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Simple Summary: The purpose of this study was to develop a computer-aided diagnosis (CAD)
system for automatic classification of histopathological images of lung tissues. Homology-based
image processing (HI) was proposed for CAD. For developing and validating CAD with HI, two
datasets of histopathological images of lung tissues were used. The private dataset consists of
94 histopathological images that were obtained for the following five categories: normal, emphysema,
atypical adenomatous hyperplasia, lepidic pattern of adenocarcinoma, and invasive adenocarcinoma.
The public dataset consists of 15,000 histopathological images that were obtained for the following
three categories: lung adenocarcinoma, lung squamous cell carcinoma, and benign lung tissue. For
the two datasets, our results show that HI was more useful than conventional texture analysis for the
CAD system.

Abstract: The purpose of this study was to develop a computer-aided diagnosis (CAD) system
for automatic classification of histopathological images of lung tissues. Two datasets (private and
public datasets) were obtained and used for developing and validating CAD. The private dataset
consists of 94 histopathological images that were obtained for the following five categories: normal,
emphysema, atypical adenomatous hyperplasia, lepidic pattern of adenocarcinoma, and invasive
adenocarcinoma. The public dataset consists of 15,000 histopathological images that were obtained
for the following three categories: lung adenocarcinoma, lung squamous cell carcinoma, and benign
lung tissue. These images were automatically classified using machine learning and two types of
image feature extraction: conventional texture analysis (TA) and homology-based image processing
(HI). Multiscale analysis was used in the image feature extraction, after which automatic classification
was performed using the image features and eight machine learning algorithms. The multicategory
accuracy of our CAD system was evaluated in the two datasets. In both the public and private
datasets, the CAD system with HI was better than that with TA. It was possible to build an accurate
CAD system for lung tissues. HI was more useful for the CAD systems than TA.

Keywords: pathology image; lung cancer; homology; Betti number; texture analysis; machine learning

1. Introduction

In 2020, 228,820 new lung cancer cases are projected to occur in the United States [1];
lung cancer is the leading cause of cancer-related deaths in the United States, with almost
one-quarter of all cancer deaths being caused by lung cancer. An estimated 606,520 Ameri-
cans will die from cancer in 2020, with 72,500 male and 63,220 female Americans dying
from lung cancer [1].
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Currently, histopathological and molecular subtypes are important in lung cancer di-
agnoses to determine a treatment strategy, and accurate histopathological diagnoses allow
clinicians to select targeted treatment options that are specific to each patient. For example,
erlotinib (Tarceva; Genentech, South San Francisco, CA, USA) is a tyrosine kinase inhibitor
effective in lung cancer patients with mutated epidermal growth factor receptor [2]. Clini-
cians determine the use of tyrosine kinase inhibitor based on histopathological diagnoses
of the mutated epidermal growth factor receptor. Generally, immunohistochemistry is used
for the diagnosis of the mutated epidermal growth factor receptor.

Digital pathology systems [3,4] have improved over the years and are now capable
of producing high-resolution histopathological images. Using digital pathology systems,
histopathological assessments can be performed using a computer display rather than a
light microscope. In addition, this system has enabled computer-aided diagnosis (CAD) for
histopathological diagnosis. Currently, CAD is being used for detection and diagnosis in
several medical fields [5–7], and CAD has the potential to improve the speed and accuracy
of histopathological diagnoses of lung cancer [3].

CAD frequently utilizes machine learning to improve its diagnostic accuracy. In order
to use medical images in CAD, image feature extraction is required for machine learning.
For evaluation of tumor aggressiveness, tumor heterogeneity is an important factor [8,9].
In CAD of cancers, texture analysis is frequently used for image feature extraction to assess
tumor heterogeneity [8,9].

In recent years, homology-based image processing has been increasingly used [10–17].
For example, Nishio et al. showed that homology-based image processing was useful for
estimating the risk of lung cancer [15], and Nakane et al. showed that colon cancer could
be accurately segmented on histopathological images using homology-based methods [14].
In homology-based methods, Betti numbers are import metrics for image feature extraction.
These numbers are calculated from binarized images obtained from medical images (please
refer to Figure 2 of [13] and Figure S1 of [17] for the calculation of Betti numbers). In the
current study, it was assumed that Betti numbers obtained with homology-based image
processing were useful for evaluation of tumor heterogeneity in image feature extraction.

The purpose of this study was to develop a CAD system for the automatic classifica-
tion of histopathological images. To the best of our knowledge, image feature extraction
of histopathological images of lung tissue has not been performed using homology-based
image processing, and the performance of CAD has not been appraised when homology-
based image processing has been used. For the purpose of this study, private and public
datasets were used. In the proposed method, the histopathological images were automati-
cally classified using image features extracted based on the homology method and several
machine learning algorithms. For comparison with the proposed method, conventional
texture analysis was used for image feature extraction.

2. Materials and Methods

This retrospective study was approved by the institutional review board of our in-
stitution (permission number: B200033); the requirement for acquiring informed consent
was waived.

2.1. Private Dataset

In the private dataset, ninety-four histopathological images of lung tissue were ob-
tained from lung surgery specimens. They belonged to five categories of lung tissue
(normal, emphysema, atypical adenomatous hyperplasia (AAH), lepidic pattern of adeno-
carcinoma (LP), and invasive adenocarcinoma (AC)), consisting of 20 normal, 20 emphy-
sema, 23 AAH, 19 LP, and 12 AC images. The histopathological diagnosis of the 94 images
was confirmed by two board-certified pathologists (M.N. and N.J.). These histopathological
images were obtained by means of hematoxylin and eosin staining. The image resolu-
tion of the 94 images was 1600 × 1200 pixels with RGB channels at 100× magnification
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(the magnification of the objective lens being 10×). Figure 1A–E show representative
histopathological images of the five categories, respectively.
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Figure 1. Representative histopathological images of (A) normal, (B) emphysema, (C) AAH, (D) LP and (E) AC. The
magnification is 100× (the magnification of the objective lens being 10×). AAH, atypical adenomatous hyperplasia; LP,
lepidic pattern of adenocarcinoma; AC, invasive adenocarcinoma.

For developing and evaluating the CAD system, the 94 histopathological images of
the private dataset were randomly divided into a training set with 50 images, a validation
set with 20 images, and a testing set with 24 images. Because the number of images in the
private dataset was small, image patches were extracted from the images for each of the
three sets. Ten image patches with image resolution 1024 × 1024 pixels were randomly
extracted from one histopathological image. In addition, vertical and horizontal flipping
were randomly applied to the image patches as in data augmentation of deep learning [6].
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Finally, a training set with 500 image patches, a validation set with 200 image patches, and
a testing set with 240 image patches were used for the CAD system.

2.2. Public Dataset

The public dataset (LC25000) contains 25,000 color images with five classes of 5000 im-
ages each [18]. All images are 768 × 768 pixels in size. From LC25000, 15,000 histopatho-
logical images of three classes of lung tissue (lung adenocarcinoma, lung squamous cell
carcinoma, and benign lung tissue) were selected. Figure 2A–C show representative
histopathological images of the three categories, respectively.

Cancers 2021, 13, x  4 of 12 
 

 

private dataset was small, image patches were extracted from the images for each of the 

three sets. Ten image patches with image resolution 1024 × 1024 pixels were randomly 

extracted from one histopathological image. In addition, vertical and horizontal flipping 

were randomly applied to the image patches as in data augmentation of deep learning [6]. 

Finally, a training set with 500 image patches, a validation set with 200 image patches, and 

a testing set with 240 image patches were used for the CAD system. 

2.2. Public Dataset 

The public dataset (LC25000) contains 25,000 color images with five classes of 5000 

images each [18]. All images are 768 × 768 pixels in size. From LC25000, 15,000 histopatho-

logical images of three classes of lung tissue (lung adenocarcinoma, lung squamous cell 

carcinoma, and benign lung tissue) were selected. Figure 2A–C show representative his-

topathological images of the three categories, respectively. 

  

(A) Lung adenocarcinoma (B) Lung squamous cell carcinoma 

 

(C) Benign lung tissue 

Figure 2. Representative histopathological images of (A) lung adenocarcinoma, (B) lung squamous cell carcinoma and (C) 

benign lung tissue. 

As in the private dataset, the 15,000 histopathological images of LC25000 were di-

vided into a training set with 9000 images, a validation set with 3000 images, and a test 

set with 3000 images. The image patch extraction was not used for the public dataset. 

2.3. Outline of CAD System 

Figure 3 shows an outline of the CAD system for the private dataset. Except for the 

output, the same processing was performed for the public dataset. The RGB images were 

fed into the CAD system and then the image features were extracted. A machine learning 

Figure 2. Representative histopathological images of (A) lung adenocarcinoma, (B) lung squamous
cell carcinoma and (C) benign lung tissue.

As in the private dataset, the 15,000 histopathological images of LC25000 were divided
into a training set with 9000 images, a validation set with 3000 images, and a test set with
3000 images. The image patch extraction was not used for the public dataset.

2.3. Outline of CAD System

Figure 3 shows an outline of the CAD system for the private dataset. Except for
the output, the same processing was performed for the public dataset. The RGB images
were fed into the CAD system and then the image features were extracted. A machine
learning algorithm classified the image based on the extracted features. To train the
machine learning algorithm of the CAD system and optimize parameters of the CAD
system, image features of the training and validation sets were used, respectively. Finally,
image features of the testing set were used for assessing the performance of the CAD
system. The programming language used for the development of the CAD system was
Python (version 3.7, http://www.python.org/ (accessed on 13 November 2020)).

http://www.python.org/
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Figure 3. Outline of the CAD system in private dataset. Note: Except the output, the same processing
was performed for the public dataset. CAD, computer-aided diagnosis.

2.4. Image Feature Extraction

To perform homology-based image processing, Betti numbers (b0 and b1) were calcu-
lated for the histopathological images with RGB channels. Figure 4 shows an outline of
the Betti number calculation process for histopathological images. To calculate the Betti
numbers, a grayscale image converted from the RGB images was prepared. Because Betti
numbers are calculated using a binarized image in which each pixel can have two values
(0 and 1), the grayscale image was binarized before calculating the Betti numbers. For
binarization, thresholding was performed using predefined pixel values. The binarized
images obtained via thresholding were processed using our in-house homology software
to calculate the Betti numbers. The process of calculating the Betti numbers from binarized
images has been described elsewhere [13–17]. Briefly, in a two-dimensional binarized
image, b0 (the zero-dimensional Betti number) is the number of connected components in
the image, and b1 (the one-dimensional Betti number) is the number of one-dimensional or
“circular” holes in the image. For the predefined pixel value of thresholding, 0, 5, 10, . . . ,
245, 250, and 255 were used. For multiscale analysis, the image resolution was changed in
calculating the Betti numbers. In the private dataset, the image resolutions of 1024 × 1024,
512 × 512, 256 × 256, and 128 × 128 pixels were used for multiscale homology-based
image processing. In the public dataset, the image resolutions of 768 × 768, 384 × 384,
192 × 192, and 96 × 96 pixels were used. Image features of the Betti numbers at different
image resolutions were concatenated, based on our multiscale homology-based image
processing. A schematic illustration of the multiscale homology-based image processing is
shown in Figure 5.
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Figure 5. Schematic illustration of the multiscale homology-based image processing.

For the conventional method, image feature extraction was performed using texture
analysis via PyRadiomics (version 3.0, https://pyradiomics.readthedocs.io/en/latest/
(accessed on 14 November 2020)) [19]. Texture analysis was performed on a grayscale
image converted from the original RGB image. The target of texture analysis was the entire
image. The image feature names of the texture analysis are listed in the Supplementary
Materials (Table S1). Briefly, 18, 23, 16, 16, 14, and 5 image features were calculated for
First Order, Gray Level Co-occurrence Matrix, Gray Level Run Length Matrix, Gray Level

https://pyradiomics.readthedocs.io/en/latest/
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Size Zone Matrix, Gray Level Dependence Matrix, and Neighboring Gray Tone Difference
Matrix, respectively. The multiscale analysis was also performed for texture analysis.

2.5. Preprocessing of Image Features and Machine Learning

In the current study, scikit-learn (version 0.23.2, https://scikit-learn.org/stable/
(accessed on 14 November 2020)) was used for both preprocessing of the image fea-
tures and the machine learning algorithms [20]. After the image feature extraction,
preprocessing of the image features was performed. For the preprocessing, the stan-
dardization of image features and feature selection were utilized. The mean and stan-
dard deviation of each feature was used for the standardization of image features us-
ing the sklearn.preprocessing.StandardScaler class. After the standardization, the fea-
ture selection was performed using the sklearn.feature_selection.SelectKBest class and
sklearn.feature_selection.f_classif function, where the number of selected features was set
to 20% of the original image features. Both the feature standardization and the feature
selection were optional. The image features with or without the preprocessing were fed
into the machine learning algorithms. The machine learning algorithms included (0) per-
ceptron, (1) logistic regression, (2) kNN, (3) support vector machine with linear kernel,
(4) support vector machine with radial basis function kernel, (5) decision tree, (6) random
forest, and (7) gradient tree boosting. For gradient tree boosting, xgboost (version 1.2.0,
https://xgboost.readthedocs.io/en/latest/ (accessed on 14 November 2020)) was used [21].
These machine learning algorithms were trained with the image features of training set and
their default hyperparameters provided by the implementation of scikit-learn and xgboost.

2.6. Performance Evaluation

Performance evaluation was performed using the multicategory classification accu-
racy obtained in the testing set. For determining the optimal CAD, the validation accuracy
was calculated for all possible combinations of normalization, feature selection, image reso-
lution, and machine learning algorithms. For both homology-based image processing and
texture analysis, single-scale and multiscale analyses were performed. All combinations of
image resolutions (1024 × 1024, 512 × 512, 256 × 256, and 128 × 128 pixels for the private
dataset, and 768 × 768, 384 × 384, 192 × 192, and 96 × 96 pixels for the public dataset)
were used for multiscale analysis.

3. Results

Tables 1–4 and Tables S2–S5 show prediction results of the CAD systems for the
private and public datasets. In each entry of Tables S2–S5, the most accurate result and
its corresponding algorithm were selected among the eight machine learning algorithms.
In the optimal machine learning algorithm of Tables 1–4 and Tables S2–S5, 0–7 represents
perceptron, logistic regression, kNN, support vector machine with linear kernel, support
vector machine with radial basis function kernel, decision tree, random forest, and gradient
tree boosting, respectively. 0 and 1 in the normalization and feature selection of these tables
represent “without preprocessing” and “with preprocessing”, respectively.

Table 1. Validation and testing five-category accuracies of the optimal CAD with homology-based
image processing in the private dataset. Note: The optimal CAD was selected based on the validation
accuracies of Table S2.

Normalization Feature
Selection

Image
Resolutions

(Pixels)

Validation
Accuracy

Testing
Accuracy

Optimal Machine
Learning Algorithm

0 1 256 × 256 0.9000 0.7833 6

https://scikit-learn.org/stable/
https://xgboost.readthedocs.io/en/latest/
https://xgboost.readthedocs.io/en/latest/
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Table 2. Validation and testing five-category accuracies of the optimal CAD with texture analysis
in the private dataset. Note: The optimal CAD was selected based on the validation accuracies of
Table S3.

Normalization Feature
Selection

Image
Resolutions

(Pixels)

Validation
Accuracy

Testing
Accuracy

Optimal Machine
Learning Algorithm

0 1 1024 × 1024 0.8650 0.7083 1

Table 3. Validation and testing three-category accuracies of the optimal CAD with texture analysis in the public dataset.
Note: The optimal CAD was selected based on the validation accuracies of Table S4.

Normalization Feature
Selection Image Resolutions (Pixels) Validation

Accuracy
Testing

Accuracy
Optimal Machine

Learning Algorithm

1 0 1024 × 1024 512 × 512 256 × 256 0.9927 0.9940 2
0 0 512 × 512 256 × 256 128 × 128 0.9927 0.9923 7
0 0 1024 × 1024 512 × 512 0.9927 0.9920 7
0 0 1024 × 1024 512 × 512 256 × 256 128 × 128 0.9927 0.9943 7
1 0 512 × 512 256 × 256 128 × 128 0.9927 0.9923 7
1 0 1024 × 1024 512 × 512 0.9927 0.9920 7
1 0 1024 × 1024 512 × 512 256 × 256 128 × 128 0.9927 0.9943 7

Table 4. Validation and testing three-category accuracies of the optimal CAD with texture analysis in the public dataset.
Note: The optimal CAD was selected based on the validation accuracies of Table S5.

Normalization Feature
Selection Image Resolutions (Pixels) Validation

Accuracy
Testing

Accuracy
Optimal Machine

Learning Algorithm

0 0 1024 × 1024 512 × 512 256× 256 128 × 128 0.9923 0.9933 7
1 0 1024 × 1024 512 × 512 256× 256 128 × 128 0.9923 0.9933 7

Tables S2 and S3 show validation accuracies of the CAD systems with homology-based
image processing and texture analysis for all possible combinations in the private dataset,
respectively. Tables 1 and 2 show the validation and testing accuracies of the optimal CAD
systems with homology-based image processing and texture analysis selected from Tables
S2 and S3, respectively. According to Tables 1 and 2, the testing accuracy of the optimal CAD
with the homology-based image processing (78.33%) was better than that with the texture
analysis (70.83%). Random forest and logistic regression were used in Tables 1 and 2,
respectively. Because single-scale analysis was used in the entries of Tables 1 and 2, the
usefulness of multiscale analysis was limited for the private dataset.

Tables S4 and S5 show validation accuracies of the CAD systems with homology-
based image processing and texture analysis for all possible combinations in the public
dataset, respectively. Tables 3 and 4 show validation and testing accuracies of the optimal
CAD systems with homology-based image processing and texture analysis selected from
Tables S4 and S5, respectively. According to Tables 3 and 4, the best testing accuracy of the
optimal CAD with the homology-based image processing (99.43%) was better than that with
the texture analysis (99.33%). Gradient tree boosting was frequently used in Tables 3 and 4.
Because no entry of single-scale analysis was found in Tables 3 and 4, multiscale analysis
was useful in the public dataset.

Figures 6 and 7 show the confusion matrices between the ground truth and pre-
diction, which were obtained with the optimal CAD systems for the private and public
datasets, respectively.
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4. Discussion

The results of this study indicate that it is possible to construct an accurate CAD
system by using homology-based image processing for the multicategory classification
of lung tissue (normal, emphysema, AAH, LP, and AC in the private dataset, and lung
adenocarcinoma, lung squamous cell carcinoma, and benign lung tissue in the public
dataset). Our results show that the accuracy of the multicategory classification with
homology-based image processing was better than that with texture analysis in the private
and public datasets.

Classification of AAH, LP, and AC is important because it affects patient prognosis
and survival [22]. For instance, the identification of pure LP has been shown to have
excellent prognoses for patients with stage I lung cancer [23]. However, accurate classifica-
tion of such patterns can be challenging [24]. Because the classification accompanies the
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subjective nature of pathologists, interobserver variability of the pathologists’ diagnosis
can be problematic. Our CAD system might be helpful in solving this problem.

To our knowledge, few studies have used machine learning or deep learning to predict
the histological subtype classification of lung tissue [3]. One study performed a six-category
classification of histologic patterns in lung adenocarcinoma and benign tissue (lepidic,
acinar, papillary, micropapillary, solid, and benign) [25]. Another study performed the
five-category classification (solid, micropapillary, acinar, cribriform, and nontumor) in lung
adenocarcinoma and nontumor tissue [26]. Compared with these two studies, our novelty
is that our CAD system distinguished AAH from the other four categories. In addition,
while these two studies used deep learning, our study used machine learning.

To evaluate the efficacy of homology-based image processing in the large dataset, the
public dataset obtained from LC25000 was used in this study. The results for the public
dataset show that homology-based image processing was more useful than conventional
texture analysis in the classification between lung adenocarcinoma, lung squamous cell
carcinoma, and benign lung tissue.

In this study, it was assumed that homology-based image processing was useful for
evaluating tumor heterogeneity in the CAD system of lung cancer. Because our results
show that CAD with homology-based image processing was more accurate than that with
texture analysis, our assumption was validated. One major advantage of homology-based
image processing over texture analysis is topological invariance [14]. Because of this
property, Betti numbers are not changed by continuous transformation. It is speculated
that in the CAD system with homology-based image processing, topological invariance
makes image features more robust, compared with texture analysis.

The multiscale analysis improved the accuracy of both homology-based image pro-
cessing and texture analysis for the public dataset. It is speculated that because the image
resolution is essential information for image classification, multiscale analysis was useful
for the two methods of image feature extraction. On the other hand, the usefulness of mul-
tiscale analysis was not clear for the private dataset. This might be caused by an imbalance
between dataset size and number of image features in the multiscale analysis. Further
study is needed to establish the usefulness of the multiscale analysis in homology-based
image processing.

According to Figure 6, classification between AAH and LP was difficult in our optimal
CAD system. One major reason for this result is the size of the private dataset. Generally,
machine learning and deep learning yield relatively poor performance for small datasets.
Although we used patch-level accuracy for mitigating the effect of the small dataset, we
could not avoid deterioration in the classification between AAH and LP. To overcome this
problem, a larger dataset should be used.

Our study has several limitations. First, the private dataset was small. For miti-
gating the effect of the small dataset, patch-level accuracy was evaluated in the private
dataset. In addition, a public dataset was also used in this study. Second, no external
validation was performed. Overfitting of our CAD system may have occurred in the
external validation. For future studies, we need to investigate the effectiveness of our CAD
systems using datasets obtained from other affiliations. Third, the subtype classification
of adenocarcinoma was not fully investigated. Of adenocarcinoma, minimally invasive
adenocarcinoma and adenocarcinoma in situ [22] were not considered for the private
dataset. Classification between AAH, minimally invasive adenocarcinoma, adenocarci-
noma in situ, and invasive adenocarcinoma should be performed in future development of
our CAD system. Fourth, classification of adenocarcinoma between lepidic predominant,
acinar predominant, papillary predominant, micropapillary predominant, etc. was not
performed. This classification should be investigated in future study. Fifth, we did not
compare our CAD system with that with deep learning. Because the private dataset was
small, it was speculated that the performance of the CAD system with deep learning might
be low in the private dataset. Therefore, we did not use deep learning in this study. Sixth,
although several studies investigated CAD systems for the prognosis, survival, and genetic
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features of lung cancers [27–29], we did not predict them in the current study. Because
the classification between LP and AC is directly related to prognosis and survival of lung
cancer [23], we believe that our CAD system is useful for evaluating the prognosis and
survival of lung cancer.

5. Conclusions

It was possible to build an accurate CAD system for the automatic classification of
lung tissue. Homology-based image processing was more useful for CAD systems than
conventional texture analysis.
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