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Simple Summary: Transfer learning plays a major role in medical image analyses; however, obtaining
adequate training image datasets for machine learning algorithms can be challenging. Although
many studies have attempted to employ transfer learning in medical image analyses, thus far, only a
few review articles regarding the application of transfer learning to medical image analyses have
been published. Moreover, reviews on the application of transfer learning in ultrasound breast
imaging are rare. This work reviews previous studies that focused on detecting breast cancer from
ultrasound images by using transfer learning, in order to summarize existing methods and identify
their advantages and shortcomings. Additionally, this review presents potential future research
directions for applying transfer learning in ultrasound imaging for the purposes of breast cancer
detection and diagnoses. This review is expected to be significantly helpful in guiding researchers to
identify potential improved methods and areas that can be improved through further research on
transfer learning-based ultrasound breast imaging.

Abstract: Transfer learning is a machine learning approach that reuses a learning method developed
for a task as the starting point for a model on a target task. The goal of transfer learning is to improve
performance of target learners by transferring the knowledge contained in other (but related) source
domains. As a result, the need for large numbers of target-domain data is lowered for constructing
target learners. Due to this immense property, transfer learning techniques are frequently used in
ultrasound breast cancer image analyses. In this review, we focus on transfer learning methods
applied on ultrasound breast image classification and detection from the perspective of transfer
learning approaches, pre-processing, pre-training models, and convolutional neural network (CNN)
models. Finally, comparison of different works is carried out, and challenges—as well as outlooks—
are discussed.

Keywords: transfer learning; breast cancer; ultrasound

1. Introduction

Breast cancer is the second leading cause of death in women; 12.5% of women from
different societies worldwide are diagnosed with breast cancer [1]. According to previous
studies, early detection of breast cancer is crucial because it can contribute to up to a 40%
decrease in mortality rate [2,3]. Currently, the ultrasound imaging technique has emerged
as a popular imaging modality for the diagnoses of breast cancer, especially in young
women with dense breasts [4]. This is because ultrasound (US) imaging is a non-invasive
procedure and it can efficiently capture tissue properties [5–7]. Studies have shown that
the false negative recognition rate in other breast diagnosis methods, such as biopsy and
mammography (MG), decreased on using different modalities, such as US imaging [2].
Additionally, ultrasound imaging methods can be used to improve the tumor detection
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rate by up to 17% during breast cancer diagnoses [6]. Furthermore, the number of non-
essential biopsies can be decreased by approximately 40%, thereby reducing medication
costs [5]. An additional benefit of ultrasound imaging is that it uses non-ionizing radiation,
which does not negatively affect health and requires relatively simple technology [7].
Therefore, ultrasound scanners are cheaper and more portable than mammography [5–8].
However, ultrasonic systems are not a standalone modality for breast cancer diagnoses [6,7];
instead, they are integrated with mammography and histological observations to validate
results [8]. To improve the diagnostic capacity of ultrasound imaging, several studies have
employed existing technologies [9]. Machine learning has solved many of the problems
associated with ultrasound in terms of the classification, detection, and segmentation
of breast cancer, such as false positive rates, limitation in indicating changes caused by
cancer, lower applicability for treatment monitoring, and subjective judgments [10–12].
However, many machine learning methods perform well only under a common assumption,
i.e., the training and test data are obtained from the same feature space and have the
same distribution [13]. When the distribution changes, most numerical values of the
models need to be constructed from scratch using newly collected training data [11–13].
In medical applications, including breast ultrasound imaging, it is difficult to collect the
required training data and construct models in this manner [14]. Thus, it is advisable
to minimize the need and effort required for acquiring the training data [13,14]. In such
scenarios, transfer learning from one task to the target task would be desirable [15]. Transfer
learning enables the use of a model previously trained on another domain as the target for
learning [16]. Thus, it reduces the need and effort required to collect additional training
data for learning [10–16].

Transfer learning is based on the principle that previously learned knowledge can
be exceptionally implemented to solve new problems in a more efficient and effective
manner [17,18]. Thus, transfer learning requires established machine learning approaches
that retain and reuse previously learned knowledge [19–21]. Transfer learning was recently
applied to breast cancer imaging in 2016, following the emergence of several convolutional
neural network (CNN) models, including AlexNet, VGGNet, GoogLeNet, ResNet, and In-
ception, to solve visual classification tasks in natural images that are trained on natural
image database such as ImageNet [22]. The first application of transfer learning to breast
cancer imaging was reported in 2016 by Hyunh et al., where they assessed the perfor-
mance achieved by using features transferred from pre-trained deep CNNs for classifying
breast cancer through computer-aided diagnosis (CADx) [23]. Following this, Byra et al.
published a paper where they proposed a neural transfer learning approach for breast
lesion classification through ultrasound [24]. Shortly after this, Yap et al. [25] published
their work, which proposed the use of deep neural learning methods for breast cancer
detection; they studied three different methods—a patch-based LeNet approach, a U-Net
model, and a transfer learning method—with a pre-trained fully convolutional network,
AlexNet. Following these works, a large number of articles have been published in the area
of applying transfer learning for breast ultrasound imaging [26–29].

This work reviews articles that focus on breast cancer imaging using transfer learning
to summarize existing methods and identify their strengths and weaknesses. Further,
it presents potential future research directions for transfer learning in breast cancer imaging
using ultrasound. The review will be instrumental in guiding researchers to identify
potential improved methods as well as areas that would benefit from future research on
transfer learning-based ultrasound breast imaging.

2. Transfer Learning
2.1. Overview of Transfer Learning

Transfer learning is a popular approach for building machine learning models without
concerns about the amount of available data [30]. Training a deep model may require a
significant amount of data and computational resources; however, transfer learning can
help address this issue. In many cases, a previously established model can be adapted
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to other problems [31] via transfer learning. For instance, it is possible to use a model
that has been trained for one task, such as classifying cell types, and then fine-tuning it
to accomplish another task, such as classifying tumors. Transfer learning is a particularly
indispensable approach in tasks related to computer vision. Studies on transfer learning
have shown [31–33] that features learned from significantly large image sets such as
ImageNet are highly transferable to a variety of image recognition tasks. There are two
approaches to transferring knowledge from one model to another. The popular approach
is to change the last layer of the previously trained model and replace it with a randomly
initialized one [34]. Following this, only the parameters in the top layer are trained for the
new task, whereas all other parameters remain fixed. This method can be considered to
be the application of the transferred model as a feature extractor [35], because the fixed
portion acts as a feature extractor (Figure 1), while the top layer acts as a traditional,
fully connected neural network layer without any special assumptions regarding the
input [34,35]. This approach works better if the data and tasks are similar to the data
and task on which the original model was trained. In cases where there is limited data to
train a model for the target task, this type of transfer learning might be the only option to
train a model without overfitting, because having fewer parameters to train also reduces
the risk of overfitting [36]. In cases where more data is available for training, which is
rare in medical settings, it is possible to unfreeze transferred parameters and train the
entire network [34–37]. In this case, essentially, the initial values of the parameters are
transferred [37]. The task of initializing the weights using a pre-trained model instead of
initializing them randomly can provide the model with a favorable beginning and improve
the rate of convergence [36,37] and fine-tuning. To preserve the initialization from pre-
training, it is common practice to lower the learning rate by one order of magnitude [38,39].
To prevent changing the transferred parameters too early, it is customary to start with
frozen parameters [40–44], train only randomly initialized layers until they converge,
and then unfreeze all parameters and fine-tune (Figure 1) the entire network. Transfer
learning is particularly useful when there is a limited amount of data for one task and a
large volume of data for another similar task, or when there exists a model that has already
been trained on such data [45]. However, even if there is sufficient data for training a model
from scratch and the tasks are not related, initializing the parameters using a pre-trained
model is still better than random initialization [46].

2.2. Advantages of Transfer Learning

The main advantages of transfer learning include reducing training time, providing
better performance for neural networks, and requiring limited data [47–50]. In neural
networks trained on a large set of images, the early layer parameters resemble each other
regardless of the specific task they have been trained on [16,47]. For example, CNNs tend
to learn edges, textures, and patterns in the first layers [31], and these layers capture the
features that are broadly useful for analyzing the natural images [47]. Features that detect
edges, corners, shapes, textures, and different types of illuminants can be considered as
generic feature extractors and can be used in many different types of settings [30–33].
The closer we get to the output, the more specific features the layers tend to learn [48–50].
For example, the last layer in a network that has been trained for classification would be
highly specific to that classification task [49]. If the model was trained to classify tumors,
one unit would respond only to the images of a specific tumor [23–28]. Transferring all
layers except the top layer is the most common type of transfer learning [17–20]. Generally,
it is possible to transfer the first n layers from a pre-trained model to a target network
and randomly initialize the rest [51]. Technically, the transferred part does not have to be
the first layer; if the tasks are similar, the type of input data is slightly different [21]. It is
also possible to transfer the last layers [33]. For example, consider a tumor recognition
model that has been trained on gray scale images and that the target is to build a tumor
recognition model that inputs images that are colored in addition to gray scale data.
Given that significant amounts of the data are not available to train a new model from
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scratch, it may be effective to transfer the latter layers and re-train the early ones [52,53].
Therefore, transfer learning is useful in the case where there is insufficient data for a new
domain that is to be handled by a neural network and there exists a large pre-existing
data pool that can be transferred to a target problem [47–53]. Transfer learning facilitates
the building of a solid machine learning model with comparatively smaller training data
because the model is already trained [53]. This is especially valuable in medical image
processing because most of the time, data annotating persons are required to create large
labeled datasets [24–29]. Furthermore, training time is minimized because it can reduce
the time required to train a new deep neural network from the beginning in the case of
complex target task [48,49].
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Figure 1. Transfer learning (TL) methods. There are two types of transfer learning used for breast cancer diagnosis via
ultrasound imaging, depending on the source of pre-training data: cross-domain (model pre-trained on natural images
is used) and cross-modal (model pre-trained on medical images is used). These two transfer learning approaches are
feature extractors (convolution layers are used as a frozen feature extractor to match with a new task such as breast cancer
classification) and fine-tuning (where instead of freezing convolution layers of the well-trained convolutional neural network
(CNN) model, their weights are updated during the training process). X, input; Y, output; NI, natural image; MRI, magnetic
resonance imaging; MG, mammography; CT, computed tomography; US, ultrasound.

2.3. Transfer Learning Approaches

Transfer learning has enabled researchers in the field of medical imaging, where there
is a scarcity of data, to address the issue of small sample datasets and achieve better
performance [13]. Transfer learning can be divided into two types—cross-domain and
cross-modal transfer learning—based on whether the target and source data belong to the
same domain [54,55]. Cross-domain transfer learning is a popular method for achieving
a range of tasks in medical ultrasound image analyses [9]. In machine learning, the pre-
training of models is conventionally accomplished on large sample datasets, and large
training data ensure outstanding performance; however, this is far from reality, making
the approach unsuitable in the medical imaging domain [56]. In the case of small training
samples, the domain-specific models trained from scratch can work better [57–60] relative
to transfer learning from a neural network model that has been pre-trained with large train-
ing samples in another domain, such as the natural image database of ImageNet. One of
the reasons for this is that the gauging from the unprocessed image to the feature vectors
used for a particular task, such as classification in the medical case, is sophisticated in the
pre-trained case and requires a large training sample for improved generalization [58–60].
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Instead, an exclusively designed small network will be ideal for limited training datasets
that are usually experienced in medical imaging [13,58,59]. Furthermore, models trained on
natural images are not suitable for medical images because medical images typically have
low contrast and rich textures [61,62]. In such cases, cross-modal transfer learning performs
better than cross-domain transfer learning [63]. In medical cases, especially in breast imag-
ing, different modalities, such as magnetic resonance imaging (MRI), mammography (MG),
computed tomography (CT), and ultrasound (US) are frequently used in the diagnostic
workflow [63–65]. Mammography (i.e., X-ray) and ultrasound are the first-line screening
methods for breast cancer examination, and it is trivial to collect large training samples
compared to MRI and CT [66–68]. Breast MRI is a more costly, time-consuming method,
and it is commonly used for screening high-risk populations, making it considerably diffi-
cult to acquire datasets and ground-truth annotation in the case of MRIs, as compared to
ultrasound and mammograms [29]. In such instances, cross-modal transfer learning is an
optimal approach [69,70]. A few experiments [29] have demonstrated the superiority of
cross-modal transfer learning over cross-domain transfer learning for a given task in the
case of smaller training datasets.

There are two popular approaches for transfer learning: feature extraction and fine-
tuning [71] (Figure 1).

2.3.1. Feature Extracting

The feature extracting approach harnesses a well-trained CNN model on a large
dataset such as ImageNet, which makes it a feature extractor for the new target domain,
for instance, breast ultrasound imaging [72]. Particularly, all convolution layers of the well-
trained CNN model are fixed, whereas the fully connected layers are cleared up [31–39].
The convolution layers are used as a frozen feature extractor to match with a new task,
such as a breast cancer classification task [41–45]. The extracted features are then supplied
to a classifier that can form fully connected layers [45]. Lastly, the new classifier is only
trained throughout the training process instead of the entire network [51–53].

2.3.2. Fine-Tuning

A fine-tuning approach, such as that of the feature extractor, utilizes a well-trained
CNN model on a large dataset, such as ImageNet, as the base and supersedes the CNN
layers with new CNN layers [73,74]. In fine-tuning, instead of freezing the convolution
layers of the well-trained CNN model, their weights are updated during the training
process [51–53]. This is implemented by initializing the weights of the convolution layers
of a new model with the pre-trained weights of the already well-trained CNN model,
and initializing the classifier layers with arbitrary random weights. In fine-tuning, the entire
network is trained during the training process [41–45].

2.3.3. Feature Extracting vs. Fine-Tuning

Two transfer learning strategies were identified: feature extractor and fine-tuning.
The feature extractor has the additional benefit of not requiring the training of a neural
network, allowing the extracted features to be easily plugged into existing image analysis
procedures [72]. Both these strategies are popular and have been widely applied [75,76].
However, a few authors have performed an intensive investigation to determine the strat-
egy that yields the best results. In [24], three training approaches are proposed: a CNN
architecture trained from scratch, a transfer learning approach with a pre-trained VGG16
CNN architecture further trained on ultrasound images, and a fine-tuned learning approach
where the deep learning parameters are fine-tuned. The experimental results from [24]
demonstrated that the fine-tuned model had the best performance (accuracy = 0.97, area un-
der curve (AUC) = 0.98), with pre-training on ultrasound images. In [24] and [26], both the
feature extraction (AUC = 0.849) and fine-tuning (AUC = 0.895) approaches were used,
and the fine-tuning approach exhibited better performance. These results justify the
fact that almost all of the previous studies on transfer learning applied to breast ultra-
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sound [24–29] used fine-tuning to achieve superior performance (AUC = 0.895). However,
in the performance analysis, the above conclusion does not provide sufficient insights
into drawing a clear conclusion, because different studies used different methods (see
Section 2.5) in terms of pre-processing, which highly affected performance; others even
used different performance analysis metrics [23–29].

2.4. Pre-Training Model and Dataset

The most common pre-training models used for transfer learning in breast ultrasound
are the VGG19, VGG16, AlexNet, and InceptionV3 models; VGG is the most common,
followed by AlexNet and Inception, which are the least common. A comparison of the
different pre-training models is not useful to determine the pre-training model that is better
than the others for transfer learning in breast ultrasound [23–29]. However, one study [26],
showed that Inception V3 outperforms VGG19, where the authors evaluated the impact of
the ultrasound image reconstruction method on breast lesion classification using a neural
transfer learning. In their study, a better overall classification performance was obtained
for the classifier with the pre-training model using InceptionV3, which exhibited an AUC
of 0.857. In the case of the VGG19 neural network, the AUC was 0.822.

Dataset usage for the pre-training of breast ultrasound transfer learning methods
depends on whether cross-domain or cross-modal transfer learning methods are imple-
mented [57–60]. In the case of cross-domain transfer learning, natural image datasets,
such as ImageNet, are utilized as a pre-training dataset, whereas in the case of cross-modal
transfer learning, datasets of MRI, CT, or MG images are utilized for pre-training the
CNNs [23–29]. In the latter case, most researchers used their own data, although some
used publicly available datasets. In breast ultrasound transfer learning, ImageNet is used,
in most cases, as a pre-training dataset [23–29].

• ImageNet: ImageNet is a large image database designed for use in image recogni-
tion [77–79]. It comprise more than 14 million images that have been hand-annotated
to indicate the pictured objects. ImageNet is categorized into more than 20,000 cat-
egories with a typical category consisting of several images. The third-party image
URLs repository of annotations is freely accessible directly from ImageNet, although
ImageNet does not own the images.

2.5. Pre-Processing

The pre-processing required for applying transfer learning to breast ultrasound ac-
complishes two objectives [24,26]. The first is to compress the dynamic range of ultrasound
signals to fit on the screen directly, and the second is to enlarge the dataset and reduce class
imbalance. To achieve the first objective, [26] used a common method for ultrasound image
analysis. First, the envelope of each raw ultrasound signal was calculated using the Hilbert
transform. Next, the envelope was log-compressed, a specific threshold level was selected,
and the log-compressed amplitude was mapped to the range of [0, 255]. In [24], Byra et.al
used a matching layer where they proposed adjusting the grayscale ultrasound images to
the pre-trained convolution neural network model instead of replicating grayscale images
through the channels or changing the lower convolution layer of the CNN. Augmentation
is used to achieve the second objective, which involves enlarging the dataset. Enlarging
the amount of labeled data generally enhances the performance of CNN models [24,26].
Data augmentation is the process of synthetic data generation for training by produc-
ing variations in the original dataset [80,81]. For image data, the augmentation process
involves different image manipulation techniques, such as rotation, translation, scaling,
and flipping arrangements [81]. The challenging part for data augmentation are memory
and computational constraints [82]. There are two popular data augmentation methods:
online and offline data augmentation [83]. Online data augmentation is carried out on
the fly during training, whereas offline data augmentation produces data in advance and
stores it in memory [83]. The online approach saves storage but results in a longer training
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time, whereas the offline approach is faster in terms of training, although it consumes a
large amount of memory [80–83].

2.6. Convolutional Neural Network

A CNN is a feed-forward neural network commonly used in ultrasound breast cancer
image analysis [84]. The main advantage of the CNN is its accuracy in image recognition;
however, it involves a high computational cost and requires numerous training data [85].
A CNN generally comprises an input layer, one or many convolution layers, pooling layers,
and a fully connected layer [74]. The following are the most commonly used CNN models
used for transfer learning with breast ultrasound images [84].

• AlexNet: the AlexNet architecture is composed of eight layers. The first layers of
AlexNet are the convolutional layers, and the next layer is a max-pooling layer for
data dimension reduction [77–79]. AlexNet uses a rectified linear unit (ReLU) for
the activation function, which offers faster training than other activation functions.
The remaining three layers are the fully connected layers.

• VGGNet: VGG16 was the first CNN introduced by the Visual Geometry Group (VGG);
this was followed by VGG19; VGG16 and VGG19 becoming two excellent architec-
tures on ImageNet [85]. VGGNet models afford better performance than AlexNet
by superseding large kernel-sized filters with various small kernel-sized filters; thus,
VGG16 and VGG19 comprise 13 and 16 convolution layers, respectively [84–86].

• Inception: this is a GoogLeNet model focused on improving the efficiency of VGGNet
from the perspective of memory usage and runtime without reducing performance
accuracy [86–89]. To achieve this, it removes the activation functions of VGGNet
that are iterative or zero [86]. Therefore, GoogLeNet came up with and added a
module known as Inception, which approximates scattered connections between the
activation functions [87]. Following InceptionV1, the architecture was improved in
three subsequent versions [88,89]. InceptionV2 used batch normalization for training,
and InceptionV3 introduced the factorization method to enhance the computational
complexity of convolution layers. InceptionV4 brought about a similar comprehensive
type of Inception-V3 architecture with a larger number of inception modules [89].

3. Results

To identify the relevant studies, main databases were searched, including Google
scholars, PubMed, MEDLINE, IEEE, and others, as well as conference proceedings such
as Medical Image Computing and Computer Assisted Intervention (MICCAI), Society of
Photo-Optical Instrumentation Engineers (SPIE), Engineering in Medicine and Biology
Society (EMBC), IEEE International Symposium on Biomedical Imaging (ISBI), and others,
for articles published until September 2020. The keywords used for searching in this review
were: “Transfer Learning” AND “Breast Images” OR “Breast Cancer Image” OR “Breast
Cancer Classification” OR “Breast Cancer Diagnoses”. We identified 34 potentially relevant
articles from the above databases and articles were filtered based on whether they used
transfer learning in breast ultrasound images or not. We excluded studies that did not
involve ultrasound images though the studies were about breast cancer transfer learning
as well as studies not written in English. Overall, 34 potentially relevant studies were
selected, of which 30 remained after removing the duplicates in terms of methodology
and dataset. Ten studies were rejected after screening their abstracts and titles. Based on
our inclusion criteria, three reviewers assessed the full-length articles, and at this stage,
13 studies were excluded. Finally, we reviewed seven articles related to transfer learning in
ultrasound breast images (Table 1). The experimental results from the reviewed papers
demonstrate that the fine-tuned model exhibited the best performance. All of these studies
applied cross-domain transfer learning, where the model trained on natural images is
transfer learned to ultrasound images [23–29]. However, cross-modal transfer learning was
implemented in [29], where a model trained on mammography images is transferred to
breast MRI images, obtaining a better result. In all of the studies, transfer learning afforded
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better results than state of the art methods, because it uses a model that is pre-trained
on a large dataset, such as ImageNet, with millions of image data, due to which it can
predict new, unknown data. The most common pre-training models used in the transfer
learning of breast ultrasound are the VGG19, VGG16, AlexNet, and InceptionV3 models
(Table 1). ImageNet was used as a pre-training dataset in most breast ultrasound transfer
learning. Different databases were utilized by the studies, including the open access series
of breast ultrasound database (OASBUD) [26] with 200 ultrasound scans (two orthogonal
scans each) of 52 malignant and 48 benign breast tumors; the UDIAT Diagnostic Centre of
the Parc Tauli Corporation ultrasound image data (UDIAT) [24], which consists 163 ultra-
sound images corresponding to 110 benign and 53 malignant breast masses (one mass per
image); ultrasound images obtained with BK Medical Panther 2002 and BK Medical Hawk
2102 (database A) [25,28], with 306 images, of which 246 are benign and 60 are malignant,
and others acquired by researchers themselves, and mammograms as well as MRI datasets.

Table 1. Summary of previous transfer learning (TL) approaches for breast cancer diagnosis using ultrasound. OASBUD,
open access series of breast ultrasound data; US, ultrasound; UDIAT, UDIAT Diagnostic Centre of the Parc Tauli Corporation
ultrasound image data; dataset A, ultrasound images obtained with BK Medical Panther 2002 and BK Medical Hawk 2102;
dataset B, UDIAT Diagnostic Centre of the Parc Tauli Corporation ultrasound image data.

Study TL Approach
Used

Pre-Training
Model Used Application Image Dataset Pre-Processing Pre-Training Dataset

Byra et al. [26] Fine-tuning VGG19 &
InceptionV3 Classification OASBUD Compression and

augmentation ImageNet

Byra et al. [24] Fine-tuning VGG19 Classification

882 US images of
their own and public

images UDIAT
and OASBUD

Matching layer ImageNet

Hijab et al. [27] Fine-tuning VGG16 Classification 1300 US Images Augmentation ImageNet

Yap et al. [25] Fine-tuning AlexNet Detection Dataset A and B Splitting in
to patches ImageNet

Yap et al. [28] Fine-tuning AlexNet Detection Dataset A and B Ground-truth
labeling ImageNet

Huynh et al. [23] Feature
extractor AlexNet Classification

Breast mammogram
dataset with

2393 regions of
interest (ROIs)

Compression and
augmentation ImageNet

Hadad et al. [29] Fine-tuning VGG128 Detection and
classification MRI data Augmentation Medical Image

(Mammography image)

Transfer learning is utilized for different ultrasound imaging analyses purposes.
A commonly used transfer learning approach is to pre-train a neural network on the
source domain (e.g., ImageNet, which is an image database containing more than fourteen
million annotated images with more than 20,000 categories and then fine-tune it based on
the instances from the target domain (ultrasound). In [24], they used the VGG19 neural
network, a CNN pre-trained on the ImageNet dataset that possesses five large blocks
of convolutional layers and a fully connected layers block. They employed two transfer
learning approaches. The first one employed the pre-trained model as a predetermined
feature extractor where the model architecture was not modified. Second, they fine-tuned
the CNN using the new dataset, breast ultrasound images. For the purpose of fine-tuning,
the CNN structure was adjusted, the last layers of the architecture were replaced with
different fully connected layers. Augmentation was applied on the main dataset to improve
training, as well as to provide more mixed images to the network that increased the number
of images six times more. In [25], the proposed transfer learning approach is based on
fully convolutional networks (FCN-AlexNet) for semantic segmentation. FCN-AlexNet is a
fully convolutional network version of the original AlexNet classification model with a few
adjustments of the network layers for segmentation. In [26], in the case of the Inception
V3 model, features for classification were extracted using the last average pooling layer.
In the case of the VGG19 model, the first fully connected layer was used. In [27], VGG16,
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a 16-layer deep learning model that has been trained to classify images into 1000 categories
was utilized. Models initialized with the VGG16 model do not need big numbers of labeled
data or excessive computations. The parameters of the VGG16 model are used as an
initialization of a fine-tuned model for the dataset under consideration. All of the convo-
lutional layers were frozen except for the last one. Moreover, stochastic gradient descent
(SGD) algorithm was employed in order to upgrade the network weights with the breast
tumor dataset. Classifier training was carried on with 50 iterations. In [28], FCN-AlexNet,
FCN version of the original AlexNet classification model with a few adjustments in the
network layers for the segmentation task was used. The weights trained on ImageNet
were transfer learned for semantic segmentation of breast ultrasound image with minor
adjustments in the convolutionized fully connected layers. They initialized the weights of
convolutional layers from the pre-trained models instead of using random weights. In [29],
they employed fine-tuning using two CNN models: VGG-Net and MG-Net. VGG-Net is
a very deep network that was originally trained with ImageNet data set. MG-Net was
trained with the mammogram dataset for a similar mass detection task. The VGG-Net was
VGG-128 that includes a fully connected layer with 128 outputs. The MG-Net architecture
was made of three consecutive blocks, having nine convolutional layers.

Different performance analysis criteria (detection, classification, or segmentation) have
been utilized in these previous studies on applying transfer learning to breast ultrasound.

A majority of detection methodologies employ seed point detection as an evaluation
criterion [90,91]. In [90], a radiologist annotated a rectangular region of interest (ROI) with
four extreme points, including the top, bottom, left, and right. Detection is treated as a
true positive, provided that the detection apex (center of the segmented part) is located
within the bounding box of the annotating expert radiologist. Otherwise, it is considered
as a false positive (FP). In [25], a comparison of the performance of the detection methods
in detecting breast cancer from ultrasound images was carried out using the true positive
fraction (TPF) and false positives per image (FPs/image). The TPF is a measure of the
sensitivity of the algorithm as in Equation (1). A few algorithms are capable of detecting
several tumors, whereas others are only able to detect a single tumor. The TPF enables a
smooth measurement because it quantifies the total number of detected tumors by taking
the same amount equal to the total number of actual tumors [92–94]. Therefore, if a method
can detect only one tumor in an image with multiple tumors, the TPF of this algorithm will
be lower than the algorithm that has the ability to detect multiple tumors. In addition to
the TPF and FPs/image as in Equation (2), another performance measure, referred to as
the F-measure as in Equation (3) [95] (the weighted harmonic mean of recall and precision),
is used to measure performance in detecting breast cancer from ultrasound imaging.

TPF = (number of TPs)/(number of actual lesions) (1)

FPs/images = (number of FPs)/(number of images) (2)

F − measure = (2 × TP)/[(2 × TP) + FP + FN] (3)

The area under the receiver operating characteristic (ROC) curve and AUC were
calculated to evaluate breast cancer classification performance [96,97]. In [24], the AUC of
the ROC curve was used to assess classification performance. The sensitivity, specificity,
and accuracy of the classifiers were calculated based on the ROC curve, considering the
point on the curve that was the closest to (0, 1).

The Dice similarity coefficient (Dice) was used to measure the accuracy of the seg-
mentation results. Results of the Dice, sensitivity, precision, and Matthew correlation
coefficient (MCC) were used as evaluation metrics in [27,28]. Table 2 summarizes the
different performance analysis methods used.
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Table 2. Performance analysis criteria in transfer learning for diagnosing breast cancer from ultrasound images. AUC,
area under curve; TPF, true positive fraction; FPs/image, false positives per image; F-measure, weighted harmonic mean
of recall and precision; FCN, fully convolutional network; MCC, Matthew correlation coefficient; SVM, support vector
machine; CNN, convolutional neural network.

Study Performance Analysis Approach Performance Metrics Results

Byra et al. [26]
Classification performance of

classifiers developed using train all
and evaluated on test all.

AUC, sensitivity, accuracy,
and specificity

InceptionV3: AUC = 0.857
VGG19: AUC = 0.822

Byra et al. [24]

Classification performance with and
without the matching layer (ML) on
two datasets. Bootstrap was used to

calculate the parameter
standard deviations.

AUC, sensitivity, accuracy,
and specificity

The better-performing fine-tuning
approach and matching layer,

had AUC = 0.936 on a test data of
150 cases

Hijab et al. [27]
Comparison between accuracy of

their model using ultrasound images
and other related work.

AUC and accuracy AUC = 0.98
Accuracy = 0.9739

Yap et al. [25]
Comparison of the capability of the
proposed deep learning models on

the combined dataset.

TPF, FPs/image,
and F-measure

FCN-AlexNet (A + B): (TPF = 0.99
for A and TPF = 0.93 for B)

Yap et al. [28] Dice similarity coefficient to compare
with the malignant lesions.

Mean Dice, sensitivity,
precision, and Matthew

correlation coefficient (MCC)

“Mean Dice” score of 0.7626
with FCN-16s

Huynh et al. [23]

Classifiers trained on pre-trained
models features were compared with

classifiers trained with
human-designed features.

AUC

SVM trained on human-designed
features obtained an AUC = 0.90.
SVM trained on CNN-extracted
features obtained an AUC = 0.88

Hadad et al. [29] Cross-modal and cross-domain
transfers learning were compared. Accuracy Cross-modal = 0.93

Cross-domain = 0.90

It is easy to understand from Table 2 that different studies performance values differs.
It is challenging to correctly describe the best transfer learning algorithm among the list in
Table 2 because no study have been published to the best of our knowledge that compares
the variety of transfer learning methods in ultrasound imaging except in [26] where a model
pre-trained on Inception V3 outperformed VGG19 in the task of breast lesion classification.
Furthermore, it can be observed from Table 2 that different works utilizing the same pre-
training model (AlexNet in [23,25,29]) resulted in different performance value; this might
be due to the different choices each work made during pre-processing and training.

4. Discussion

It is evident that transfer learning has been incorporated in various application areas of
ultrasound imaging analyses [15,16]. Although transfer learning methods have constantly
been improving the existing capabilities of machine learning in terms of different aspects
for breast ultrasound analyses, there still exists room for improvement [84–89].

In [26], the results depict several issues related to neural transfer learning. First, the im-
age reconstruction procedures implemented in medical scanners should be considered.
It is important to understand how medical images are acquired and reconstructed [80–83].
However, there is limited information regarding the image reconstruction algorithms
implemented in ultrasound scanners. Typically, researchers involved in computer-aided
diagnoses (CADx) system development agree that a particular system might not perform
well on data acquired at another medical center using different scanners and protocols [87].
Their study [26] clearly shows that this issue might also be related to the CADx system
being developed using data recorded in the same medical center.

In [24], the authors presented that the lack of demographic variations in race and
ethnicity in the training data can negatively influence the detection and survival outcomes
for underrepresented patient groups. They recommended that future works should seek to
create a deep learning architecture with pre-training data collected from different imaging
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modalities. This pre-trained model can be useful for devising new automated detection
systems based on medical imaging.

In [27], the performance of fine-tuning is demonstrated to be better than that of
the feature extracting algorithm utilizing directly extracted CNN features; the authors
obtained higher AUC values for the main dataset. However, the implementation of the
fine-tuning approach is by far challenging and difficult, relative to the feature extracting
approach [24–29]. It requires replacement of the fully connected layers in the initial CNN
with custom layers [84]. Additionally, identifying the layers of the initial model that should
be trained in the course of fine-tuning is difficult [84]. Moreover, to obtain enhanced
performance on the test data, the parameters must be optimally selected, and constructing
a fine-tuning algorithm is time consuming [85]. Furthermore, with a small dataset, fine-
tuning may not be advisable, and it would be wiser to address such cases using a feature
extraction approach [75,76].

Therefore, several important research issues need to be addressed in the area of
transfer learning for breast cancer diagnoses via ultrasound imaging. In [29], the authors
hypothesized that learning methods pre-trained on natural images, such as the ImageNet
database, are not suitable for breast cancer ultrasound images because these are gray-
level, low-contrast, and texture-rich images. They examined the implementation of a
cross-modal fine-tuning approach, in which they used networks that were pre-trained on
mammography (X-ray) images to classify breast lesions in MRI images. They found that
cross-modal transfer learning with mammography and breast MRI would be beneficial to
enhance the breast cancer classification performance in the face of limited training data.
This work can be used to improve breast ultrasound imaging by applying cross-modal
transfer learning from a network pre-trained on mammography or other modalities.

The phenomenon of color conversion is extensively employed in ultrasound image
analyses [27]. In [27], the authors showed that color distribution is an important constraint
that should be considered when attempting to efficiently utilize transfer learning with
pre-trained models. With the application of color conversion, it was proved that one could
make use of the pre-trained CNN more efficiently [84–86]. By utilizing the matching layer
(ML), they were able to obtain better classification performance. The ML developed was
proved to perform the same when using other datasets as well [27]. Thoroughly studying
these applications and improving the performance of transfer learning should be another
potential research direction.

5. Outlook

It is customary that achieving better accuracy machine learning greatly depends on
large training sample datasets. Nevertheless, compared with the available datasets in
natural image domain, publicly available datasets in the field of medical ultrasound is still
limited. The limited training data is a bottleneck for the further application of machine
learning methods in medical ultrasound image analyses. To address the issue of small
sample datasets, the commonly used method is transfer learning.

Effectiveness of a particular transfer learning algorithm for a given target task highly
depends on two issues: source task as well as relation to the target. Generally, transfer
learning would produce a sound learning between adequately related tasks while pre-
venting negative transfer. However, achieving this is practically challenging. In order
to overcome negative transfer, considering recognizing and rejecting detrimental source
task knowledge, selecting the adequate source task from a set of potential source tasks,
and designing the task similarity between multiple candidate sources tasks could be sound
solutions. Furthermore, mapping is important for translating between task representa-
tions if the source and target tasks are different. Other challenges related to the use of
transfer learning in machine learning include architecture selection, number of instances
adequate to fine-tune besides the numbers of layers used in addition to the pre-trained
model. Moreover, the effectiveness of transfer learning decreases when the target task
(ultrasonic diagnosis) mismatches the source task (pre-trained network’s task).
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Several directions are available for future research in the transfer learning area. First,
transfer learning techniques can be further explored and applied to a wider range of appli-
cations in ultrasound image analysis. Second, how to measure the transferability across
domains and avoid negative transfer is also an important issue. Although there have been
some improvements on negative transfer, negative transfer still needs further systematic
analyses. Third, the interpretability of transfer learning also needs to be investigated further.
Finally, theoretical studies can be further conducted to provide theoretical support for the
effectiveness and applicability of transfer learning. As a popular and promising area in ma-
chine learning, transfer learning shows some advantages over traditional machine learning,
such as less data dependence and less label dependence in breast ultrasound imaging.

6. Conclusions

Transfer learning has facilitated the development of breast cancer diagnoses using
ultrasound imaging, by overcoming the general challenge of obtaining a large set of training
data using models that are pre-trained on a larger dataset of natural images, specifically,
ImageNet. However, there remain issues that need to be addressed in order to achieve
superior performance in terms of the pre-processing algorithms used and the dataset
types for both the target and training tasks. Pre-processing techniques, such as color
conversion, matching layer, and augmentation play a significant role in improving the
performance of transfer learning; therefore, further research in this area should be the focus
of future studies. Furthermore, most of the previous research on breast cancer diagnosis
via ultrasound imaging has focused mainly on cross-domain transfer learning, although a
few studies report the superiority of the cross-modal transfer learning method. Therefore,
future studies should focus on applying cross-modal transfer learning and evaluate the
performance under different applications of breast cancer diagnosis, including detection,
classification, and segmentation.
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