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Figure S1 Log-rank curve of the four clusters identified by MOUSSE in AML. 
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Figure S2 Log-rank curve of the three clusters identified by MOUSSE in BIC. 
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Figure S3 Log-rank curve of the three clusters identified by MOUSSE in COAD. 
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Figure S4 Log-rank curve of the two clusters identified by MOUSSE in GBM. 
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Figure S5 Log-rank curve of the three clusters identified by MOUSSE in KIRC. 
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Figure S6 Log-rank curve of the four clusters identified by MOUSSE in LIHC. 

  



 7 of 19 

 

 

Figure S7 Log-rank curve of the two clusters identified by MOUSSE in LUSC. 
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Figure S8 Log-rank curve of the two clusters identified by MOUSSE in OV. 
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Figure S9 Log-rank curve of the two clusters identified by MOUSSE in SARC. 
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Figure S10 Log-rank curve of the three clusters identified by MOUSSE in SKCM. 
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Table S1 The table includes the references of all the influencing genes extracted in the biological 

validation (Table 2). All the references are reported as a brief description of the impact of the gene in 

the specific cancer and are inserted as hyperlink. 

 Genes Description DOI 

B
re

as
t 

C
an

ce
r 

(B
IC

) 

HSPD1 Alters cell proliferation by being regulated by EHMT2 10.3892/ijo.2018.4608 

TPX2 

 

 

 

• Promotes migration and invasion.  

• Knocked down suppresses proliferation and promote apoptosis  

• Involved in a 4 gene complex influencing breast cancer risk 

• Used in a 5 genes prognostic biomarker 

10.1016/j.bbrc.2018.10.16

4 

10.1371/journal.pone.012

0020 

SGOL1 
An important modulator of centrosome functions in her2+ breast 

cancer cells 

10.1186/1747-1028-9-3 

CCL16 
• Enhances T cells reactivity to HER2 cells, 

• It is an inflammatory chemokine often altered in cancers 

 

NPY2R Differentially expressed in er+/er- 
10.1158/1078-0432.CCR-

10-1369 

G
li

o
b

la
st

o
m

a 
(G

B
M

) 

SEC61G 
Identified as a novel prognostic marker for both survival and 

therapies (temozolomide, radiotherapy) in GBM  

10.12659/MSM.916648 

CRTAC1 

• Used in a three-genes prognostic biomarker for lower grade 

glioma 

• Copy number variation associated with GBM 

10.7717/peerj.8312 

10.1109/icbbe.2010.55164

37  

CA10 

Negatively regulate neuronal growth of glioma and its low 

expression is associated with poor survival 

10.1002/1878-0261.12445 

SLC11A1 

• Suggested as a prognostic marker, low expression associated 

with a good prognosis  

• Its missense mutations occur in GBM 

10.18632/oncotarget.2489

7 

10.1186/1476-4598-10-17 

PLA2G2A 
• One of the most informative features for prognostic deep 

learning models in GBM 

10.3390/cancers11010053 

COL16A1 
• Its inhibition reduces glioma cell invasiveness 

• Causes differential survival in glioma (from proteinatlas) 

10.1159/000327947 

GPR17 

• Altered expression in glioblastoma  

• When targeted in murine, leads to the reduction of the 

neurospheres ( a known independent prognostic predictor) 

10.1158/0008-5472.CAN-

11-2632 

TOX3 

 

 

• TF regulating neural progenitor identity 

• Co-expressed with Nesting, a known biomarker for glioma 

stem cell, can bind Nestin promoters.  

 

 

10.1016/j.bbagrm.2016.04

.005 

10.5528/wjtm.v4.i3.78 

10.1016/j.bbrc.2013.03.02

1 
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) EXO1 

 
Overexpression associated with poor prognosis 

10.1080/15384101.2018.1

534511 

NEK2 

 

• Promotes migration and invasion, linked with poor prognosis 

• Influences sorafenib resistance (unknown how) 

10.3892/or.2018.6224 

10.1186/s13046-019-1311-

z 

RNF17 

 

Differentially expressed and used in a prognostic model of RNA 

binding proteins 

10.21203/rs.3.rs-40802/v2 

DDX53 • Expressed in a variety of cancers, especially in testis  10.1006/bbrc.2002.6701 

https://www.spandidos-publications.com/10.3892/ijo.2018.4608?text=abstract
https://www.spandidos-publications.com/10.3892/ijo.2018.4608?text=abstract
https://www.sciencedirect.com/science/article/pii/S1995764515001923
https://www.sciencedirect.com/science/article/pii/S0006291X18323489
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0120020#sec009
https://www.frontiersin.org/articles/10.3389/fonc.2018.00374/full
https://doi.org/10.1016/j.bbrc.2018.10.164
https://doi.org/10.1016/j.bbrc.2018.10.164
https://link.springer.com/article/10.1186/1747-1028-9-3
https://link.springer.com/article/10.1186/1747-1028-9-3
https://journals.sagepub.com/doi/pdf/10.1177/039463200802100411
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059257/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536036/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6536036/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944128/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6944128/
https://ieeexplore.ieee.org/abstract/document/5516437?casa_token=dwZw1rcLoaQAAAAA:Hqydtgbb6QrbrLNiVPNR4QarOcgf06KB7xb
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487704/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487704/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5922378/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5922378/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3050859/
https://www.mdpi.com/2072-6694/11/1/53/htm
https://www.mdpi.com/2072-6694/11/1/53/htm
https://core.ac.uk/download/pdf/237410551.pdf
https://www.proteinatlas.org/ENSG00000084636-COL16A1/pathology
https://www.researchgate.net/profile/Meenakshisundaram_Kandhavelu3/publication/273447748_PROTEIN-PROTEIN_INTERACTION_AND_COARSE_GRAINED_SIMULATION_STUDY_OF_GLIOBLASTOMA_MULTIFORME_REVEALS_NOVEL_PATHWAYS_OF_GPR17/links/5501b3160cf24cee39f871f0/PROTEIN-PROTEIN-INTERACTION-AND-COARSE-GRAINED-SIMULATION-STUDY-OF-GLIOBLASTOMA-MULTIFORME-REVEALS-NOVEL-PATHWAYS-OF-GPR17.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543775/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3543775/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3177534/
https://pubmed.ncbi.nlm.nih.gov/27080130/
10.1016/j.bbrc.2013.03.021
10.1016/j.bbrc.2013.03.021
https://www.tandfonline.com/doi/full/10.1080/15384101.2018.1534511
https://www.spandidos-publications.com/10.3892/or.2018.6224?text=fulltext
https://jeccr.biomedcentral.com/articles/10.1186/s13046-019-1311-z?optIn=false
https://assets.researchsquare.com/files/rs-40802/v2/12a595e3-1136-4758-b92a-f64ae0f31ff7.pdf
https://assets.researchsquare.com/files/rs-40802/v2/12a595e3-1136-4758-b92a-f64ae0f31ff7.pdf
https://doi.org/10.1006/bbrc.2002.6701
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 • Confers drugs resistance by regulating p53 

• Seen in aberrant expression in other cancers 

10.1074/jbc.M109.095950 

10.1016/s0006-

291x(03)01121-5 

DSCR4 
Identified as differentially expressed between normal tissue 

and primary tumor 

10.2147/CMAR.S186561 

 

 

 

 

 

Table S2 The table includes the references of all the relevant miRNAs extracted in the biological 

validation (Table 2). All the references are reported as a brief description of the impact of the gene 

in the specific cancer and are inserted as hyperlink.  

 

 miRNAs Description  

B
re

as
t 

C
an

ce
r 

(B
IC

) 

let-7c High expression leads to better prognosis in ER+, blocking estrogen-

activated Wnt signaling in induction of self-renewal 

10.1038/cgt.2016.3 

mir-140 Downregulation promotes cancer stem cell formation 10.1038/onc.2013.226 

mir-1307 In a miRNAs signature used to predict BC stage  10.1038/s41598-018-34604-3 

mir-33b Inhibits metastasis by targeting HMGA2, SALL4 and Twist1  10.1038/srep09995 

mir-324 When sponged by LINC00963, they promote tumorigenesis and 

radioresistance  

10.1016/j.omtn.2019.09.033 

mir-760 • Influences (Doxorubicin/ Nanog) chemoresistance 

• Considered a potential biomarker for cancer detection   

10.1016/j.biopha.2014.11.028 

10.1016/j.gene.2020.144648 

mir-130b • Targets PTEN to mediate drug resistance and proliferation of BC 

cells 

• Inhibits cell invasion and migration by targeting DLL1 on  

• Deregulated in triple negative BC, represses CCNG2   

10.1038/srep41942 

10.1016/j.gene.2017.01.036 

10.1186/s12943-015-0301-9 

mir-331 • Significantly over-expressed in metastatic BC, can be used to 

differentiate from luminal A 

• Overexpression linked to poor prognosis, promotes progression 

• Promotes cell proliferation by targeting SRCIN1 

• Essential for HER2+ cell growth 

10.1186/s12885-019-5636-y 

10.1159/000508792 

10.1016/j.molonc.2013.10.001 

G
li

o
b

la
st

o
m

a
(G

B
M

) miR-222 

 
• Linked to cell lysis and proliferation in GBM  

• Overexpressed with mir-221 increase GBM invasiveness by 

targeting PTPµ, expression is correlated with glioma grade  

• High level increase cell invasion leading to poor prognosis (with 

221)  

• Targeting mir-221/222 induces apoptosis in glioma cell lines 

10.1177/1947601912448068 

10.1038/onc.2011.280 

10.3892/ijo.2015.3308 

10.1186/1479-5876-10-119 

10.1007/s12035-014-9079-9 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2923988/
file:///C:/Users/Giuseppe/AppData/Roaming/Microsoft/Word/Promoter%20hypomethylation%20of%20a%20novel%20cancer/testis%20antigen%20gene%20CAGE%20is%20correlated%20with%20its%20aberrant%20expression%20and%20is%20seen%20in%20premalignant%20stage%20of%20gastric%20carcinoma
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6340501/
https://www.nature.com/articles/cgt20163/
https://www.nature.com/articles/cgt20163/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3883868/
https://www.nature.com/articles/s41598-018-34604-3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4412117/
https://www.sciencedirect.com/science/article/pii/S2162253119303233#fig6
https://www.sciencedirect.com/science/article/pii/S2162253119303233#fig6
https://www.europeanreview.org/wp/wp-content/uploads/5002-5008-miR-760-mediates-chemoresistance-through-inhibition-of-EMT-in-breast-cancer-cells.pdf
https://pubmed.ncbi.nlm.nih.gov/25661353/
https://www.sciencedirect.com/science/article/abs/pii/S0378111920303176
https://www.nature.com/articles/srep41942
https://www.sciencedirect.com/science/article/abs/pii/S0378111917300586?casa_token=z3Yj9QPvMUsAAAAA:i1zanCeHsGw3qCQXgHbDkjdfcr9Y
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351690/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511137/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511137/
https://www.karger.com/Article/Pdf/508792
https://www.alliedacademies.org/articles/microrna3313p-promotes-cell-proliferation-and-invasion-in-breast-cancer-by-targeting-srcin1.pdf
https://febs.onlinelibrary.wiley.com/doi/full/10.1016/j.molonc.2013.10.001
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3415667/
https://www.nature.com/articles/onc2011280
https://www.nature.com/articles/onc2011280
https://translational-medicine.biomedcentral.com/articles/10.1186/1479-5876-10-119
https://translational-medicine.biomedcentral.com/articles/10.1186/1479-5876-10-119
https://www.spandidos-publications.com/10.3892/ijo.2015.3308
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• Descriptive and prognostic biomarker 

miR-23a • Promotes invasion of GBM  

• H Can be targeted via HOXD10 to inhibit cell invasion 

• Upregulated in glioma, anti 23a suppresses glioma cell growth 

by targeting APAF1     

10.1038/s41392-018-0033-6 

10.2174/138161281131999905

09 10.1038/srep03423 

miR-204 • Supresses GBM progression by targeting atf2 

• Act as tumour suppressor gene partly by suppressing CYP27A1   

• Upregulated by xanthohumol, targets the IGFBP2 pathway to 

induce apoptosis in glioma cells 

• Characterize an aggressive subset of medulloblastomas 

10.18632/oncotarget.11732 

10.3892/ol.2018.8846 

10.1016/j.neuropharm.2016.0

7.038 

10.1186/s40478-019-0697-3 

G
li

o
b

la
st

o
m

a
 (

G
B

M
) 

miR-221 • Linked to cell lysis and proliferation in GBM  

• Overexpressed with mir-222 increase GBM invasiveness by 

targeting PTPµ, expression is correlated with glioma grades  

• High-level increase cell invasion leading to poor prognosis (with 

222)  

• Targeting mir-221/222 induces apoptosis in glioma cell lines 

• Descriptive and prognostic biomarker 

10.1177/1947601912448068 

10.1038/onc.2011.280 

10.3892/ijo.2015.3308 

10.1186/1479-5876-10-119 

10.1007/s12035-014-9079-9 

miR-340 • Suppresses GBM, high expression linked with good prognosis 

• Normally downregulated in GBM, inhibits cell proliferation by 

targeting CDK6, cyclin-D1, and cyclin-D2 

10.18632/oncotarget.3288 

10.1016/j.bbrc.2015.03.088 

miR-181a* • Downregulated in GBM, indirectly correlated with glioma 

grade, transfected reduce cell proliferation, invasion and 

increases apoptosis and radiosensitivity 

• Predict response to concomitant chemo/radiotherapy with 

temozolomide 

10.1177/1947601912448068 

10.4149/neo_2010_03_264 

miR-17-

5p 
• Low levels are positively associated with advanced clinical 

stage, incidence of relapse, and tumour differentiation. Highly 

reduced post radiotherapy can inhibit autophagy. 

• Can repress MDM2, resulting in decreased cell proliferation and 

drug resistance. 

10.3727/096504016X14719078

133285 

10.18632/oncotarget.810 

10.1177/1947601912448068 

miR-106a • Inhibits cell growth by targeting E2F1 (independently by p53), a 

low expression associated to high-grade glioma 

• Independent Prognostic marker 

10.1177/1947601912448068 

10.1007/s00109-011-0775-x 

10.1093/NEUONC/NOT001 

https://link.springer.com/article/10.1007/s12035-014-9079-9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6308238/
https://www.nature.com/articles/srep03423
https://www.ingentaconnect.com/content/ben/cpd/2013/00000019/00000035/art00014
https://www.ingentaconnect.com/content/ben/cpd/2013/00000019/00000035/art00014
https://pubmed.ncbi.nlm.nih.gov/27588402/
https://pubmed.ncbi.nlm.nih.gov/30008822/
https://www.sciencedirect.com/science/article/abs/pii/S0028390816303343
https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-019-0697-3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3415667/
https://www.nature.com/articles/onc2011280
https://www.nature.com/articles/onc2011280
https://translational-medicine.biomedcentral.com/articles/10.1186/1479-5876-10-119
https://translational-medicine.biomedcentral.com/articles/10.1186/1479-5876-10-119
https://www.spandidos-publications.com/10.3892/ijo.2015.3308
https://link.springer.com/article/10.1007/s12035-014-9079-9
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496215/
https://www.sciencedirect.com/science/article/abs/pii/S0006291X15005446
https://www.sciencedirect.com/science/article/abs/pii/S0006291X15005446
https://journals.sagepub.com/doi/full/10.1177/1947601912448068
https://journals.sagepub.com/doi/full/10.1177/1947601912448068
https://journals.sagepub.com/doi/full/10.1177/1947601912448068
https://pubmed.ncbi.nlm.nih.gov/20353279/
https://pubmed.ncbi.nlm.nih.gov/20353279/
https://www.ingentaconnect.com/content/cog/or/2017/00000025/00000001/art00006
https://www.ingentaconnect.com/content/cog/or/2017/00000025/00000001/art00006
https://www.ingentaconnect.com/content/cog/or/2017/00000025/00000001/art00006
https://www.oncotarget.com/article/810/text/
https://www.oncotarget.com/article/810/text/
https://pubmed.ncbi.nlm.nih.gov/21656380/
https://pubmed.ncbi.nlm.nih.gov/21656380/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3661090/
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miR-301 

 
• Serum exosomal mir-301a is considered a diagnostic and 

prognostic biomarker  

• Differentially expressed in glioblastoma stem-like cells, 

upregulation leads to poor prognosis 

10.1007/s13402-017-0355-3 

10.1038/s41598-018-20929-6 

L
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C
) 

mir-105-2 Together in a cluster, upregulation linked to poor prognosis and 

resistance of sorafenib, all three miRNAs are considered 

independent prognostic factors  

10.1186/s40364-020-0186-7 

mir-767 

mir-105-1 

mir-139 • Low expression results in poor outcome  

• Inhibits cell growth  

• Suppresses metastasis 

10.3892/ol.2019.11031 

10.1186/s13046-019-1175-2 

10.1053/j.gastro.2010.10.006 

mir-199a-

1 
• Low expression associated with poor survival, overexpression 

inhibits cell proliferation migration and invasion  

• Transfused increase chemosensitivity 

• Used in a prognosis biomarker signature in Egyptian patients 

10.18632/oncotarget.18052 

10.1186/s13046-019-1512-5 

10.1007/s40291-015-0148-1 
mir-199a-

2 

mir-214 • Inhibits proliferation and migration targeting foxm1  

• Effect on proapoptotic and anti-angiogenic genes 

10.1038/s41434-018-0029-4 

10.1007/s12291-019-00824-1 

mir-199b • Downregulation predicts poor outcomes, overexpression 

promotes cells aggregation, suppresses cell migration and HCC 

invasivity. 

10.1038/bjc.2017.164 

mir-22 • Downregulated in HCC, low expression correlated with 

prognosis, lower cell proliferation , 

• Correlated with ezrin, a protein already associated with clinical 

outcome   

• Expression inversely correlated with metastatic ability, interacts 

with CD147 

10.1038/sj.bjc.6605895 

10.1177/0300060513484436 

10.1186/s12935-016-0380-8 

 
  

https://pubmed.ncbi.nlm.nih.gov/29076027/
https://pubmed.ncbi.nlm.nih.gov/29076027/
https://www.nature.com/articles/s41598-018-20929-6
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020499/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020499/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7020499/
https://pubmed.ncbi.nlm.nih.gov/31807180/
https://jeccr.biomedcentral.com/articles/10.1186/s13046-019-1175-2
https://europepmc.org/article/med/20951699
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620164/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620164/
https://jeccr.biomedcentral.com/articles/10.1186/s13046-019-1512-5
https://pubmed.ncbi.nlm.nih.gov/26133725/
https://www.nature.com/articles/s41434-018-0029-4
https://link.springer.com/article/10.1007/s12291-019-00824-1
https://www.nature.com/articles/bjc2017164
https://www.nature.com/articles/6605895
https://www.nature.com/articles/6605895
https://pubmed.ncbi.nlm.nih.gov/23766411/
https://cancerci.biomedcentral.com/articles/10.1186/s12935-016-0380-8
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Table S3 Signature lengths automatically selected for each cancer in our analysis. Top/Bot indicate 

the lengths used respectively for the most (top) and least (bot) expressed features. 

 

 

 
 

 

 

 

 

Table S4 Kullback- Leibler Divergence between different lengths of the most expressed methylation 

features (n1) of SKCM. The divergence achieved its maximum at the length of 150. 

 

 

 

AML BIC COAD GBM KIRC LIHC LUSC OV SARC SKCM

EXP-Top 250 250 250 250 250 250 250 250 250 250

EXP-Bot 250 250 250 250 250 250 250 250 250 250

MET-Top 150 100 100 150 150 250 100 100 100 150

MET-Bot 100 100 150 100 100 200 100 100 100 100

miRNA-Top 250 100 100 100 100 150 100 100 100 150

miRNA-Bot 250 100 100 100 250 100 100 250 100 100
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Figure S11 Plot showing the relative performance (rank) of each tool for each one of the ten cancer 

datasets. The MOUSSE performance has been highlighted by increasing the thickness of the 

corresponding line. 
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Detailed description of the pipeline. 

Here we give a more detailed description of the pipeline in the form of pseudocode 

to increase result reproducibility. 

 

Input: N omics datasets (in our test N=3), each dataset is a matrix (m x n), where the 

columns, n, are the subjects and the rows, m, are the features of the omics (e.g., genes, 

miRNAs etc.). It is assumed that the n subjects are the same in all the datasets (multi-

omics dataset). 

As reported in Materials and Methods, section 4.1, all the data required to reproduce 

our analysis are available for download from Shamir’s lab website: 

http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html . 

Output: A partitioning of the subjects in clusters based on their similarities in the 

multi-omics network. 

 

Procedures repeated for each omics 

Preprocessing (section 4.2.1): 

1. In Rappoport work, both gene expression and miRNAs were converted into 

logarithm scale and underwent a light pre-processing as follows: 

a. Log transform gene and miRNA values. 

b. For each feature f in a dataset, compute the mean and standard deviation 

across all subjects. 

c. Remove features with a standard deviation equal to zero.  

d. Normalize the values of the m-th feature by subtracting the mean and by 

dividing for the standard deviation. 

2. Feature filtering: 

a. Produce a vector containing the coefficient of variation (CV) of every feature. 

b. Remove all the features with a CV lower than a user-provided threshold (in 

our analysis 5th percentile of the CVs computed at step 2.a). 

 

Subject-Specific Signature Extraction (section 4.2.2): 

3. Sort all the features from highest to lowest value, separately for each subject.  

4. Create a matrix of the same size of the dataset containing the feature IDs according 

to the order computed in the previous step. 

5. Extract the n1 top features and the n2 bottom features for each subject, obtaining a set 

of two matrices of size (n1 x n) and (n2 x n) of feature IDs, called top and bottom 

matrices, respectively. The n1 and n2 values are user-provided, for those used in our 

analysis please refer to Supplementary Table S3. 

6. Reverse the row order of the bottom matrix so that the lowest features will have the 

highest rank. 

 

  

http://acgt.cs.tau.ac.il/multi_omic_benchmark/download.html
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Omics-specific similarity networks (section 4.2.3): 

7. Set the RBO parameters: 

a. Select a weight (WRBO) to give the desired relevance to the upper part of a 

sorted list. In our analysis, we set WRBO = 0.8, as suggested in (Webber et al. 

2010). 

b. Find the value of the parameter p that satisfies the following formula: 

  𝑊𝑅𝐵𝑂 = 1 − 𝑝𝑑−1 +
1−𝑝

𝑝
∙ 𝑑 ∙ (𝑙𝑛

1

1−𝑝
− ∑

𝑝𝑖

𝑖
𝑑−1
𝑖=1 )   

where d is, in turn, the signature length n1 or n2.  

8. Compute the RBO between each subject pair, separately for each of the omics’ 

matrices (top and bottom). 

9. Store the RBO computed similarity values in two matrices of size (n x n). 

Signature Length Optimization (section 4.2.4): 

Optionally a routine for the optimization of signature length can be used. This 

routine essentially tests a vector of different user-provided values for n1 and n2, by 

iteratively executing steps 3 to 9 for each value. This will produce multiple similarity 

matrices of the same omics that will be compared using the Kullback-Leibler 

divergence. To do so: 

10. For each similarity matrix, produce the distribution of the similarity values. In our 

analysis, the bin width for the distribution was set to 0.001 

11. Add a pseudo-count of 1 to each bin in order to avoid bin values of 0 and rescale the 

distribution to obtain a unitary area.  

12. Compute the Kullback-Leibler divergence between the distribution associated with 

the shortest signature and those of all the other lengths. 

13. Select the signature length associated with the maximum Kullback-Leibler 

divergence. 

 

Procedure for merging the omics-specific networks. 

Network integration and Clustering (section 4.2.5): 

14. For each omics, fuse the top and bottom matrices into one by calculating the mean 

of the two similarity matrices.  

15. Fuse the resulting omics networks using the SNF function of the “SNFtools” 

package. In our analysis, we set the required SNF parameters K (number of 

neighbors) and T (iterations in the diffusion process) respectively to one-tenth of the 

number of subjects and to 30 iterations. 

16. Cluster the subjects in the resulting integrated network using a user-provided graph 

clustering function. For our analysis, we used the SpectralClustering function in the 

“SNFtools” package. We used the “estimateNumberOfClustersGivenGraph” 

function in the same package to estimate the number of clusters, using the best 

rotation cost option. 
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Additional procedure  

Here we add a procedure to perform the cluster validation used in our analysis. This 

was written using TCGA data in mind and it might require modifications for other 

datasets. 

 

Survival Analysis (section 4.3): 

To verify the clustering performance, we performed a survival analysis between the 

identified clusters. 

17. Produce a matrix with all the subjects Overall Survival Time, Overall Survival, and 

cluster-ID. 

18. Extract a chi-squared of the difference in survival between the subjects belonging to 

the identified clusters using the SurvDiff function of the “survival” R package. 

19. Calculate a p-value subtracting from 1 the output of the “pchisq” R function, with 

the number of clusters minus one as degrees of freedom.  

20. Randomize the clusters labels and repeat step 19 on the new clusters. 

21. Repeat the procedure in step 20 for 3000 times to obtain an empirical distribution of 

p-values. 

22. Calculate a classification score by comparing the result obtained in step 19 against 

the empirical distribution.  

23. Report the final classification score as the negative logarithm in base ten of the 

resulting score. 

 

 

 

 


