Article

A Multi-Analyte Approach for Improved Sensitivity of Liquid Biopsies in Prostate Cancer

Lilli Hofmann, Katja Sallinger, Christoph Haudum, Maria Smolle, Ellen Heitzer, Tina Moser, Michael Novy, Kevin Gesson, Thomas Kroneis, Thomas Bauernhofer and Amin El-Heliebi

Supplementary Materials

Figure S1. Expression levels of $A R-V 7, A R-F L$, and $K L K 3$ in whole blood. Following reverse transcription and preamplification, the expression of $A R-V 7, A R-F L, K L K 3$, and GUSB in whole blood of CRPC patients ($n=16$) and healthy controls ($n=16$) was analyzed by qPCR assays. Cq values were normalized to GUSB ($\Delta \mathrm{Cq}$). For $A R-V 7$, nine control samples and nine patient samples yielded no Cq values (45 qPCR cycles). They were assigned a Cq value of 46 , normalized to GUSB, and plotted as grey data points. After normalization to GUSB, the lowest $\triangle \mathrm{Cq}$ value of the control samples was used as threshold for positive tests, as indicated by the black line. Positive tests are depicted as green data points. For $A R-F L$ and $K L K 3$, mean and standard deviation (SD) were calculated. The mean of control samples is visualized by the dotted line, and 1,2 , or 3 SD from the mean of the control samples are shaded in grey. Using the lowest $\Delta \mathrm{Cq}$ of the control samples or 2 SD from the mean $\Delta \mathrm{Cq}$ of the control samples as cut-off yielded equal results and no false positives in the control group. However, as mean and SD cannot be calculated for $A R-V 7$ due to the assigned Cq values of 46 , the lowest $\Delta \mathrm{Cq}$ of the control samples was used as cut-off for all transcripts.

Table S1. Normalized $\triangle \mathrm{Cq}$ values for $A R-V 7, A R-F L$, and $K L K 3$ in lysed whole blood.

	$\Delta \mathrm{Cq} A R-V 7$ Normalized to GUSB		$\Delta \mathrm{Cq} A R-F L$ Normalized to GUSB		$\Delta \mathrm{Cq}$ KLK3 Normalized to GUSB	
	Control	Patients	Control	Patients	Control	Patients
	15.6	12.9	8.75	6	15.7	19.1
	14.35	13.8	8.85	8.4	18.45	15.3
	15.05	13.7	8.85	8.2	16.75	16.9
	13.5	15.9	8.75	8	18.8	6.4
	15.5	14.3	9.4	7.5	16.95	9.5
	28.7	26.7	8.9	7.7	14.45	10.5
	29.75	14.3	8.55	7.5	14.65	9.5
	28	27.1	8.1	9.1	13.75	16
	27.6	27.8	8.8	8.4	13.1	15.6
	15	28.3	8.05	8.7	14.2	16.7
	28.9	29.4	9.35	9.15	15.3	13.25
	28.75	26.4	9.2	9.15	15.35	20.6
	28.35	29.3	9.3	12.2	12.45	15.15
	28.35	15.25	9.15	8.6	14.05	18.75
	28.45	28.6	9.55	10.6	16.45	0.8
	14.7	29.4	9.45	10.05	12.7	9.65
mean	N.A.	N.A.	8.94	8.70	15.19	13.98
1 SD	N.A.	N.A.	0.45	1.42	1.90	4.14
2 SD	N.A.	N.A.	0.90	2.84	3.81	8.28
3 SD	N.A.	N.A.	1.34	4.27	5.71	12.43
mean-1 SD	N.A.	N.A.	8.49	7.28	13.29	9.84
mean-2 SD	N.A.	N.A.	8.04	5.86	11.39	5.70
mean-3 SD	N.A.	N.A.	7.59	4.44	9.48	1.56
min	13.50	-	8.05	-	12.45	-

$\Delta \mathrm{Cq}$ values of control and patient samples. Several control and patient samples had undetermined Cq values for $A R-V 7$. They were set to Cq 46 and normalized to GUSB ($\Delta \mathrm{Cq}$ values printed in red). Including these artificial values into the calculation of mean and SD would introduce substantial bias. Likewise, excluding the samples from the calculation would also introduce bias. Therefore, mean and SD were not calculated for $A R$ $V 7$ (N.A.-not available). Different cut-offs were applied to identify positive samples and the samples were highlighted accordingly:

Lowest (min) $\Delta C q$ of controls are marked in green. Using the lowest $\Delta C q$ of the control samples or 2 SD from the mean $\Delta \mathrm{Cq}$ of the control samples as cut-off yielded the same results and no false positives in the control group. However, as mean and SD cannot be calculated for $A R-V 7$ due to the assigned $C q$ values of 46 , the lowest $\Delta \mathrm{Cq}$ of the control samples was used as cut-off for all transcripts.

Table S2. Univariate linear regression model analysing correlation of biomarkers with change in PSA.

Change in PSA	Coef.	95\% CI		SE	p-Value
		Lower	Upper		
In situ $A R-V 7$	-233.44	-519.37	52.49	134.88	0.103
In situ $A R-F L$	27.70	-387.44	442.84	195.83	0.899
In situ KLK3	-60.30	-431.00	310.71	175.00	0.735
RT-qPCR $A R-V 7$	-106.64	-656.23	442.96	254.40	0.682
RT-qPCR $A R-F L$	255.18	-16.90	527.26	125.94	0.064
RT-qPCR KLK3	111.19	-162.55	384.92	126.71	0.396
Plasma-Seq AR amp	157.22	-314.66	629.10	204.63	0.464
Multi-analyte	-17.36	-509.88	475.16	232.33	0.941
CTC count	-15.30	-66.62	36.03	24.21	0.536

Legend: Coef.: coefficient; 95% CI: 95\% confidence interval; SE: standard error.
Table S3. Influence of liquid biopsy markers on overall survival.

Overall Survival	HR	95% CI		
		Lower	Upper	\boldsymbol{p}-Value
In situ $A R-V 7$	1.185		6.839	0.850
In situ $A R-F L$	0.522	0.059	4.618	0.559
In situ KLK3	0.501	0.057	4.406	0.533
RT-qPCR $A R-V 7$	3.517	0.361	34.213	0.279
RT-qPCR $A R-F L$	2.359	0.386	14.359	0.354
RT-qPCR KLK3	1.325	0.220	7.986	0.759
Plasma-Seq AR amp	3.321	0.260	42.470	0.356
Multi-analyte	0.698	0.081	6.000	0.743
CTC count	0.913	0.684	1.218	0.535

Legend: HR: hazard ratio; 95\% CI: 95\% confidence interval.

