan	0.049 ± 0.006 (1.00)	39.16 ± 4.85 (799)
$+\mathrm{XH}-14 \mathrm{~A}(3 \mu \mathrm{M})$	0.062 ± 0.004 (1.27)	34.95 ± 4.21 (713)
+ XH-14B (3 ${ }^{\text {M }}$)	$0.040 \pm 0.009(0.82)$	35.96 ± 4.04 (734)
+ XH-14C ($3 \mu \mathrm{M}$)	$0.042 \pm 0.005(0.86)$	37.83 ± 3.16 (772)
+ Ko143 (3 $\mu \mathrm{M})$	0.037 ± 0.003 (0.76)	$0.096 \pm 0.0064^{\#}(1.96)$
Cisplatin	2.76 ± 0.23 (1.00)	3.15 ± 0.47 (1.14)
+ XH-14A (3 $\mu \mathrm{M})$	3.17 ± 0.31 (1.15)	3.29 ± 0.26 (1.19)
+ XH-14B ($3 \mu \mathrm{M}$)	2.82 ± 0.22 (1.02)	2.96 ± 0.31 (1.07)
+ XH-14C (3 $\mu \mathrm{M})$	2.77 ± 0.32 (1.00)	3.17 ± 0.33 (1.15)
+ Ko143 (3 $\mu \mathrm{M}$)	3.47 ± 0.35 (1.26)	3.40 ± 0.46 (1.23)

${ }^{1}$ IC50 values are calculated from at least three independent experiments performed in triplicate and finally represented as mean \pm SD with unit of $n M .{ }^{2}$ RF, resistant fold, calculated by the IC_{50} in the drug-selected ABCG2-overexpressing cancer cell line NCI-H460/MX20 divided by the IC 50 in the drug-sensitive cancer cell lineNCI-H460. ${ }^{\text {* }}$, represents $p<0.001$, compared to the value of NCI-H460/MX20 control group.

