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Figure S1. Patient inclusion of this study. 

 

Figure S2. Comparison of heat map of 47 features from all patients before and after standardization. Graphical represen-

tation of Heat map of 47 parameters before standardization (A) and after standardization (B). Standardization is the pro-

cess of putting different variables on the same scale. To standardize variables, the mean and standard deviation for a 

variable should be calculated. Standardized value could be defined by subtracting the mean and dividing by the standard 

deviation for each observed value of the variable. This process produces standard scores that represent the number of 

standard deviations above or below the mean that a specific observation falls. 
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(A) Ten time cross validation for tuning parameter 

selection in the LASSO Cox regression model 

(B) LASSO coefficient profiles of the 47 PET derived 

features 

  

Figure S3. Selection of radiomics signature in PET using LASSO Cox regression model in the training set and definition 

of rad_score. The least absolute shrinkage and selection operator method (LASSO) was used for regression of high dimen-

sional predictors. The method uses an L1 penalty to shrink some regression coefficients to exactly zero. (A) The partial 

likelihood deviance (PLD) curve was plotted versus log (λ), where λ is the tuning parameter. Solid vertical lines represent 

PLD ± standard error (SE). The dotted vertical lines are drawn at the optimal values by using the minimum criteria and 1-

SE criteria. Tuning parameter (λ) selection in the LASSO model used 10-fold cross-validation via minimum criteria. A 

value λ = 0.03577575 with log (λ) = -3.330485 was chosen. (B) LASSO coefficient profiles of the 47 PET derived features. A 

coefficient profile plot was produced against the log (λ) sequence. The optimal tuning parameter resulted in two non-zero 

coefficients. Two features, Gray Level Run Length Matrix_Long-Run Emphasis (GLRLM_LRE) and Grey-Level Zone 

Length Matrix_Short-Zone Low Gray-level Emphasis (GLZLM_SZLGE), with coefficients 0.07079258, 0.11149516 respec-

tively, were selected in the LASSO Cox regression model. The rad_score was defined as 0.07079258 × GLRLM_LRE + 

0.11149516 x GLZLM_SZLGE. 

A B 

  

Figure S4. Cut-off value selection using X-tile plots of the rad_score. (A) X-tile plots of the rad_score and the points of the 

rad_score coloration of the plot represents the strength of the association at each division ranging from low (dark, black) 

to high (bright, red or green). Red represents an inverse association between the expression levels and survival of the 

feature, whereas green represents a direct association. (B) The optimal cut-off value was defined as the value that produced 

the largest χ2 in the Mantel-Cox test and this point was set as 0.07. Patients were divided into the high- and low-risk 

subgroups based on this value. 
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(A) SUVmax 

 
(B) Total lesion glycolysis (TLG) 
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(C) Metabolic tumor volume (MTV) 

Figure S5. Correlation between rad_score and PET derived conventional parameters such as SUVmax, TLG and MTV. (A) 

Correlation between SUVmax and rad_score. (B) Correlation between TLG and rad_score. (C) Correlation between MTV 

and rad_score. The relationship between variables was evaluated using the Spearman rank correlation test. 

Note: These mathematic formulas used in this section are mainly derived from the website http://www.lifexsoft.org (ac-

cessed on 1 July 2019). 

Table S1. Definition of radiomics features for Conventional Indices. 

Conventional Indices 

CONVENTIONAL_SUVmin 

CONVENTIONAL_SUVmean 

CONVENTIONAL_SUVstd 

CONVENTIONAL_SUVmax 

CONVENTIONAL_SUVpeak 

CONVENTIONAL_TLG 

CONVENTIONAL_SUVmin: minimum Standardized Uptake Value (SUV) in the 

volume of interest. 

CONVENTIONAL_SUVmin = 𝒎𝒊𝒏𝒊𝑺𝑼𝑽𝒊 (1) 

CONVENTIONAL_SUVmean: average SUV in the volume of interest. 

CONVENTIONAL_SUVmean = 
𝟏

𝑵
∑ 𝑺𝑼𝑽𝒊𝒊  (2) 

CONVENTIONAL_SUVstd: standard deviation SUV in the volume of interest. 

CONVENTIONAL_SUVstd =√
𝟏

𝑵
∑ (𝑺𝑼𝑽𝒊 − 𝑺𝑼𝑽𝒎𝒆𝒂𝒏)𝟐𝑵

𝒊=𝟏  (3) 

CONVENTIONAL_SUVmax: maximum SUV in the volume of interest. 

CONVENTIONAL_SUVmax = 𝒎𝒂𝒙𝒊𝑺𝑼𝑽𝒊 (4) 

CONVENTIONAL_SUVpeak: mean of SUV in a sphere with a volume of ~1 mL and 

located so that the average value in the VOI is maximum. 



Cancers 2021, 13 S5 of S11 

 

CONVENTIONAL_TLG: the product of SUVmean by Volume in mL. 

CONVENTIONAL_TLG = V 𝑿
𝟏

𝑵
∑ 𝑺𝑼𝑽𝒊𝒊  (5) 

Table S2. Definition of radiomics features for First Order Features. 

HISTO_Skewness 

HISTO_Kurtosis 

HISTO_Entropy_log10 

HISTO_Entropy_log2 

HISTO_Energy 

SHAPE_Volume_mL 

SHAPE_Volume_vx 

SHAPE_Sphericity  

SHAPE_Compacity 

HISTO_Skewness: asymmetry of the grey-level distribution in the histogram. 

HISTO_Skewness :
𝟏

𝑬
∑ （𝑯𝑰𝑺𝑻𝑶(𝒊)−𝑯𝑰𝑺𝑻𝑶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝟑

𝒊

(√
𝟏

𝑬
∑ （𝑯𝑰𝑺𝑻𝑶(𝒊)−𝑯𝑰𝑺𝑻𝑶̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )𝟐

𝒊 )𝟑

  (6) 

where HISTO (i) corresponds to the number of voxels with intensity i，E is the total num-

ber of voxels in the VOI and 𝐻𝐼𝑆𝑇𝑂̅̅ ̅̅ ̅̅ ̅̅ ̅ is the average of grey-levels in the histogram. 

HISTO_Kurtosis: shape of the grey-level distribution (peaked or flat) relative to a 

normal distribution. 

HISTO_Kurtosis = 
𝟏

𝑬
∑ （𝑯𝑰𝑺𝑻𝑶(𝒊)−𝑯𝑰𝑺𝑻𝑶̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝟒

𝒊

(
𝟏

𝑬
∑ （𝑯𝑰𝑺𝑻𝑶(𝒊)−𝑯𝑰𝑺𝑻𝑶̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝟐

𝒊 )
𝟐  (7) 

where HISTO(i) corresponds to the number of voxels with intensity i, E the total number 

of voxels in the VOI and 𝐻𝐼𝑆𝑇𝑂̅̅ ̅̅ ̅̅ ̅̅ ̅ the average of grey-levels in the histogram. 

HISTO_Entropy_log10: the randomness of the distribution. 

HISTO_Entropy_log10 = -∑ 𝒑(𝒊)𝒊 ∙ 𝒍𝒐𝒈𝟏𝟎(𝒑(𝒊) + 𝜺) (8) 

where p(i) is the probability of occurrence of voxels with intensity i and 𝜀=2e-16 

HISTO_Entropy_log2: the randomness of the distribution. 

HISTO_Entropy_log2  = -∑ 𝒑(𝒊)𝒊 ∙ 𝒍𝒐𝒈𝟐(𝒑(𝒊) + 𝜺) (9) 

where p(i) is the probability of occurrence of voxels with intensity i and 𝜀=2e-16 

HISTO_Energy: the uniformity of the distribution. 

HISTO_Energy = ∑ 𝒑(𝒊)𝒊
𝟐
 (10) 

SHAPE_Volume (mL and voxels): the volume of interest in mL and in voxels. 

SHAPE_Volume = ∑ 𝑽𝒊𝒊  (11) 

where Vi correspond to the volume of voxel i of the VOI. 

SHAPE_Sphericity: how spherical a volume of interest is. Sphericity is equal to 1 for 

a perfect sphere. 

SHAPE_Sphericity =  
𝜋1 3⁄ ∙(6𝑉)2 3⁄

𝐴
 (12) 

where V and A correspond to the volume and the surface of VOI based on the Delaunay 

triangulation. 

SHAPE_Compacity: how compact the volume of interest is. 
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SHAPE_Compacity = 
𝑨𝟑 𝟐⁄

𝑽
 (13) 

where V and A correspond to the volume and the surface of the VOI based on the Delau-

nay triangulation. 

Table S3. Definition of radiomics features for Grey level co-occurrence matrix (GLCM). 

GLCM_Homogeneity. 

GLCM_Energy 

GLCM_Contrast 

GLCM_Correlation 

GLCM_Entropy_log10 

GLCM_Entropy_log2 

GLCM_Dissimilarity 

The GLCM takes into account the arrangements of pairs of voxels to calculate textural 

indices. The GLCM is calculated from 13 different directions in 3D with aδ-voxel distance

（‖𝑑‖ relationship between neighboured voxels. The index value is the average of the 

index over the 13 directions in space (X, Y, Z). Seven textural indices can be computed 

from this matrix. An entry (i,j) of GLCM for one direction is equal to: 

GLCM△ 𝑥 △ 𝑦(𝑖, 𝑗) =
1

𝑃𝑎𝑖𝑟𝑠𝑅𝑂𝐼
∑ ∑ {

1 𝑖𝑓(𝐼(𝑝, 𝑞) = 𝑖, 𝐼(𝑝 +△ 𝑥, 𝑞 +△ 𝑦) = 𝑗)

𝑎𝑛𝑑 𝐼(𝑝, 𝑞), 𝐼(𝑝 +△ 𝑥, 𝑞 +△ 𝑦) ∈ 𝑅𝑂𝐼
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑀−△𝑦
𝑞=1

𝑁−△𝑥
𝑝=1  (14) 

where I(p,q) corresponds to voxel (p,q) in an image (I) of size N∗M. The vector 
𝑑
→ = (△ 𝑥,△ 𝑦)covers the 4 direc-

tions (D1, D2, D3, D4) in 2D space or 13 directions (D1, D2, ..., D13) in 3D space and PairsROI. Corresponds to the 

number of all voxel pairs belonging to the region of interest. The GLCM reflects the distribution of co-occurring 

pixel values at a given offset.  

GLCM_Homogeneity: the homogeneity of grey-level voxel pairs. 

GLCM_Homogeneity = Average over 13(or 4) directions (∑ ∑
𝑮𝑳𝑪𝑴(𝒊,𝒋)

𝟏+|𝒊−𝒋|𝒋𝒊 ) (15) 

GLCM_Energy: also called uniformity or second angular moment, the uniformity of 

grey-level voxel pairs. 

GLCM_Energy = Average over 13 (or 4) directions (∑ ∑ 𝑮𝑳𝑪𝑴(𝒊, 𝒋)𝟐
𝒋𝒊 ) (16) 

GLCM_Contrast: also called Variance or Inertia, the local variations in the GLCM. 

GLCM_Contrast = Average over 13 (or 4) directions (∑ ∑ (𝒊 − 𝒋)𝟐 ∙ 𝑮𝑳𝑪𝑴(𝒊, 𝒋)𝒋𝒊 ) (17) 

GLCM_Correlation: the linear dependency of grey-levels in GLCM. 

GLCM_Correlation = Average over 13 (or 4) directions (∑ ∑
（𝒊−𝝁𝒊）∙(𝒋−𝝁𝒋)∙𝑮𝑳𝑪𝑴(𝒊,𝒋)

𝓸𝒊∙𝓸𝒋
𝒋𝒊  (18) 

where 𝜇𝑖  or 𝜇𝑗  corresponds to the average on row i or column j and ℴ𝑖  and ℴ𝑗 corre-

spond to the variance on row i or column j. 

GLCM_Entropy_log10: the randomness of grey-level voxel pairs. 

GLCM_Entropylog10 = Average over 13(or 4) directions (-∑ ∑ 𝑮𝑳𝑪𝑴(𝒊, 𝒋) ∙ 𝒍𝒐𝒈𝟏𝟎(𝑮𝑳𝑪𝑴(𝒊, 𝒋) + 𝜺)𝒋𝒊 ) (19) 

where ε= 2e-16 

GLCM_Entropy_log2: the randomness of grey-level voxel pairs. 
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GLCM_Entropylog2 = Average over 13 (or 4) directions ( ∑ ∑ 𝑮𝑳𝑪𝑴(𝒊, 𝒋) ∙ 𝒍𝒐𝒈𝟐(𝑮𝑳𝑪𝑴(𝒊, 𝒋) + 𝜺)𝒋𝒊 ), where ε= 2e-16 (20) 

GLCM_Dissimilarity: the variation of grey-level voxel pairs. 

GLCM_Dissimilarity = Average over 13 (or 4) directions (∑ ∑ |𝒊 − 𝒋| ∙ 𝑮𝑳𝑪𝑴(𝒊, 𝒋)𝒋𝒊 ) (21) 

Table S4. Definition of radiomics features for Grey-Level Run Length Matrix (GLRLM). 

GLRLM_SRE : Short-Run Emphasis 

GLRLM_LRE : Long-Run Emphasis 

GLRLM_LGRE : Low Gray-level Run Emphasis 

GLRLM_HGRE : High Gray-level Run Emphasis 

GLRLM_SRLGE : Short-Run Low Gray-level Emphasis 

GLRLM_SRHGE : Short-Run High Gray-level Emphasis 

GLRLM_LRLGE : Long-Run Low Gray-level Emphasis 

GLRLM_LRHGE : Long-Run High Gray-level Emphasis 

GLRLM_GLNUr : Gray-Level Non-Uniformity for run 

GLRLM_RLNU : Run Length Non-Uniformity 

GLRLM_RP : Run Percentage 

The GLRLM gives the size of homogeneous runs for each grey level. This matrix is 

computed for the 13 different directions in 3D (4 in 2D) and for each of the 11 texture 

indices derived from this matrix, the 3D value is the average over the 13 directions in 3D 

(4 in 2D). The element (i,j) of GLRLM corresponds to the number of homogeneous runs of 

j voxels with intensity i in an image and is called GLRLM(i,j) thereafter. 

GLRLM_SRE, GLRLM_LRE: the distribution of the short or the long homogeneous 

runs in an image. 

GLRLM_SRE = Average over 13 (or 4) directions （
𝟏

𝑯
∑ ∑

𝑮𝑳𝑹𝑳𝑴(𝒊,𝒋)

𝒋𝟐𝒋𝒊 ） (22) 

GLRLM_LRE = Average over 13 (or 4) directions （
𝟏

𝑯
∑ ∑ 𝑮𝑳𝑹𝑳𝑴(𝒊, 𝒋) ∙ 𝒋𝟐

𝒋𝒊 ） (23) 

where H corresponds to the number of homogeneous runs in the volume of interest. 

GLRLM_LGRE, GLRLM_HGRE: the distribution of the low or high grey-level runs. 

GLRLM_LGRE = Average over 13 (or 4) directions （
𝟏

𝑯
∑ ∑

𝑮𝑳𝑹𝑳𝑴(𝒊,𝒋)

𝒊𝟐𝒋𝒊 ） (24) 

GLRLM_HGRE = Average over 13 (or 4) directions （
𝟏

𝑯
∑ ∑ 𝑮𝑳𝑹𝑳𝑴(𝒊, 𝒋) ∙ 𝒊𝟐

𝒋𝒊 ） (25) 

GLRLM_SRLGE, GLRLM_SRHGE: the distribution of the short homogeneous runs 

with low or high grey-levels. 

GLRLM_SRLGE = Average over 13 (or 4) directions （
𝟏

𝑯
∑ ∑

𝑮𝑳𝑹𝑳𝑴(𝒊,𝒋)

𝒊𝟐𝒋𝟐𝒋𝒊 ） (26) 

GLRLM_SRHGE = Average over 13 (or 4) directions （
𝟏

𝑯
∑ ∑

𝑮𝑳𝑹𝑳𝑴(𝒊,𝒋)𝒊𝟐

𝒋𝟐𝒋𝒊 ） (27) 

GLRLM_LRLGE, GLRLM_LRHGE: the distribution of the long homogeneous runs 

with low or high grey-levels. 

GLRLM_LRLGE = Average over 13 (or 4) directions (
𝟏

𝑯
∑ ∑

𝑮𝑳𝑹𝑳𝑴(𝒊,𝒋)𝒋𝟐

𝒊𝟐 )𝒋𝒊  (28) 

GLRLM_LRHGE = Average over 13 (or 4) directions （
𝟏

𝑯
∑ ∑ 𝑮𝑳𝑹𝑳𝑴(𝒊, 𝒋) ∙ 𝒊𝟐𝒋𝟐

𝒋𝒊 ） (29) 

GLRLM_GLNUr, GLRLM_RLNU: the non-uniformity of the grey-levels or the 

length of the homogeneous runs. 
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GLRLM_GLNUr = Average over 13 (or 4) directions {
𝟏

𝑯
∑ (∑ 𝑮𝑳𝑹𝑳𝑴(𝒊, 𝒋)𝒋 )𝟐

𝒊 } (30) 

GLRLM_RLNU = Average over 13 (or 4) directions {
𝟏

𝑯
∑ (∑ 𝑮𝑳𝑹𝑳𝑴(𝒊, 𝒋)𝒊 )𝟐

𝒋 } (31) 

GLRLM_RP: the homogeneity of the homogeneous runs. 

GLRLM_RP = Average over 13 (or 4) directions （
𝑯

∑ ∑ （𝒋∙𝑮𝑳𝑹𝑳𝑴(𝒊,𝒋))𝒋𝒊
） (32) 

Table S5. Definition of radiomics features for Neighborhood Grey-Level Different Matrix 

(NGLDM). 

NGLDM_Coarseness 

NGLDM_Contrast 

NGLDM_Busyness 

The NGLDM corresponds to the difference of grey-level between one voxel and its 

26 neighbours in 3 dimensions (8 in 2D). An element (i,1) of NGLDM corresponds to the 

probability of occurrence of level i and an element (i,2) is equal to: 

NGLDM（i, 2）= ∑ ∑ {|𝑴̅（𝒑, 𝒒） − 𝒊|~𝒊𝒇𝑰(𝒑, 𝒒 = 𝒊)

𝟎~𝒆𝒍𝒔𝒆
𝒒𝒑  (33) 

where 𝑀̅(p,q) is the average of intensities over the 26 neighbor voxels of voxel(p,q). 

NGLDM_Coarseness: the level of spatial rate of change in intensity. 

NGLDM_Coarseness =
𝟏

 ∑ 𝑵𝑮𝑳𝑫𝑴(𝒊,𝟏)∙𝑵𝑮𝑳𝑫𝑴(𝒊,𝟐)𝒊
 (34) 

NGLDM_Contrast: the intensity difference between neighboring regions. 

NGLDM_Contrast = [∑ ∑ 𝑵𝑮𝑳𝑫𝑴(𝒊, 𝟏) ∙ 𝑵𝑮𝑳𝑫𝑴(𝒋, 𝟏) ∙ (𝒊 − 𝒋)𝟐
𝒋𝒊 ] ∙

∑ 𝑵𝑮𝑳𝑫𝑴(𝒊,𝟐)𝒊

𝑬∙𝑮∙(𝑮−𝟏)
 (35) 

where E corresponds to the number of voxels in the VOI and G the number of grey-levels. 

NGLDM_Busyness: the spatial frequency of changes in intensity. 

NGLDM_Busyness =  
∑ 𝑵𝑮𝑳𝑫𝑴(𝒊,𝟏)∙𝑵𝑮𝑳𝑫𝑴(𝒊,𝟐)𝒊

∑ ∑ |𝒊∙𝑵𝑮𝑳𝑫𝑴(𝒊,𝟏)−𝒋∙𝑵𝑮𝑳𝑫𝑴(𝒋,𝟏)|𝑱𝑰

𝒘𝒊𝒕𝒉 𝑵𝑮𝑳𝑫𝑴(𝒊,𝟏)≠𝟎，𝑵𝑮𝑳𝑫𝑴(𝒋,𝟏)≠𝟎

 
(36) 

Table S6. Definition of radiomics features for Grey-Level Zone Length Matrix (GLZLM). 

GLZLM_SZE : Short-Zone Emphasis 

GLZLM_LZE : Long-Zone Emphasis 

GLZLM_LGZE : Low Gray-level Zone Emphasis 

GLZLM_HGZE : High Gray-level Zone Emphasis 

GLZLM_SZLGE : Short-Zone Low Gray-level Emphasis 

GLZLM_SZHGE : Short-Zone High Gray-level Emphasis 

GLZLM_LZLGE : Long-Zone Low Gray-level Emphasis 

GLZLM_LZHGE : Long-Zone High Gray-level Emphasis 

GLZLM_GLNUz : Gray-Level Non-Uniformity for zone 

GLZLM_ZLNU : Zone Length Non-Uniformity is 

GLZLM_ZP : Zone Percentage 

The GLZLM provides information on the size of homogeneous zones for each grey-

level in 3 dimensions. Element (i,j) of GLZLM corresponds to the number of homogeneous 

zones of j voxels with the intensity i in an image and is called GLZLM(i,j) thereafter.  
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GLZLM_SZE, GLZLM_LZE: the distribution of the short or the long homogeneous 

zones in an image. 

GLZLM_SZE = 
𝟏

𝑯
∑ ∑

𝑮𝑳𝒁𝑳𝑴(𝒊,𝒋)

𝒋𝟐𝒋𝒊  (37) 

GLZLM_LZE = 
𝟏

𝑯
∑ ∑ 𝑮𝑳𝒁𝑳𝑴(𝒊, 𝒋) ∙ 𝒋𝟐

𝒋𝒊  (38) 

where H corresponds to the number of homogeneous zones in the VOI. 

GLZLM_LGZE, GLZLM_HGZE: the distribution of the low or high grey-level 

zones. 

GLZLM_LGZE = 
𝟏

𝑯
∑ ∑

𝑮𝑳𝒁𝑳𝑴(𝒊,𝒋)

𝒊𝟐𝒋𝒊  (39) 

GLZLM_HGZE = 
𝟏

𝑯
∑ ∑ 𝑮𝑳𝒁𝑳𝑴(𝒊, 𝒋) ∙ 𝒊𝟐

𝒋𝒊  (40) 

GLZLM_SZLGE, GLZLM_SZHGE: the distribution of the short homogeneous 

zones with low or high grey-levels. 

GLZLM_SZLGE = 
𝟏

𝑯
∑ ∑

𝑮𝑳𝒁𝑳𝑴(𝒊,𝒋)

𝒊𝟐𝒋𝟐𝒋𝒊  (41) 

GLZLM_SZHGE = 
𝟏

𝑯
∑ ∑

𝑮𝑳𝒁𝑳𝑴(𝒊,𝒋)∙𝒊𝟐

𝒋𝟐𝒋𝒊  (42) 

GLZLM_LZLGE, GLZLM_LZHGE: the distribution of the long homogeneous zones 

with low or high grey-levels. 

GLZLM_LZLGE = 
𝟏

 𝑯
∑ ∑

𝑮𝑳𝒁𝑳𝑴(𝒊,𝒋)∙𝒋𝟐

𝒊𝟐𝒋𝒊  (43) 

GLZLM_LZHGE = 
𝟏

𝑯
∑ ∑ 𝑮𝑳𝒁𝑳𝑴(𝒊, 𝒋) ∙ 𝒊𝟐

𝒋𝒊 ∙ 𝒋𝟐 (44) 

GLZLM_GLNUz, GLZLM_ZLNU: the non-uniformity of the grey-levels or the 

length of the homogeneous zones. 

GLZLM_GLNUz = 
𝟏

𝑯
∑ (∑ 𝑮𝑳𝒁𝑳𝑴(𝒊, 𝒋))𝒋

𝟐
𝒊  (45) 

GLZLM_ZLNU = 
𝟏

𝑯
∑ (∑ 𝑮𝑳𝒁𝑳𝑴(𝒊, 𝒋))𝒊

𝟐
𝒋  (46) 

GLZLM_ZP: the homogeneity of the homogeneous zones. 

GLZLM_ZP = 
𝑯

∑ ∑ (𝒋∙𝑮𝑳𝒁𝑳𝑴(𝒊,𝒋))𝒋𝒊
 (47) 
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Table S7. Intraclass correlation coefficient (ICC) results according to the each variables. 

Variables ICC Low Upper 

CONVENTIONAL_SUVmin 0.9 0.82 0.95 

CONVENTIONAL_SUVmean 0.93 0.87 0.96 

CONVENTIONAL_SUVstd 0.93 0.86 0.96 

CONVENTIONAL_SUVmax 0.9 0.82 0.95 

CONVENTIONAL_SUVpeak 0.98 0.96 0.99 

CONVENTIONAL_TLG 0.99 0.98 0.99 

HISTO_Skewness 0.78 0.59 0.88 

HISTO_Kurtosis 0.96 0.92 0.98 

HISTO_Entropy_log10 0.94 0.9 0.97 

HISTO_Entropy_log2 0.94 0.9 0.97 

HISTO_Energy 0.91 0.83 0.95 

SHAPE_Volume_mL 0.99 0.98 0.99 

SHAPE_Volume_vx 0.98 0.97 0.99 

SHAPE_Sphericity 0.97 0.95 0.98 

SHAPE_Compacity 0.99 0.98 0.99 

GLCM_Homogeneity 0.85 0.73 0.92 

GLCM_Energy 0.78 0.59 0.88 

GLCM_Contrast 0.86 0.74 0.92 

GLCM_Correlation 0.99 0.98 0.99 

GLCM_Entropy_log10 0.95 0.91 0.97 

GLCM_Entropy_log2 0.95 0.91 0.97 

GLCM_Dissimilarity 0.86 0.75 0.93 

GLRLM_SRE 0.94 0.89 0.97 

GLRLM_LRE 0.93 0.87 0.96 

GLRLM_LGRE 0.96 0.93 0.98 

GLRLM_HGRE 0.93 0.87 0.96 

GLRLM_SRLGE 0.95 0.92 0.98 

GLRLM_SRHGE 0.93 0.86 0.96 

GLRLM_LRLGE 0.95 0.9 0.97 

GLRLM_LRHGE 0.96 0.92 0.98 

GLRLM_GLNU 0.97 0.95 0.99 

GLRLM_RLNU 0.99 0.98 0.99 

GLRLM_RP 0.93 0.87 0.95 

NGLDM_Coarseness 0.98 0.96 0.99 

NGLDM_Contrast 0.85 0.72 0.96 

NGLDM_Busyness 0.93 0.88 0.96 

GLZLM_SZE 0.95 0.91 0.97 

GLZLM_LZE 0.94 0.89 0.97 

GLZLM_LGZE 0.94 0.9 0.97 

GLZLM_HGZE 0.92 0.85 0.96 

GLZLM_SZLGE 0.89 0.79 0.94 

GLZLM_SZHGE 0.89 0.81 0.94 

GLZLM_LZLGE 0.94 0.89 0.97 

GLZLM_LZHGE 0.95 0.92 0.98 

GLZLM_GLNU 0.99 0.98 0.99 

GLZLM_ZLNU 0.99 0.98 0.99 

GLZLM_ZP 0.92 0.86 0.96 

The inter-observer agreement of feature extraction was evaluated by using an intraclass correlation coefficient (ICC). The 

strength of agreement was evaluated as follows: an ICC value of 0.81–1.0, excellent agreement; 0.61–0.80, good agreement; 

0.41–0.60, moderate agreement; 0.21–0.40, fair agreement and less than 0.20 indicated poor agreement. 




