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Simple Summary: In this study, we propose a general artificial intelligence (AI) based workflow
for applying deep learning to the problem of cell identification in immunohistochemistry-stained
slides as a basis for quantifying nuclear staining biomarkers. Our approach consists of two main
parts: a simplified but robust annotation process, and the application of cell identification models.
This results in an optimised process with a new user-friendly tool that can interact with other
open-source software and assists pathologists and scientists in creating and exporting data for deep
learning. We present a set of architectures for cell identification to quantify and analyse the trade-offs
between different deep learning architectures, providing a more accurate and less time-consuming
tool than using traditional methods. This approach can identify the best tool to deliver AI tools for
clinical utility.

Abstract: Biomarkers identify patient response to therapy. The potential immune-checkpoint
biomarker, Inducible T-cell COStimulator (ICOS), expressed on regulating T-cell activation and
involved in adaptive immune responses, is of great interest. We have previously shown that open-
source software for digital pathology image analysis can be used to detect and quantify ICOS using
cell detection algorithms based on traditional image processing techniques. Currently, artificial
intelligence (AI) based on deep learning methods is significantly impacting the domain of digital
pathology, including the quantification of biomarkers. In this study, we propose a general AI-based
workflow for applying deep learning to the problem of cell segmentation/detection in IHC slides as
a basis for quantifying nuclear staining biomarkers, such as ICOS. It consists of two main parts: a
simplified but robust annotation process, and cell segmentation/detection models. This results in an
optimised annotation process with a new user-friendly tool that can interact with1 other open-source
software and assists pathologists and scientists in creating and exporting data for deep learning.
We present a set of architectures for cell-based segmentation/detection to quantify and analyse the
trade-offs between them, proving to be more accurate and less time consuming than traditional
methods. This approach can identify the best tool to deliver the prognostic significance of ICOS
protein expression.

Keywords: colorectal cancer; immunohistochemistry; biomarkers; ICOS; artificial intelligence;
deep learning
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1. Introduction

Colorectal cancer (CRC) is the third most deadly cancer with around 0.9 million
deaths, with an estimated new-cases rise to 2.2 million annually and 1.1 million deaths by
2030 [1]. Molecular biomarkers, such as microsatellite instability, are an integral part of
CRC diagnosis and can be used to inform the clinical management of the patient treatment
pathway [2,3]. An emergent area of clinical practice is the use of immuno-oncology to treat
patients who do not respond to conventional cytotoxic chemotherapy. Patient suitability to
receive many of these novel therapeutic agents is based on the assessment of a companion
biomarker, such as PD-L1 immunohistochemistry (IHC) [4]. Tissue-based biomarker
analysis using IHC, retains spatial and cell-specific information, enabling accurate analysis
of biomarker expression within the tumour microenvironment. The quantification of
biomarker-expressing cells and their localization can then be assessed by a pathologist in
order to provide prognostic and predictive patient information [5,6]. In the research setting,
multiple tumour samples can be tested with IHC using tissue microarrays (TMA), as a
means of high-volume throughput biomarker analysis [7,8]. However, manual assessment
of TMA IHC analysis is slow, subjective, and not suitable for investigating large numbers
of biomarker-expressing cells [9,10].

Computer-assisted image analysis systems can facilitate large-scale quantitative anal-
ysis of IHC on TMAs. Several studies have now been published on the benefit of computer-
assisted quantitative cell count analyses [11] and automated tissue cell segmentation [12]
versus manual assessment [13]. Recently, deep learning methods in artificial intelligence
(AI) were introduced to the domain of digital image analysis in pathology images for
nuclei detection [14], mitosis detection [15], growth pattern classification [16], lympho-
cyte detection [17] and patient stratification [18]. These encouraging initial methods are
mostly focused on classifying tiles in whole-slide images and fluorescence images of cell
lines [19,20] but to date are unable to reliably detect/segment biomarker-expressing cells on
IHC-stained tissue images. In a previous study [21], we demonstrated the assessment of im-
mune and immune-checkpoint biomarkers using a digital pathology image analysis system
in stage II-IV CRC patients to evaluate the most useful biomarker or their combination to
predict survival in CRC at diagnosis. In this study, we present an AI-enabled deep learning
tool with the potential to deliver the prognostic significance of IHC biomarkers, through
the creation of a robust, automated quantitative cell detection/segmentation system for the
immune-checkpoint protein Inducible T-cell COStimulator (ICOS). Our proposed system
will help diagnosticians and scientists to obtain accurate cell level information for nuclear-
expressed proteins in the cancer microenvironment. Moreover, we introduce a robust and
quantitative cell detection/segmentation system that can be utilized for other nuclear IHC
biomarkers cell detection/segmentation challenges.

2. Materials and Methods

The step-by-step workflow of our study is presented in Figure 1. Initially, the ICOS
IHC data are generated and annotated by expert pathologists. The annotated data are
collected and prepared for the deep learning model training and validation. The best deep
learning model is selected by testing all the models. The outcomes of the best model are
post-processed and used in ICOS correlation (cell density estimation) and survival analysis,
as detailed below.
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Figure 1. The step-by-step workflow: ICOS IHC data collection and annotated by expert pathologists; annotated data
pre-processing for deep learning models; deep learning model selection and training; evaluating and selecting the best
model; post-processing the best model outcomes and using them for ICOS correlation and survival analysis.

2.1. Generation of ICOS IHC Data

Comparison of deep learning models to detect ICOS protein expression was con-
ducted in a representative population, a stage II and stage III colon adenocarcinoma cohort
(Epi700), which was described previously [22]. The digital images used were generated
by the Northern Ireland Biobank under study number NIB15-0168. The ICOS IHC was
produced under standardised operating procedures within the Queen’s University Belfast
Precision Medicine Centre of Excellence and reported in [21]. Consultant pathologists
(JJ and MST) agreed upon ICOS assay optimization prior to ICOS IHC staining. Briefly,
ICOS IHC was conducted on formalin-fixed paraffin-embedded Epi700 tissue samples in
tissue microarray (TMA) format. Tissue samples were taken in triplicate from the donor
blocks as 1 mm diameter cores from regions identified as a central tumour by a consultant
pathologist (MBL). TMAs were then sectioned at 4 m using a rotary microtome and dried
overnight at 37 ◦C in preparation for staining. The Leica Bond RX automated immunos-
tainer (Leica Biosystems, Newcastle, UK) was used to carry out ICOS IHC. IHC staining
was conducted using an anti-ICOS antibody (Cell Signalling Technology, ICOS (D1L2TTM)
rabbit monoclonal antibody, Clone D1K2T, Cat. No. 89601).

The antibody was diluted 1:400 using antibody diluent and incubated for 15 min on
the tissue following heat-induced epitope retrieval (HIER) with ER2 for 20 min. Anti-
body binding was visualised with enhanced DAB chromogen (Leica Biosystems, Bond
Polymer Refine Detection, Cat. No. DS9800 and Leica Biosystems, Bond DAB Enhancer,
Cat. No. AR9432). All Epi700 ICOS IHC stained slides were scanned at 400× magnifica-
tion using the Leica Aperio AT2 and made available for digital assessment. Open-source
image analysis software QuPath v.0.1.234 was used to determine digital scoring of the
ICOS IHC within each TMA core. Scanned TMA slides were imported and de-arrayed
to separate individual cores within the image for digital image analysis [23]. Each core
was given a unique identifier, which could be linked back to the clinicopathological data
available for that patient. Invalid cores (no core or no tumour) were removed from the
analysis. Simple tissue detection was performed, and all cores were re-annotated to
remove undesirable objects that would affect the IHC scoring. Once identified, the TMA
cores were annotated for training and validating the deep learning models, using the
workflow proposed below.
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2.2. Annotation Process

The deep learning approach, which has generally shown the best performance in
computational pathology algorithms, is that of supervised learning [24]. For supervised
learning, there can be a requirement for large numbers of ground-truth annotations. Hence,
the annotation process is an important part of training any model, but especially for the
detailed annotation of nuclei required here, as it is a sometimes, tedious manual process for
pathologists, and it can be difficult to track and extract the annotations in a format useful
for deep learning. This often requires familiarity with scripting in order to build the final
data set. To improve this task and make it accessible to any annotator, we propose a tool
that simplifies this process and optimizes data collection. We designed an interface that
interacts with the QuPath software [23] through simple plug-ins and with scripting in the
background, from a user perspective. The workflow is as follows: the annotator specifies
the project location and creates the regions of interest for annotation with a single click
for all the images inside the project. Once the annotations are complete, the annotator can
collect and extract the annotations with a single click. The final result is a set of folders
containing all original patches and their corresponding masks. Figure 2 illustrates the
overall process. Note that before any patch extraction, all slides are reviewed by a second
reader (an expert pathologist). A pathologist may adjust the location where the boxes have
been moved to and correct the cell boundaries. In this study, annotations were performed
by PM and reviewed by MS-T.

Figure 2. The pipeline of the annotation process. Creating projects for annotator and collection after completed annotations
and review by the expert pathologist using the deep learning (DL) annotation tool.
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2.3. Data Pre-Processing

IHC slides are very large with the 40× obj. magnification and not suitable to be
fed into the input of deep learning models. Therefore, we create standard input patches
(generated by the annotation process) that are suitable for training our models. We select
the size of the patches to be 256 × 256 pixels, collect them with the annotation tool, and
split the data set into the train, train-val, and test sets. The data set split ratio for the train,
train-val, and test sets are 60%, 10%, and 30%, respectively.

Afterwards, we convert the format of the ground-truth images to binary in the case of
the semantic segmentation model (U-Net [25]), and ms-coco format [26] in the case of the
instance segmentation model (Detectron2 [27]). Note that we use only train and trainval to
train and evaluate our deep learning models during training and keep the test set unseen
for calculating the model performance.

2.4. Deep Learning Models and Architectures

In this work, we present an assessment of the two deep learning approaches, se-
mantic segmentation and instance segmentation-based models, for our ICOS biomarker
cell detection/segmentation system. In the segmentation approach, U-Net [25] is a very
popular deep learning model for the medical image segmentation domain. The U-Net
model learns to segment the images in an end-to-end setting, which means a raw image as
an input and a ready segmentation map as an output. The U-Net architecture consists of
two paths: contraction and expansion. The contraction path (also known as the encoder)
consists of a sequence of convolutions and max-pooling layers, which are used to capture
the context in the input image. On the other hand, the expansion path (also known as
the decoder) consists of a sequence of up-convolutions and concatenation with the corre-
sponding high-resolution features from the contraction path that allows the creation of a
high-resolution output segmentation map. The detailed architecture of U-Net is presented
in Figure 3. Initially, we feed the U-Net with 256 × 256 × 3 input patches and process it
with the contraction and expansion modules. The contraction module is composed of four
contraction blocks and one bottleneck block. Each contraction block has two consecutive 3
× 3 convolutional layers followed by a rectified linear unit (ReLU). The process of convo-
lution operations is to increase the channel-wise depth of the image. Four down-sample
blocks with 2 × 2 max-pooling layers followed by a stride of 2 are applied after every
contraction block. The down-sample blocks reduce the image size and double the number
of feature channels for learning the complex structures effectively. The bottleneck block
intercedes between the contraction module and the expansion module. It consists of 3 × 3
convolutional layers followed by a ReLU and 2 × 2 up convolution (up-conv) layer. The
core contributions of the U-Net lie in the expansion module. The expansion module is also
composed of four expansion blocks similar to the contraction module. Every block also
consists of two 3 × 3 convolutional layers followed by a ReLU and 2 × 2 up-conv layer.
After every contraction block, the feature maps are up sampled and attain the same size
as the corresponding contraction block output to maintain harmony and concatenate it.
This mechanism helps to keep the features that are learned from the contraction phase
and use them for the reconstruction process. A 1 × 1 convolutional layer is used at the
final layer of the network to map the final 64 feature vector to the targeted number of
segmentation classes. In our case, the segmentation classes comprise two types: one is the
background and the other is ICOS-positive cell. A total of 23 convolutional layers are used
in the U-Net model.



Cancers 2021, 13, 3825 6 of 21

Figure 3. The detailed architecture of the U-Net has been modified from [25].

In the instance segmentation approach, Detectron2 [27] is a recent open-source instance
segmentation system from Facebook AI Research. In our study, we use Faster R-CNN
with Feature Pyramid Network (Base-RCNN-FPN) [28] for the bounding box detector and
extend it to the Mask R-CNN [29] also for generating the segmentation mask in Detectron2.
Therefore, it is a two-stage network that has three main blocks, namely, Backbone Network,
Region Proposal Network (RPN), and ROI head, shown in Figure 4. To extract feature maps
from the input image, we use the ResNet [30] architecture with FPN [28] as a Backbone
Network. The ResNet model consists of a stem block and four bottleneck blocks. The stem
block is used, having 77 convolution layers with the stride of 2. Afterward, a max-pooling
layer with the stride of 2 is also used to down-sample the input image twice. The output
feature map of the stem block is 64 × H/4 ×W/4, where H and W represent the height
and width of the input image. The four bottleneck blocks are used from the original ResNet
architecture proposed in [30]. The FPN is composed of the four output features maps from
the ResNet bottleneck blocks (res1, res2, res3, and res4), lateral, and output convolution
layers. Each lateral convolution layer is used (1x1 convolution layer). It takes the output
features from the bottleneck blocks with different channel numbers (256, 512, 1024, and
2048) and returns them to 256 channel feature maps. A forward process of the FPN begins
from the res4 output (see Figure 4); afterward, a 3 × 3 output convolution layer is used
without changing the channel numbers. The resulted feature map list is P4. The output of
res4 is fed into the upsampler and added with the res3 output by using lateral convolution.
The resulting feature map is also fed to the output convolution and listed as P3. The
process above is repeated two times more and the resulted feature maps are listed as P2
and P1. The final P5 output feature map is just a down-sample of the res4 output by using
a max-pooling layer with the stride of 2. The ROI head block is composed of two different
heads: box head, and mask head, respectively. The box proposals are fed into the box
head using the ROI pooling process. The final outputs of the box head are the class and
the bounding box prediction scores. On the other hand, the four output features maps
from FPN are used to feed into the mask head with the final outputs of the box head. The
resulted prediction is to map the segmentation mask of the output object (e.g., ICOS cell).
The final output image of Detectron2 contains three prediction maps corresponding to
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the class (object-level classification), bounding box (localization), and segmented mask
(pixel-level classification) of the object.

Figure 4. The architecture of Detectron2 has been modified from [27].

2.5. Model Training

We train U-Net and Detectron2 individually on the PyTorch framework [31]. Initially,
we use pre-trained weights from ResNet50 and ResNet101 [30] to train both models. We
use the Stochastic Gradient Descent (SGD) [32] and Adam [33] optimizers with a dynamic
learning rate of 0.002 reducing, based on the validation metric improvement. The Nesterov
momentum of 0.9 and weight decay of 0.00003 is also used to accelerate the gradient
descent. The Binary Cross-Entropy (BCE) and BCE with L1 norm loss function are used
to train the U-Net and Detectron2 individually with the three different batch sizes, 2,
4, and 8 to find the best combinations of model hyper-parameters. Afterwards, we use
different recent state-of-the-art pre-trained deep learning models (e.g., EfficientNetB7 [34],
DenseNet161 [35], InceptionResNetV2 [36], SENetResNext101 [37], MobileNetV2 [38], and
VGG19 [39]) as a backbone to train the U-Net with the Adam optimizer and the batch size
of 4 and 8 to find the best pre-trained model. Note that when we change the backbone of
U-Net, the encoder–decoder (see Figure 3) input and output feature maps are also changed
with the corresponding pre-trained model configurations. Moreover, we also use different
combinations of loss functions (e.g., Dice Coefficient (Dice), Intersection over Union (IoU),
Focal, and Lovasz [40]) along with BCE for understanding the effect of the loss functions
in deep learning models. Finally, the final U-Net is trained by three different train splits
data sets, 100, 200, and 300, to investigate the data set size importance. To increase the
size of the training data set, we augment the datasets by flipping the images horizontally
and vertically, applying elastic transform, random and shift scale rotation with different
values on the original input RGB images. Note that all the experiments were carried on
two NVIDIA RTX 2080Ti GPU with 11GB memory, taking about 4–6 h to train 100 epochs
for every individual model.

2.6. Post-Processing

Post-processing represents a major step in our workflow, it has an important effect
on the performance of the model, particularly at the object level. To refine our final cell
detection results, we start post-processing by applying distance transform on the segmented
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image; for each pixel, the distance transform assigns a number that represents the distance
between that pixel and the nearest non-zero pixel. A common practice is then to apply
the watershed algorithm; however, this often leads to an over-segmented image. The
reason is each local minimum, no matter how small, becomes a catchment basin. To avoid
over-segmentation, we first perform minima imposition to filter out tiny local minima and
then modify the distance transform to have the minima at the desired locations only, before
finalizing with the watershed. Minima imposition requires tuning the H parameter that
controls the minimum depth value we should consider before applying the watershed. We
adjust the H parameter through the extended minima transform, and through multiple
experiments, we deduce the optimal value that provides the best precision and recall
metrics.

2.7. Model Evaluation

In order to evaluate our models, we follow a multilevel validation strategy for the
algorithms. This will allow us to build up and show algorithm performance as we go from
the ‘raw’ network to the final output.

2.7.1. Pixel-Level Validation

The U-Net and Detectron2 network provides a pixel-based output of the class proba-
bilities of each pixel in the validation patches. This is converted into a segmentation map,
typically using a threshold value. We use a threshold value of 0.5 to generate the final seg-
mentation map. From this output we can obtain standard metrics based on the confusion
matrix. We also plot a receiver operating characteristic (ROC) curve and calculate its area
under the curve (AUC). The pixel performance metrics, accuracy (ACC), sensitivity (SEN)
and specificity (SPE) are also calculated to evaluate models’ performances on pixel-level.
Let the true positive (TP) rates be correctly classified pixels and the false positive (FP) rates
be incorrectly classified pixels as the annotated ground-truth, whereas the true negative
(TN) rates are correctly classified pixels and the false negative (FN) rates are incorrectly
classified pixels as not the annotated ground-truth. The mathematical definitions of ACC,
SEN, and SPE are presented as the following:

ACC = (TP + TN)/(TP + TN + FP + FN), (1)

SEN = TP/(TP + FN), (2)

SPE = TN/(TN + FP), (3)

2.7.2. Object-Level Validation

For object-level validation, we post-process the probability map to identify the indi-
vidual nucleus instances. This also involves thresholding, so we use this to plot the ROC
for the model and use this to pick an optimal threshold for the confusion matrix-based
metrics to calculate the Dice coefficient (Dice), aggregated Jaccard Index (AJI), precision
and recall. For further analysis, we calculate the Dice (F1) score for each validation patch
and plot this as a boxplot with overlaid scatter points in order to illustrate the variation and
identify outliers to evaluate the models’ performance at the object level. We also rely on
object-level metrics in order to compare deep learning based cell detection to ground-truth,
which is represented by pathologist annotations. The mathematical definitions of Dice and
AJI are presented as the following:

Dice = 2.TP/(2.TP + FP + FN), (4)

AJI =
∑N

i=1

∣∣∣GTi ∩ PD∗j (i)
∣∣∣

∑N
i=1

∣∣∣GTi ∪ PD∗j (i)
∣∣∣+ ∑k∈I |PDk|

(5)
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Here, GTi is the ith annotated ground-truth of nuclei pixels, PDk is the predicted nuclei
segmentation mask, PD*j(i) is the connected component from the predicted mask, and
I is the list of indices of pixels that are not belong to the annotated ground-truth. The
mathematical definitions of precision and recall are presented as the following:

Precision = TP/(TP + FP), (6)

Recall = TP/(TP + FN) (7)

3. Results
3.1. Comparative Analysis

The use of an AI algorithm to identify and quantify biomarker expression in cells/tissue
must achieve high levels of accuracy on data that have not been used to train and develop
the algorithm. Hence, we carry out a comprehensive evaluation of how deep learning mod-
els learn complex tissue features from the ICOS IHC tissue tiles and automatically identify
the nuclear expression of IHC biomarkers ICOS. We carried out six different experiments
to find the most robust deep learning model on the unseen test data set (all experimental
details are presented in Tables 1–4, A1 and A2.

Initially, we perform two-phase experiments of U-Net (semantic segmentation) and
Detectron2 (instance segmentation) model training and testing with different training
batches, optimizers, and loss functions to find the best approach (semantic segmentation
vs. instance segmentation). The details are shown in Table 1. To evaluate the models, we
use ACC, SEN and SPE for the pixel-level, and the Dice, AJI, precision and recall for the
object-level validation metrics (details are explained in the model evaluation subsection in
the Materials and Methods section). The U-Net model achieves the highest performance
of 98.93%, 68.84%, and 53.92% in terms of ACC, Dice, and AJI using the backbone of
ResNet101 with Adam optimizer, loss function of BCE, and the batch size of 8 on our
unseen test dataset. On the other hand, Detectron2 yields the best performance of 99.63%
of SPE, only using the backbone of ResNet50 with SGD optimizer, BCE+L1, and the batch
size of 4. Moreover, the Adam and BCE loss yields a better performance than SGD and BCE
with L1 loss. Figure 5 shows the segmentation performance between the Detectron2 and
U-Net model. The upper row of the Figure 5 shows that the prediction of the Detectron2
model (3rd image) is not able to segment the boundary connected cells, whereas the U-Net
model (4th image) can segment them. Moreover, the lower row shows that the Detectron2
model shows false positive results (more details are presented in Supplementary Materials
Figure S1 and Figure S2). To summarize the first experiment, we show that the U-Net model
(semantic segmentation approach) yields the best performance, compared to the Detectron2
model (instance segmentation approach) because the instance segmentation models are
more precise on the global object identification (e.g., persons, vehicles, etc.), whereas
semantic segmentation models consider the local level information more specifically. The
U-Net style models, therefore, are more accurate in any cell segmentation task.

Secondly, we then perform two sets of experiments of the U-Net model (see Table A1
(in Appendix A) and Table 2) with seven different state-of-the-art pretrained backbones
(ResNet101, EfficientNetB7, DenseNet161, InceptionResNetV2, SENetResNext101, Mo-
bileNetV2, and VGG19), keeping the same optimizer Adam and loss function BCE, with
the change of batch sizes of 4 and 8.
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Figure 5. Visualization of two segmentation examples by the best U-Net and Detectron2 model from Table 1 for under-
standing the details of the model performances. (a) Original test images (randomly selected from the unseen test set), (b)
ground-truth annotated by pathologist (binary regions corresponding to the original images), (c) predicted image by the
Detectron2 model, individual image prediction with ACC, SEN, Dice, and AJI scores are presented on the top of the image
(inside the blue box), the red arrow indicates the false positive and (d) predicted image by the U-Net model, individual
image prediction with ACC, SEN, Dice, and AJI scores are presented on the top of the image (inside the blue box), yellow
arrow indicates the model can segment the boundary connected cell.

Table 1. A performance comparison between the U-Net and Detectron2 on the test data set, using different combinations of
backbone, batch size, optimizer and loss functions (bold represent the best performance).

Model
Name Backbone Batch Size Optimizer Loss

Function
Metrics

Accuracy Sensitivity Specificity Dice AJI

U-Net

ResNet50

2

SGD BCE

0.97135 0.81653 0.97349 0.51159 0.35148

4 0.97729 0.66402 0.98229 0.5015 0.34194

8 0.98119 0.19418 0.99565 0.25376 0.14849

2

Adam BCE

0.98922 0.65317 0.99571 0.67643 0.5301

4 0.98933 0.65703 0.99585 0.67773 0.53082

8 0.98904 0.65452 0.99551 0.66949 0.52215

ResNet101

2

SGD BCE

0.97202 0.80081 0.97434 0.51812 0.35626

4 0.97635 0.71966 0.98038 0.52575 0.36193

8 0.98066 0.20058 0.99493 0.25703 0.15036

2

Adam BCE

0.98902 0.65415 0.99538 0.67106 0.52394

4 0.98903 0.66182 0.99542 0.67364 0.52681

8 0.98939 0.67254 0.99584 0.68844 0.53922
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Table 1. Cont.

Model
Name Backbone Batch Size Optimizer Loss

Function
Metrics

Accuracy Sensitivity Specificity Dice AJI

Detectron2

ResNet50

2

SGD BCE+L1

0.98795 0.63321 0.99509 0.6571 0.50428

4 0.98823 0.58092 0.99632 0.63354 0.48617

8 0.98816 0.57355 0.99629 0.62887 0.48037

2

Adam BCE+L1

0.98811 0.63597 0.99514 0.65672 0.50619

4 0.98792 0.57015 0.99616 0.61928 0.47275

8 0.98823 0.58092 0.99632 0.63354 0.48617

ResNet101

2

SGD BCE+L1

0.9881 0.62078 0.99563 0.65472 0.50358

4 0.98778 0.5791 0.99607 0.62088 0.47237

8 0.98788 0.58846 0.99609 0.63493 0.48353

2

Adam BCE+L1

0.98828 0.62597 0.99563 0.65985 0.50696

4 0.98817 0.59231 0.9963 0.63697 0.48881

8 0.98815 0.59255 0.99622 0.63644 0.48773

The outcomes of these two experiments provides insights into the selection of the
best pretrained backbone and batch size. U-Net with EfficientNetB7 backbone performs
better than the other backbones using Adam, BCE, and batch sizes of 4 and 8 in both
scenarios. It achieves 98.98%, 72.41%, 72.04%, and 57.50% in terms of ACC, SEN, Dice,
and AJI, respectively, using a batch size of 4. On the other hand, it yields 98.99%, 73.92%,
72.44%, and 57.83% in terms of ACC, SEN, Dice, and AJI, respectively, using a batch size of
8. Increasing the batch size also improves the model performance of 0.01%, 1.51%, 0.4%,
and 0.33% in terms of ACC, SEN, Dice, and AJI, respectively. However, the changing of
the backbone from ResNet101 to EfficientNetB7 also improves the model performance of
3.6% and 3.91% of Dice and AJI, respectively. To conclude, the selection of the backbone
and batch size is an important part of designing a robust deep learning model. The correct
choice enhances the model performance. The best performance of the EfficientNetB7
backbone with a batch size of 8 is shown in Table 2. Detailed outliers of the Dice and
AJI are illustrated in Figure 6, which shows that the EfficientNetB7 has the highest mean
of Dice and AJI scores and the least standard deviation with some outliers. However,
the rest of the models (ResNet101, DenseNet161, InceptionResNetV2, SENetResNext101,
MobileNetV2, and VGG19) represent many outliers with a high standard deviation and
low mean, compared to EfficientNetB7. The ROC and precision vs. recall (PR) curves are
presented in Figure 7. The highest AUC of ROC is 99.38% and PR has 79.76% yields by the
EfficientNetB7. Moreover, box plots and the ROC and PR curves for the batch size of 4 are
presented in Appendix A Figure A1, and Supplementary Materials Figure S3, respectively.

Table 2. Comparative results of U-Net with the different backbones and the batch size of 8 (bold represent the best
performance).

Model
Name Backbone Batch Size Optimizer Loss

Function
Metrics

Accuracy Sensitivity Specificity Dice AJI

U-Net

ResNet101

8 Adam BCE

0.98939 0.67254 0.99584 0.68844 0.53922

EfficientNetB7 0.98992 0.7392 0.99526 0.72448 0.57832

DenseNet161 0.98881 0.66545 0.99521 0.66838 0.51961

InceptionResNetV2 0.98918 0.66615 0.99553 0.67742 0.52953

SENetResNext101 0.98812 0.74222 0.99331 0.67823 0.53138

MobileNetV2 0.98891 0.63465 0.99589 0.65913 0.50924

VGG19 0.98778 0.5761 0.99568 0.61238 0.46402
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Figure 6. The box plots of Dice (left) and AJI (right) scores for all the test data sets. Different boxes with colours represent
the different backbones of the U-Net model. The median value of every box is the red line inside the box; the outliers are
labelled as the red (+) symbol.

Figure 7. The (a) ROC and (b) PR carve for the experiment of the U-Net model with different backbones, the Adam
optimizer, BCE loss function, and the batch size of 8.

Thirdly, we then run further experiments to understand the effect of the model size
(see Table A2 (in Appendix A)). We select the same experimental configurations as that
previously used (Table 2) but change the EfficientNet backbone from B0 (lightweight) to
B7 (heavyweight). The results show that EfficientNet, B0 (lightweight) achieved an AJI of
55.18%, whereas the B7 (heavyweight) yielded an AJI of 57.83%, meaning that it improved
2.73% of an AJI using a heavyweight model. Detailed outliers of the Dice and AJI are
illustrated in Appendix A Figure A2, which shows that the EfficientNetB7 has the highest
mean of Dice and AJI scores and the least standard deviation with some outliers. Fourthly,
we show the effect of the loss function on the optimized U-Net model from previous
experiments (Table 2). The detailed experimental outcomes are presented in Table 3. The
model improved the performance of Dice and AJI by 0.99% and 1.15%, respectively, using
both BCE and IoU loss, compared with the BCE loss. The BCE and Dice loss also improved
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the SEN by 8.96%. The BCE and Focal loss yielded the ACC and SPE of 0.02% and 0.44%
respectively, higher than the BCE and IoU loss. To summarize, we obtained our best
optimized U-Net model with the backbone of EfficientNetB7, Adam, BCE with IoU loss
and the batch size of 8. Some segmentation examples of our best model are shown in
Figure 8. The results show that the performance for the segmentation was better when
the cells were well separated. In turn, the close distance and boundary-connected cell
segmentation performance were comparatively poor.

Table 3. Comparative results of U-Net with different loss functions (bold represents the best performance).

Model
Name Backbone Batch

Size
Optimizer Loss Function

Metrics

Accuracy Sensitivity Specificity Dice AJI

U-Net EfficientNetB7 8 Adam

BCE+Dice 0.98894 0.82885 0.99238 0.72865 0.58277

BCE+IoU 0.98931 0.81816 0.99305 0.73447 0.58986

BCE+DICE+IoU 0.98893 0.81521 0.99249 0.72694 0.58024

BCE+Focal 0.98953 0.60196 0.99745 0.66682 0.51891

BCE+Lovasz 0.98874 0.81792 0.99226 0.72196 0.57535

BCE+Dice+IoU+Focal 0.98916 0.81891 0.99286 0.7301 0.5845

Figure 8. Examples of some segmentation results of the optimized U-Net model using the test data set. (Upper row): the
best performance of the model. (Lower row): the poor performance of the model. Note that, the blue and yellow colours
represent the annotated ground-truth and the best model predictions, respectively.

We perform post-processing for separating every individual cell accurately to calculate
the density of the cells, which leads us to develop a robust density estimation and survival
analysis system (see in Correlation and Survival Analysis subsections).

Finally, we show the effect of the trained data set size by using our optimized U-Net
model. For this experiment, we split the training data set into three different sizes, 100,
200, and 300. Every split is tested with the same test data set and presented in Table 4. The
SEN, Dice, and AJI scored 51.28%, 55.60%, and 40.73% with the 100, 69.84%, 70.29%, and
55.45% with the 200 and 71.85%, 71.44%, and 56.66% with the 300 training size, respectively.
The performance improved dramatically from the training size 100 to 200 with the 12.56%,
14.69%, and 14.72% increment of SEN, Dice, and AJI, respectively. There was also an
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improvement of 2.01%, 1.15%, and 1.21% of SEN, Dice, and AJI from training size 200 to
300. However, the experiments show that the increase in the training data set size was also
important in improving the model performance. The effect of the training size experiments
is illustrated by the ROC and PR curves in Figure 9.

Figure 9. The (a) ROC and (b) PR curve for the experiment of different training sizes.

Table 4. A performance comparison of U-Net in different train sizes (bold represents the best performance).

Model
Name Backbone Batch

Size
Optimizer Loss

Function
Train
Size

Metrics

Accuracy Sensitivity Specificity Dice AJI

U-Net EfficientNetB7 8 Adam BCE

100 0.98627 0.5128 0.99564 0.55607 0.40732

200 0.98942 0.69842 0.99547 0.70291 0.5545

300 0.98968 0.71852 0.99534 0.71443 0.56669

The highest AUC of ROC is 99.32% and PR is 78.80% yielded by the training size 300.
However, we have still the challenge of segmenting the separate cells when they are very
close to each other. Therefore, we use another post-processing step (details are explained
in the next subsection) to separate these connected cells from the model predictions.

3.2. Object-Level Performance Evaluation after Post-Processing

We evaluate our model performance at the object level by estimating precision and
recall. Recall measures the ratio of objects, in our case positive cells, that are correctly
detected to the total number of objects. Precision describes how good the model is in
evaluating the performance of the best model at the object level. The details of the post-
processing method are explained in the post-processing subsection under the Method
section. As explained in post processing, the precision and recall are evaluated using
different values of extended regional minima index H. We find that the optimal value for
ICOS cell detection is H = 6. For comparison, we use precision and recall to evaluate the
performance of the method used in [21] for cell segmentation. The ground truth images
used for evaluation are annotated and reviewed by expert pathologists. Precision varies
from 32.61% to 34.82%, whereas, when applying the selected nuclear segmentation deep
learning model, it is between 67.23% and 83.33% with the best model. In the same way,
recall does not exceed 3.82% for the nuclear segmentation tool but reaches 66.02% with



Cancers 2021, 13, 3825 15 of 21

the best model. Table 5 provides examples for both methods, with varying thresholds.
Figure 10 illustrates examples of the detection results, along with their corresponding
ground-truths, which are annotations from the pathologist. We can clearly see that deep
learning, followed by post-processing workflow described above, refines the noisy regions
from the model predictions.

Table 5. Object-level performance metrices after applying the post-processing method.

Threshold Precision (%) Recall (%)

0.30 83.33 66.02
0.35 80.71 63.95
0.40 76.22 60.39
0.45 72.1 57.12
0.50 67.23 53.26

Figure 10. Visualization of the effect of post-processing method using two segmentation examples. (a) Original test images
(randomly selected from the unseen test set), (b) annotated ground-truth by pathologist (binary regions corresponding to
the original images), (c) predicted images by the model before applying the post processing method; yellow arrows are
indicating the false positives are detection and (d) predicted images after applying the post-processing method; the detected
false positives are removed.

3.3. Correlation Analysis—Clinical Relevance

In this section, we evaluate the Pearson correlation coefficient (R) in order to measure
their linear dependence, and find R = 0.9244, which denotes a high dependency, and
consequently, that our ICOS density estimation is highly accurate, with respect to the
annotations provided by the pathologist. Figure 11 illustrates the predicted density from
our workflow against the ground-truth density from pathologist annotations.
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Figure 11. Density estimation for post-processing results vs. ground-truth annotations.

3.4. Survival Analysis

Given the high concordance between human generated annotations and our final
results, we look to validate our workflow with a survival analysis of subset of 97 patients
(equivalent to a single TMA array) from the cohort used by [21]. We use the detected cells
to estimate the density of positive cells per mm2 within every patient TMA core. Using
these scores, and following the approach taken in [21], we then perform time-dependent
ROC curve analysis, using the censored overall survival data. The ROC curve, shown
in Figure 12, allows the optimal cut-off value for the ICOS density to be estimated. This
threshold value is used to separate the patients into two groups for overall survival analysis.
Using these groups as defined at the optimal threshold, we can clearly see that the scores
based on the deep learning detections could be used to stratify the cases into two groups
which, when analysed using Kaplan–Meier curves, show a marked difference in survival
(Figure 12). To test for statistical significance of the difference between the survival curves,
we run the log-rank test, based on 5-year survival. The calculated p-value of the log-rank
test is p = 0.009, which indicates statistical significance and compares well with [21]. Given
this statistically significant result, we conclude that the workflow presented in this paper
allows for the development of deep learning-based IHC scoring algorithms, which have
potential value in determining biomarker prognostication, following validation in future
studies.

Figure 12. The ROC for the optimal cut-off value of the ICOS density (left-image), and the Kaplan–Meier curves for the
survival analysis (right-image) (group 1 above threshold and group 2 below the threshold).
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4. Discussion and Conclusions

In this study, we have presented a complete workflow for immune-checkpoint ICOS
protein detection in CRC. After performing a set of experiments to find the most appropriate
approach of deep learning architectures for ICOS cell detection, we documented the effect
of the different pre-trained backbones, batch size, loss functions, and train data set sizes
for training a deep learning model. Based on the performance metrics at both the pixel
and object levels, pixel segmentation proved to be superior; the U-Net architecture trained
and tested with the EfficientNetB7 backbone, Adam optimizer, BCE loss, and the batch
size of 8 provided the best results. Furthermore, we compared our deep learning model
results to the ground-truth data, that is, a set of annotations provided by the pathologist,
and concluded that, after post-processing, ICOS positive cell detection provided results
very close to those of the pathologist. We concluded with the density estimation of ICOS-
positive cells and confirmed the high accuracy of our results, by measuring the correlation
coefficient. Given the strong concordance between the hand-generated annotations and the
deep learning model output, we can confidently use our results on pathological images
associated with robust clinical metadata. Our current model using this workflow was
shown to predict overall survival for these stage II/III CRC patients. The use of survival
analysis based on our model extends the usual technical validation using segmentation
and correlation metrics and provides a useful example of how deep-learning-based models
may be used to develop prognostic and predictive models through robust development
processes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13153825/s1. Figure S1: The ROC space plot for the experiment 1 (comparison between
the U-Net and Detectron2 performance on the test dataset using different combinations of backbone,
batch size, optimizer and loss functions). The point that is closet to (0,1) and found U-Net with
the backbone of ResNet101, Adam, BCE and batch size of 8, which is considered as an “optimal”
performance., Figure S2: Comparison of segmentation results of the best U-Net and Detectron2
model from the experiment 1. (a) Original test image (randomly selected from the unseen test set),
(b) annotated ground-truth (binary regions corresponding to the original images), (c) predicted
image by the Detectron2 model, individual image prediction with ACC, SEN, Dice, and AJI scores
are presented on the top of the image, (d) predicted image by the U-Net model, individual image
prediction with ACC, SEN, Dice, and AJI scores are presented on the top of the image. Figure S3: The
(a) ROC and (b) PR carves for the experiment of U-Net model with different backbones, the Adam
optimizer, BCE loss function and the batch size of 4. Source Code S1.1: The source code for U-Net
model. Source Code S1.2: The source code for Detectron2 model.
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Abbreviations

ICOS Immune-checkpoint Inducible T-cell COStimulator
AI Artificial Intelligence
CRC Colorectal Cancer
IHC Immunohistochemistry
TMA Tissue Microarrays
ReLU Rectified Linear Unit
CNN Convolutional Neural Network
R-CNN Region-based Convolutional Neural Network
ROI Region of interest (ROI)
RPN Region Proposal Network
FPN Feature Pyramid Network
SGD Stochastic Gradient Descent
BCE Binary Cross-Entropy
Dice Dice Coefficient
IoU Intersection over Union
ROC Receiver Operating Characteristic
AUC Area Under the Curve
ACC Accuracy
SEN Sensitivity
SPE Specificity
AJI Aggregated Jaccard Index
GPU Graphics Processing Unit
GB Gigabytes
RGB Red, Blue and Green
DL Deep Learning

Appendix A. Experiments

In this experiment, the U-Net model with seven different state-of-the-art pre-trained
back bones is used with Adam, BCE, and the batch size of 4. The details of the outliers of
Dice and AJI are shows in Figure A1.
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Table A1. Comparative results of U-Net with the different backbones and the batch size of 4 (bold represent the best
performance).

Model
Name Backbone Batch Size Optimizer Loss

Function
Metrics

Accuracy Sensitivity Specificity Dice AJI

U-Net

ResNet101

4 Adam BCE

0.98903 0.66182 0.99542 0.67364 0.52681

EfficientNetB7 0.98989 0.72419 0.99548 0.7204 0.57509

DenseNet161 0.98935 0.65444 0.99592 0.67743 0.53043

InceptionResNetV2 0.98738 0.72407 0.99203 0.66439 0.5154

SENetResNext101 0.98938 0.68371 0.99579 0.69138 0.54407

MobileNetV2 0.98926 0.65939 0.99563 0.67371 0.52711

VGG19 0.98892 0.61574 0.99608 0.65206 0.50478

In this experiment, the U-Net with the different depth size of EfficientNet backbones
are used with Adam, BCE, and the batch size of 8 to understand the importance of the
network depths. The results show in Table A2 that the deeper network can help to improve
the U-Net segmentation performance. Hence, the details of the outliers of Dice and AJI are
illustrated in Figure A2.

Figure A1. The box plots of Dice and AJI scores for all the test data sets. Different boxes with colours represent the different
backbones of the U-Net model with the batch size of 4. The median value of every box is the red line inside the box; the
outliers are labelled as the red (+) symbol.

Table A2. A performance comparison of U-Net with the different backbone versions of EfficientNet (bold represent the best
performance).

Model
Name Backbone Batch

Size
Optimizer Loss

Function

Metrics

Accuracy Sensitivity Specificity Dice AJI

U-Net

EfficientNetB0

8 Adam BCE

0.98945 0.70358 0.99528 0.69887 0.5518

EfficientNetB1 0.98948 0.71624 0.9952 0.7045 0.55721

EfficientNetB2 0.98962 0.70494 0.99539 0.70469 0.5579

EfficientNetB3 0.98953 0.68548 0.99597 0.69697 0.54769

EfficientNetB4 0.98988 0.72678 0.99543 0.71955 0.57232

EfficientNetB5 0.98987 0.73887 0.9951 0.72172 0.5768

EfficientNetB6 0.98978 0.73786 0.99528 0.72114 0.57353

EfficientNetB7 0.98992 0.7392 0.99526 0.72448 0.5783
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Figure A2. The box plots of Dice and AJI scores for all the test data sets. Different boxes with colours represent the different
versions of the EfficientNet backbone. The median value of every box is the red line inside the box; the outliers are labelled
as the red (+) symbol.
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