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This Special Issue containing seminal contributions from international experts high-
lights the current understanding of Rho GTPases in cancer, with an emphasis on recognizing
their central importance as critical targets for cancer therapy and for chemosensitization of
current therapeutic strategies. A comprehensive review by Jung et al. [1] gives an overview
of the dysregulated Rho GTPases in multiple cancers, discoursing on their modes of regu-
lation and potential targeted therapeutic strategies. Dr. Nandini Dey’s group discusses the
pivotal role of Rac1 in solid tumors, which contributes to therapy resistance [2]. This review
describes not only the mechanisms by which Rac1 regulates the actin cytoskeleton and
thus motile mechanisms leading to metastasis and epithelial to mesenchymal transition
(EMT) but also their function in pro-proliferative and pro-survival signaling, which directly
contributes to tumor growth. Rac1 is also featured in a review by Drs. Kotelevets and
Chastre [3], which outlines how Rac1 acts as a critical regulator of intestinal differentiation,
leading to metastatic colorectal cancer. This review focuses on a range of Rac1 signaling
pathways that are specifically dysregulated, outlining their contribution at each step of
colorectal cancer progression.

New regulatory mechanisms for Rho GTPases are presented in a review by
Humphries et al. [4], who describe microRNAs as novel targets for Rho GTPase regu-
latory proteins in cancer. A unique paradigm for Rho GTPases is also espoused by
Streit et al. [5], who describe how neuroendocrine secretion is regulated by Rho GTPases
during vesicle trafficking.

Novel directions for Rho GTPase guanine nucleotide exchange factors (GEFs) are also
highlighted in a number of peer-reviewed research articles. Using in silico analyses and
in vitro experimental studies in keratinocytes, Lorenzo-Martin et al. [6] implicate the Rho
GEF Vav2 in stem-cell-like gene expression in head and neck cancer and associate Vav2
expression with poor patient prognosis. Baker et al. [7], in an intriguing article, show that
the Rac.GEF p-REX1 actually does not contribute to Rac1 activation in prostate cancer, as
previously thought. Using established androgen-insensitive prostate cancer cell lines, the
authors demonstrate that Rac.GTP activation is dependent on a novel mechanism that is
sensitive to elevated calcium levels.

Two articles by Dr. Hendrick Ungefroren’s group contribute to the role of the constitu-
tively active Rac1B splice variant in transforming growth factor (TGFβ) signaling [8,9]. The
authors elucidate the mechanisms by which Rac1B acts to inhibit TGFβ-1-dependent cell
migration. In one paper, they show that Rac1B from poorly differentiated mesenchymal
cancer cell lines regulates SMAD7, which is an inhibitory SMAD in TGFβ signaling, thus
suppressing TGFβ-induced cell migration. This decrease in TGFβ-induced migration and
growth is further dissected in a second article, where the authors connect Rac1B regulation
of proteinase-activated receptor-2 (PAR-2) to the downregulation of the TGFβ receptor
ALK5 in contributing to the suppression of TGFβ signaling in Panc1 pancreatic cancer cells.

Finally, Dyberg et al. implicate the downstream effector of Rho, Rho kinase (ROCK), in
EMT and medulloblastoma growth by demonstrating that ROCK mRNA is preferentially
expressed in metastatic tumors [10]. They used the ROCK inhibitor RKI-1447 to show the
utility of targeting ROCKs in neuronal cancers.
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In summary, herein, you will find timely articles on the ubiquitous role of Rho GTPases
in cancer and how understanding their mechanisms of action can lead to the design and
development of targeted therapeutic strategies.
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