SUPPLEMENTARY FIGURES

$R^{2} X=0.579 ; R^{2} Y=0.598 ; Q^{2}=0.425$

Supplementary Figure 1. PLS-DA scores scatter plots (UV scaling; 2 components) obtained for the urinary 6 -biomarker panel of (A) PCa patients ($\mathrm{n}=19$, blue squares) vs. cancer-free controls ($\mathrm{n}=20$, green circles); (B) PCa ($\mathrm{n}=20$, blue squares) vs. $\mathrm{BC}(\mathrm{n}=19$, red circles); and (C) PCa ($\mathrm{n}=19$, blue squares) vs. RC ($\mathrm{n}=20$, yellow circles).

Supplementary Figure 2. (A) Statistical validation of the PLS-DA model obtained for the 6-biomarker panel, by permutation testing (200 permutations; 2 components) PCa vs. cancer-free controls [Intercepts: $\mathrm{R}^{2}=(0.0,0.0866), \mathrm{Q}^{2}=(0.0,-0.234)$]; (B) Assessment of the diagnostic performance of the PLS-DA model obtained for the 6-biomarker panel through receiver operating characteristic (ROC) curve, PCa vs. controls (AUC $=0.834$; sensitivity $=84 \%$; specificity $=80 \%$; accuracy $=82 \%$).

Supplementary Figure 3. Boxplots from all metabolites that were simultaneously significantly different between PCa vs. BC, PCa vs. RC and PCa vs. cancer-free controls (${ }^{* * * *} p$-value $<0.0001,{ }^{* * *} p$-value $<0.001,{ }^{* *} p$-value $<0.01,{ }^{*} p$-value <0.05).

Supplementary Figure 4. VIP scores computed through a PLS-DA based algorithm to select the metabolites that best discriminate the groups: (A) PCa vs. BC; (B) PCa vs. RC.

Supplementary Figure 5. Statistical validation of the PLS-DA model obtained for the 10-biomarker panel, by permutation testing (200 permutations; 2 components). (A) PCa vs. controls [Intercepts: R^{2} $\left.=(0.0,0.167), \mathrm{Q}^{2}=(0.0,-0.237)\right]$; (B) PCa vs. $\mathrm{BC}\left[\right.$ Intercepts: $\left.\mathrm{R}^{2}=(0.0,0.2), \mathrm{Q}^{2}=(0.0,-0.238)\right]$; (C) PCa vs. $R C$ [Intercepts: $\left.R^{2}=(0.0,0.18), \mathrm{Q}^{2}=(0.0,-0.241)\right]$; (D) PCa vs. controls plus $B C$ and $R C$ Intercepts: $\mathrm{R}^{2}=$ $\left.(0.0,0.157), \mathrm{Q}^{2}=(0.0,-0.229)\right]$.

SUPPLEMENTARY TABLES

Supplementary Table 1. 7-Fold cross validation parameters obtained for PLS-DA models of VOCs and VCCs in the untargeted approach.

	VOCs					VCCs		
Comparison	$\mathbf{L V}$	$\mathbf{R}^{\mathbf{2} \mathbf{X}}$	$\mathbf{R}^{\mathbf{2}} \mathbf{Y}$	$\mathbf{Q}^{\mathbf{2}}$	$\mathbf{L V}$	$\mathbf{R}^{\mathbf{2}} \mathbf{X}$	$\mathbf{R}^{\mathbf{2}} \mathbf{Y}$	$\mathbf{Q}^{\mathbf{2}}$
PCa vs. BC	2	0.544	0.773	0.655	2	0.414	0.742	0.554
PCa vs. $\mathbf{R C}$	2	0.403	0.772	0.477	2	0.702	0.628	0.394

Supplementary Table 2. Univariate statistical analysis results of VOCs and VCCs significantly altered in PCa group compared to BC, RC and cancer-free controls.

	PCavs. BC					PCavs. RC			PCa vs. Controls	
Chemical name (IUPAC)	Protocol	p-value	Variation \pm uncertainty (\%)	Effect size \pm ESse	p-value	Variation \pm uncertainty (\%)	$\begin{gathered} \text { Effect size } \pm \\ E_{S E} \\ \hline \end{gathered}$	p-value	Variation \pm uncertainty (\%)	$\begin{gathered} \text { Effect size } \pm \\ E_{S E} \\ \hline \end{gathered}$
Ethylbenzene	VOCs	0.0021	91.15 ± 16.80	0.83 ± 0.45	0.0004	62.77 ± 12.00	1.23 ± 0.67	0.0002	68.59 ± 13.07	1.21 ± 0.66
Heptan-3-one	VOCs	0.0021	69.75 ± 15.41	1.04 ± 0.65	0.0048	50.64 ± 12.83	0.98 ± 0.64	0.0007	72.56 ± 13.35	1.24 ± 0.67
Heptan-2-one (2Heptanone)	VOCs	0.0005	126.37 ± 24.58	0.98 ± 0.64	0.0082	87.09 ± 22.36	0.84 ± 0.63	0.0003	137.2 ± 23.00	1.10 ± 0.65
$\begin{aligned} & \text { 4-(2-Methylpropoxy) } \\ & \text { butan-2-one } \end{aligned}$	VOCs	0.0124	264.40 ± 37.95	0.93 ± 0.64	0.0035	398.07 ± 37.60	1.10 ± 0.65	0.0210	251.4 ± 35.36	0.98 ± 0.64
Methyl benzoate	VOCs	0.0002	200.05 ± 26.93	1.15 ± 0.66	<0.0001	350.68 ± 26.59	1.48 ± 0.69	<0.0001	430.1 ± 27.21	1.56 ± 0.70
Unknown 1	VOCs	0.0061	175.99 ± 31.57	0.92 ± 0.64	0.0013	267.36 ± 32.60	1.09 ± 0.65	0.0075	195.7 ± 30.10	0.99 ± 0.65
3-Methyl-benzaldehyde	VCCs	<0.0001	305.49 ± 39.22	0.96 ± 0.64	<0.0001	572.98 ± 36.09	1.27 ± 0.67	0.0003	476.8 ± 34.50	1.27 ± 0.67

The statistical significance (p-values), percentage of variation, effect size (ES), standard error (ESSE) are represented for each volatile compound. .
Supplementary Table 3. Characterization of VOCs and VCCs significantly altered in PCa group compared to BC, RC and cancer-free controls. They are characterized by their IUPAC name, retention time, characteristic ions (m / z), Kovat indices (KI) from literature, experimental KI, NIST R-match, CAS registry number and human metabolome database (HMDB) code.

Chemical name (IUPAC)	Protocol	Retention time	m / z	KI from literature	Experimental KI	R-match	CAS number	Identification Level	HMDB
Ethylbenzene	VOCs	6.44	$\begin{gathered} 91 ; 106 ; 51 ; 65 ; 77 ; 78 ; \\ 92 ; 50 ; 105 \end{gathered}$	855	-	853	100-41-4	L1	HMDB0059905
Heptan-3-one	VOCs	7.10	57; 85; 72; 114	877	884	845	106-35-4	L2	HMDB0031482
Heptan-2-one	VOCs	7.20	58; 71; 59	891	887	835	110-43-0	L1	HMDB0003671
$\begin{aligned} & \text { 4-(2-Methylpropoxy) } \\ & \text { butan-2-one } \end{aligned}$	VOCs	8.47	71;72; 57; 55; 101; 89	964	-	735	31576-33-7	L2	-
Methyl benzoate	VOCs	13.29	$\begin{gathered} 105 ; 77 ; 55 ; 51 ; 136 ; 57 ; \\ 71 ; 50 \end{gathered}$	1094	-	856	93-58-3	L1	HMDB0033968
Unknown 1	VOCs	10.75	$\begin{gathered} 57 ; 59 ; 69 ; 89 ; 56 ; 71 ; \\ 87 ; 58 \end{gathered}$	-	1009	-	-	L4	-
3-Methyl-benzaldehyde	VCCs	29.98	$\begin{gathered} 315 ; 77 ; 91 ; 182 ; 65 ; 79 ; \\ 285 ; 78,89 \\ \hline \end{gathered}$	1845	-	788	620-23-5	L1	HMDB0029637

L1: Identified metabolites (GC-MS analysis of the metabolite of interest and a chemical reference standard of suspected structural equivalence, with all analyses performed under identical analytical conditions within the same laboratory); L2: Putatively annotated compounds (spectral (MS) similarity with NIST database); L4: Unidentified.

Supplementary Table 4. Demographic and clinical data of prostate cancer (PCa), bladder cancer (BC) and renal cancer (RC) male patients and cancer-free male controls included in this study.

Characteristics	PCa	BC	RC	Controls
Number of subjects	20	20	20	20
Mean Age \pm SD (years)	67 ± 8.1	69 ± 8.6	71 ± 7.7	58 ± 2.8
PSA (ng/mL), $n(\%)$				
<4	$1(5 \%)$	-	-	-
$4-10$	$7(35 \%)$	-	-	-
>10	$4(20 \%)$	-	-	-
Not available	$8(40 \%)$	$20(100 \%)$	$20(100 \%)$	$20(100 \%)$
Gleason score, $n(\%)$				
≤ 6	$7(35 \%)$	-	-	-
$=7$	$9(45 \%)$	-	-	-
≥ 10	$3(15 \%)$	-	-	-
Not available	$1(5 \%)$	$20(100 \%)$	$20(100 \%)$	$20(100 \%)$
Clinical stage, $n(\%)$				-
0	-	$9(47 \%)$	$2(10 \%)$	-
I	$7(35 \%)$	$6(32 \%)$	$11(55 \%)$	-
II	$3(15 \%)$	$2(11 \%)$	$1(5 \%)$	-
III	$2(10 \%)$	-	$5(25 \%)$	-
IV	$6(30 \%)$	$2(11 \%)$	$1(5 \%)$	-
Not available	$2(10 \%)$	-	-	-

