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Simple Summary: Prostatic diseases are important worldwide, being the prostate cancer (PC) the
most common tumor in men. Among the factors associated with PC development, the preneoplastic
lesions are well-recognized. Preneoplastic lesions are cellular morphological alterations, induced
by different factors and present a potential to progression for PC. In this scenario, dogs are con-
sidered spontaneous models. Dogs naturally develops prostatic hyperplasia, preneoplastic lesions
and PC. Among the preneoplastic lesions, the proliferative inflammatory atrophy (PIA) develops
spontaneously in dogs. PIA is an epithelial lesion induced by prostatic chronic inflammation, lead-
ing to a proliferative atrophy of the prostate gland. Thus, this study aimed to perform a full PIA
morphological, phenotypical and molecular characterization in dogs. After reviewing the archives
of the veterinary pathology service, it was identified 171 dogs containing PIA in the prostate gland,
and among the PC cases (N = 84), it was identified PIA lesions surrounding 60.7% of PC cases.
Besides that, we identified loss of genes related to the maintenance of prostatic tissue and can predis-
pose to malignant transformation. Moreover, mutations in androgen receptor gene were identified,
demonstration alteration in DNA in PIA. Overall, these results support the hypothesis that PIA can
be considered a preneoplastic lesion in canine prostate.

Abstract: Proliferative inflammatory atrophy (PIA) is an atrophic lesion of the prostate gland that
occurs in men and dogs and is associated with a chronic inflammatory infiltrate. In this study, we ret-
rospectively reviewed canine prostatic samples from intact dogs, identifying 50 normal prostates,
140 cases of prostatic hyperplasia, 171 cases of PIA, 84 with prostate cancer (PC), 14 with prostatic
intraepithelial neoplasia (PIN) and 10 with bacterial prostatitis. PIA samples were then selected and
classified according to the human classification. The presence of PIA lesions surrounding neoplastic
areas was then evaluated to establish a morphological transition from normal to preneoplastic and
neoplastic tissue. In addition, the expression of PTEN, P53, MDM2 and nuclear androgen receptor
(AR) were analyzed in 20 normal samples and 20 PIA lesions by immunohistochemistry and qPCR.
All PIA lesions showed variable degrees of mononuclear cell infiltration around the glands and
simple atrophy was the most common histopathological feature. PIA was identified between normal
glands and PC in 51 (61%) out of the 84 PC samples. PIA lesions were diffusely positive for molecular
weight cytokeratin (HMWC). Decreased PTEN and AR gene and protein expression was found in
PIA compared to normal samples. Overall, our results strongly suggest that PIA is a frequent lesion
associated with PC. Additionally, this finding corroborates the hypothesis that in dogs, as is the case
in humans, PIA is a pre neoplastic lesion that has the potential to progress into PC, indicating an
alternative mechanism of prostate cancer development in dogs.
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1. Introduction

The contribution of inflammation to prostate carcinogenesis is well-known [1,2],
occurring through a combination of repeated damage to the genome and increased cell
proliferation [3]. The inflammatory process in the prostate gland is associated with a
morphologically atrophic epithelium, characterized by a high proliferative index and
decreased expression of apoptotic markers [1,3]. De Marzo et al. [4] proposed the term
proliferative inflammatory atrophy (PIA) to designate the discrete focus of glandular
epithelial proliferation with the morphological appearance of simple atrophy, surrounded
by variable degrees of inflammation.

In men, PIA occurs in the peripheral zone of the prostate gland, where prostate cancer
(PC) is also more commonly observed [4]. A mononuclear inflammatory infiltrate is fre-
quently associated with PIA lesions [4–6] and these inflammatory cells secrete proteases,
as well as mitogenic, antiapoptotic and angiogenic factors in the prostatic microenviron-
ment [7], which ultimately induce epithelial cell atrophy, followed by cell proliferation [5,8].
PIA can occur adjacent to high-grade prostatic intraepithelial neoplasia (HGPIN) and
prostate cancer (PC), with some studies highlighting the preneoplastic significance of PIA
in human PC development [9,10]. The most accepted theory suggests a progression from
PIA to HGPIN and subsequently PC [10,11]. De Marzo et al. [4] previously character-
ized the morphology and immunophenotype of PIA, describing 34% of focal atrophic
lesions surrounding high-grade intraepithelial neoplasia (PIN), and thus, hypothesizing
a morphological progression from PIA to HGPIN. PIA has been described in the canine
prostate [12–16], although only from a morphological perspective, without analyzing its
preneoplastic potential.

Chromosomal abnormalities were previously described in canine PIA lesions. Copy
number gain was detected in CRYGS, ADIPOQ, SST genes and copy number losses were
identified in CD38, ZNF518B, WDR1, SLC2A9 genes [16]. These results demonstrated the
occurrence of chromosomal instability in canine PIA lesions and represent the first evidence
of their premalignant potential. Loss of E-cadherin expression has also been reported in
canine PIA [15]. Normally dividing prostatic epithelial cells can lose E-cadherin during
cell division and re-express the same protein after the replication is completed [17]. Thus,
all these previous studies suggest the occurrence of several genomic and protein alterations
in canine PIA, that favors its potential preneoplastic lesion.

This study aimed to evaluate the immunophenotype of PIA lesions in dogs, establish
a topographic relationship between normal, PIA and PC lesions, as well as to analyze TP53,
MDM2, nuclear androgen receptor (AR) and PTEN protein and gene expression in PIA
lesions, compared to normal prostates, in order to better characterize its preneoplastic
potential in dogs.

2. Results
2.1. Animal Demographic Data

Prostate samples were collected from adult intact dogs of different ages and breeds.
The group of dogs with normal prostate consisted of animals with a median age of 6 years
(4–8 years), overrepresented by mixed breed dogs (30/50). Dogs with prostatic hyperplasia
(PH) had a median age of 9 years (6–12 years) and this group was also overrepresented
by mixed breed dogs (87/140). Among the pure breeds, the American pit bull terrier
(15/140) was the most affected. The median age of dogs diagnosed with PIA was 9 years
(7–14 years), with mixed breed dogs being the most affected (95/171). PC-affected dogs
had a median age of 11 years (9–16 years) with the highest prevalence in mixed breed
dogs (21/84). The median age of dogs with PIN and bacterial prostatitis was 9 (7–10) and
7 (5–8) years, respectively.
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2.2. Morphology and Immunophenotype of PIA

All PIA lesions (N = 171) were surrounded by mononuclear cells, and specifically,
by a low inflammatory infiltrate (Figure 1A) in 35.5% of samples (61/171), moderate
inflammation in 42.1% of samples (72/171) (Figure 1B) and severe inflammatory infiltrate
in 22.4% (38/171) (Figure 1C). Simple atrophy was the most common histopathological
feature, observed in 73% of all cases (125/171). A mixed pattern was prevalent in 17.5% of
cases (30/171) and post atrophic hyperplasia (PAH) in 9.5% (16/171).
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and evident nucleolus. (D): Nuclear p63 expression in a normal prostate gland. There is a discontinuous basal cell layer. 
(E): High molecular wight cytokeratin expression by normal basal cells (arrows). (F): Nuclear Ki67 expression by normal 
basal cells (arrows). There is an absence of Ki67 in luminal epithelial cells and only scatted basal cells express Ki67. (G): 
Diffuse P63 expression by atrophic cells in a PIA. (H): Diffuse membranous expression of high molecular weight 
cytokeratin in a PIA. (I): Nuclear positive Ki67 expression by atrophic cells in a PIA lesion. Scale bar = 50 μm. 

In normal prostatic tissue, high molecular weight cytokeratin (HMWC) (Figure 1D) 
and P63 (Figure 1E) were expressed by basal cells, showing a discontinuous layer (100%—
20/20). Interestingly, PIA lesions showed a continuous basal cell layer that was positive 
for P63 (Figure 1D) and HMWC (Figure 1E); with a score of four for both markers. The 

Figure 1. Hematoxylin and eosin (H&E) staining and immunohistochemistry of canine prostate with proliferative inflam-
matory atrophy (PIA). (A): Discrete mononuclear inflammatory infiltrate admixed with multifocal atrophic glands with at
least two layers of epithelial cells. (B): Moderate mononuclear inflammatory infiltrate and areas of prostatic gland atrophy
with cells showing hyperchromatic nuclei and at least two layers of epithelial cells. (C): Severe mononuclear inflammatory
infiltrate with atrophic epithelial cells showing at least two layers of epithelial cells, hyperchromatic nuclei and evident
nucleolus. (D): Nuclear p63 expression in a normal prostate gland. There is a discontinuous basal cell layer. (E): High
molecular wight cytokeratin expression by normal basal cells (arrows). (F): Nuclear Ki67 expression by normal basal cells
(arrows). There is an absence of Ki67 in luminal epithelial cells and only scatted basal cells express Ki67. (G): Diffuse P63
expression by atrophic cells in a PIA. (H): Diffuse membranous expression of high molecular weight cytokeratin in a PIA.
(I): Nuclear positive Ki67 expression by atrophic cells in a PIA lesion. Scale bar = 50 µm.

In normal prostatic tissue, high molecular weight cytokeratin (HMWC) (Figure 1D) and
P63 (Figure 1E) were expressed by basal cells, showing a discontinuous layer (100%—20/20).
Interestingly, PIA lesions showed a continuous basal cell layer that was positive for P63
(Figure 1D) and HMWC (Figure 1E); with a score of four for both markers. The normal
prostatic tissue had no Ki-67 expression in the epithelial luminal cells; only a few basal cells
were Ki-67 positive (Figure 1F). The normal prostatic tissue had a mean of 2.2 ± 1.5 Ki-67
positive cells, while PIA lesions (Figure 1I) showed a mean of 45.1 ± 31.8 Ki-67 luminal
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and basal positive cells with a statistically significant difference between the two groups
(p < 0.0001) Figure 2.
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Figure 2. Ki67 protein expression in normal and proliferative inflammatory atrophy (PIA) samples.
A high Ki67 index was observed in PIA compared to normal samples, indicating a high proliferative
rate in PIA (p < 0.0001).

All samples with PIN (14/14) contained adjacent PIA lesions. No PIN foci were
observed adjacent to PC lesions. A total of 61% (51/84) of the PC samples had PIA lesions
close to the neoplastic areas and an evident histological transition from normal tissue
(normal or hyperplastic) to PIA and PC was observed in 21.5% (11/51) of the PC samples
(Figure 3).
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thelial cells. (G–I): High power field of surrounding PIA (areas outlined by the plotted areas in figures (A–C)). Character-
istic simple atrophy with one epithelial layer and hyperchromatic nuclei. (J–L): High power field of a carcinoma area. (J): 
Neoplastic cells disposed in nests and moderate pleomorphism. (K): Cells present a pseudopapillary shape with presence 
of degeneration. (L): Ballooning neoplastic cells showing degeneration associated intense surrounding inflammation. HPF: 
High power field. 
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The p53 score was four in nine out of 20 (45%) normal prostatic tissues and three in the 
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a score of three in 40% (8/20) and a score of two in 20% (4/20) (Figure 4B). There was no 
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was only observed in the nuclei and cytoplasm of luminal cells Figure 4C. All normal 
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score of four, 25% (5/20) had a score of three, 25% (5/20) had a score of two and 40% (8/20) 

Figure 3. Hematoxylin and eosin (H&E) staining from three different canine prostate carcinomas (PC). (A–C): Low power
field containing a carcinoma area surrounded by PIA and a normal adjacent area. A clear morphological transition between
normal, proliferative inflammatory atrophy (PIA) and PC areas is evident. (D–F): High power field (inset of figures (A–C),
respectively) of adjacent normal tissue. Note the prostatic gland epithelium consisting of columnar and basal epithelial cells.
(G–I): High power field of surrounding PIA (areas outlined by the plotted areas in figures (A–C)). Characteristic simple
atrophy with one epithelial layer and hyperchromatic nuclei. (J–L): High power field of a carcinoma area. (J): Neoplastic cells
disposed in nests and moderate pleomorphism. (K): Cells present a pseudopapillary shape with presence of degeneration.
(L): Ballooning neoplastic cells showing degeneration associated intense surrounding inflammation. HPF: High power field.

2.3. Immunohistochemical Features

The immunohistochemical results are presented in Table 1. Both basal and luminal
cells were p53 positive, with a nuclear and cytoplasmic expression pattern (Figure 4A).
The p53 score was four in nine out of 20 (45%) normal prostatic tissues and three in the
remaining cases (11/20). PIA samples were assigned a score of four in 40% of cases (8/20),
a score of three in 40% (8/20) and a score of two in 20% (4/20) (Figure 4B). There was no
statistical difference in P53 scores between normal and PIA samples. PTEN expression was
only observed in the nuclei and cytoplasm of luminal cells Figure 4C. All normal samples
showed more than 75% of positive cells (score of four). Two PIA samples had a score of
four, 25% (5/20) had a score of three, 25% (5/20) had a score of two and 40% (8/20) had
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a score of one (Figure 4D). We identified decreased staining in PIA samples compared to
normal samples (p = 0.003). MDM2 was expressed in the nuclei of luminal and basal cells
(Figure 4E) of one normal sample (5%) with a score of four, 30% (6/20) of samples with a
score of three and 65% (13/20) with a score of two. Fifteen percent (3/20) of PIA samples
showed a score of four, 30% (6/20) showed a score of three and 55% (11/20) showed a
score of two (Figure 4F). There was no statistical difference in MDM2 expression between
normal and PIA samples.

Table 1. PTEN, P53, MDM2 and AR immunohistochemical expression in canine normal prostate and PIA samples.

Score

Group 1 2 3 4 p

PTEN
Normal 0% (0/20) 0% (0/20) 0% (0/20) 100% (20/20) p = 0.003

PIA 40% (8/20) 25% (5/20) 25% (5/20) 10% (2/20)

P53
Normal 0% (0/20) 0% (0/20) 55% (11/20) 45% (9/20) p = 0.3568

PIA 0% (0/20) 20% (4/20) 40% (8/20) 40% (8/20)

MDM2
Normal 0% (0/20) 65% (13/20) 30% (6/20) 5% (1/20) p = 0.5784

PIA 0% (0/20) 55% (11/20) 30% (6/20) 15% (3/20)

AR
Normal 0% (0/20) 0% (0/20) 0% (0/20) 100% (20/20) p = 0.01

PIA 0% (0/20) 45% (9/20) 55% (11/20) 0% (0/20)

Legend: Score 1 = 11–25% positive cells; score 2 = 26–50% positive cells; score 3 = 51–75% positive cells; score 4 = more than 75% positive cells.

AR was positive in luminal cells and occasionally in basal cells (Figure 4G). All normal
prostate samples (20/20) showed more than 75% AR-positive cells. The expression pattern
was significantly decreased in PIA samples compared to normal samples (p = 0.01). Fifty-
five percent (11/20) of PIA samples showed a score of three and 45% (9/20) had a score of
two (Figure 4H).

2.4. Gene Expression

There was no difference in TP53 and MDM2 transcript levels between normal and
PIA samples (p > 0.05). A positive correlation between TP53 and MDM2 transcript levels
in normal (R = 0.7754; p < 0.0001) and PIA (R = 0.6573; p = 0.0202) samples was observed,
suggesting that in both cases the increased TP53 transcript level is correlated with a
simultaneous increased expression of MDM2 (Supplementary Figure S1). No statistical
correlations were observed between the remaining comparisons.

PTEN (P = 0.0307) and AR (P = 0.0008) expression was decreased in PIA compared
to normal samples (Figure 5). The median relative quantification (RQ) of AR in normal
samples was 1.8 (0.3–9), while in PIA samples it was 0.7± 0.1–1.6. The median PTEN RQ
was 1.4 ± 0.3–6.7 and 0.7 ± 0.2–3 in normal and PIA samples, respectively.
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Figure 4. Immunohistochemical staining of the normal canine prostate and canine proliferative inflammatory atrophy (PIA).
(A): PTEN expression in a canine normal sample: nuclear and cytoplasmic positive staining of luminal epithelial cells. (B): PTEN
expression in proliferative inflammatory (PIA) samples: atrophic prostatic luminal cells with a lack of PTEN expression.
(C): Nuclear and cytoplasmic P53 expression in a normal canine prostatic sample and (D): PIA lesions. (E,F): Positive cytoplasmic
and nuclear MDM2 expression in normal (E) and PIA (F) samples. (G,H): nuclear androgen receptor (AR) expression in a normal
prostatic sample and lack of expression in PIA samples (H). Counterstaining with Harris hematoxylin, DAB, 20×.
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Figure 5. Evaluation of PTEN, TP53, MDM2 and AR gene expression in normal compared to proliferative inflammatory
atrophy (PIA) samples. (A) Decreased PTEN expression was observed in PIA samples compared to normal samples (A).
TP53 (B) and MDM2 (C) transcripts showed no statistically significant differences. AR expression decreased in PIA samples
compared to normal samples (D).

2.5. Matrix of Multiple Correlation

Using a matrix of multiple correlation among PTEN, P53, MDM2 and AR genes and
proteins, a positive strong correlation was demonstrated between PTEN and MDM2 gene
expression (Spearman r = 0.6) and between AR and MDM2 gene expression. The matrix
of multiple correlation did not show a positive correlation with the respective gene and
protein expression (Figure 6).
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Figure 6. Matrix of multiple correlation among PTEN, TP53, MDM2 and AR gene and protein
expression. The red color represents negative correlation and the blue color represents a positive
correlation. The color intensity is associated with a strongest correlation. The blue color represents a
positive correlation and the red color represents a negative correlation.

2.6. AR Sequencing

All samples were amplified in PCR analysis in the electrophoresis. However, af-
ter sequencing, eight out of 20 samples showed a very low sequencing quality and were
excluded from the alignment analysis. In the PIA samples aligned in the investigation of
AR mutations (N = 12), six out of 12 samples (50%) showed mutations, with one sample
showing several nucleotide alterations (Figure 7).
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Figure 7. Androgen receptor (AR) sequencing analysis of the 12 proliferative inflammatory atrophy (PIA) samples after
alignment. Each figure (A–C) represents different regions of the AR gene alignment. There are six samples containing
mutations, with PIA 6 representing the samples with a higher number of nucleotide modification. (A,B): sequencing
alignment showing mutations in PIA6, PIA9 and PIA 11 samples. C: Sequencing alignment evidencing mutation in the
samples PIA3, PIA4, PIA5, PIA6, PIA9, PIA11.

3. Discussion

In human PC, the progression of PIA to high grade-PIN (HGPIN) and PC cancer
has been described over recent years, due the role of chronic inflammation in cancer
development [1–6]. In dogs, little is known in regard to the carcinogenic process and
the progression of preneoplastic lesions to PC. It seems that canine PC develops from
androgen-independent cells and most cases of canine PC have been found to be negative
for AR [16]. Thus, alterations to the AR receptor are considered to be one of the most
important steps in PC development. The previously published literature has focused on
studying PIA as a preneoplastic lesion and has shown copy number variations, indicating
molecular instability [16]. Although an increased number of studies have been published
in recent years, the carcinogenic process of canine PC development is still unclear.

Based on this gap in the literature, our results suggest that PIA is a very common
histological lesion in the prostates of intact dogs, with a prevalence of 36.5% in our dataset.
On the other side, PIN was present in only 3% of selected cases (14/469). The real incidence
of PIN lesions in the canine prostate is controversial. Waters and Bostwick [18,19] reported
an incidence of 55–65%, while in two larger studies conducted by Aquilina et al. [20]
and Madewell et al. [21], the incidence was low (less than 3%) without any histological
association between PIN and PC [20,21]. Thus, PIN lesions have been most likely overesti-
mated or not correctly diagnosed on histological sections and their role in canine prostatic
carcinogenesis is still unknown.

The studied population was based on intact dogs, because in Brazil, castration of
male dogs is not routinely performed due to cultural factors. Interestingly, we did not see
the frequent occurrence of prostate cancer in castrated dogs. This is important in studies
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evaluating PIA, because castrated dogs show atrophy of the prostate during hormone
deprivation and present hormonal atrophy instead of an inflammatory atypical atrophy.

PIA is a common finding in the canine prostate, although its pathogenesis, mechanisms
of occurrence and role on prostatic carcinogenesis are unclear. PIA lesions surrounded
canine PC areas in 61% of carcinoma samples and, in 21.5% of these cases, the morpho-
logical transition between benign tissue, PIA lesions and invasive prostate cancer was
evident. Taking into account previously published articles assessing the molecular basis of
canine PIA, in addition to the findings from the present study, this result may suggest a
potential association between PIA and PC. The morphological transition term was previ-
ously introduced by Wang et al. [22] to associate PIA as a preneoplastic lesion in human
prostatic pathology. Morphological transition refers to normal, followed by PIA areas
colliding to prostatic carcinoma in histological specimens. In our samples, PIA lesions
were characterized by a higher proliferative index (shown by Ki67) compared to normal
prostates, underlining their high proliferative potential. Previously, our research group
investigated the proliferative index of 12 PIA and 18 PC samples, demonstrating a median
Ki67 expression level of 54.5 and 366, respectively [23]. Ki67 expression is higher in PIA
and PC compared to normal samples. In the carcinogenic process of the human prostate,
a dynamic progression from low-PIN, to HGPIN, and finally PC is widely accepted [5,24].
De Marzo et al. [4] then identified PIA lesions as a new precursor of HGPIN. Thus, the car-
cinogenic process of human and canine prostates might occur through different, a yet
unexplored, mechanisms.

Canine PC is characterized by a heterogeneous pattern of cytokeratin expression, as at-
tested by the consensus reached on the intermediate phenotype (luminal markers+ /basal
markers+) of canine PC [12,13,25–27]. As evidenced in this study, intermediate cells are also
found in greater quantities in PIA lesions, similar to the prevalent cell population of PIA in
humans. It is likely that, even in dogs, PIA lesions arise from the proliferation of basal cells
stimulated by the inflammatory environment. During normal prostate development and
differentiation, basal cells proliferate, reducing the expression of basal cells markers (CK5,
HMWC and P63) and overexpressing luminal markers (CK18), until they completely lack
the basal cell markers and express luminal markers only [28]. Due to the high proliferative
index of PIA lesions, demonstrated by the expression of Ki67, it is most likely that cells are
constantly stimulated to divide without further developing into luminal cells. Interestingly,
many canine PCs show an intermediate phenotype (concomitant expression of P63 or CK5
or CK8/18) [13,27,29]. Thus, the same cell phenotype may be involved in the development
of both PIA and PC in dogs and both lesions may have a common origin in most—but
not all—cases.

PTEN, P53, MDM2 and AR dysregulation in human prostate cancer has been widely
described [30–32]. PTEN and P53 downregulation plays an important role in cell growth
and apoptosis [33]. Furthermore, TP53 and MDM2 genes play a dual role during cell
proliferation: MDM2 is an oncogene associated with the proliferation of prostatic cells and
TP53 acts as an MDM2 inhibitor [30]. During PC progression, tumor cells become androgen-
independent and the AR inhibition of human prostate cells promotes cell migration and
invasiveness [34].

P53 and MDM2 protein expression were similar in normal prostates and PIA, although
a positive correlation between TP53 and MDM2 transcript levels in both cases was observed,
i.e., higher TP53 transcripts had higher MDM2 levels. This correlation could suggest a
role of MDM2 in controlling TP53 transcripts, as is the case in the human prostate [35].
TP53 and MDM2 expression have been widely studied in human cancers and MDM2 is a
negative regulator of the TP53 transcript [35–37]. In canine PC, upregulation of MDM2 and
downregulation of TP53 transcript levels have previously been described [38]. Recently,
TP53 copy number loss and MDM2 gains were described in canine PC, suggesting that P53
and MDM2 could be important drivers in canine prostatic carcinogenesis [16]. Since P53
and MDM2 were not deregulated in PIA samples, and both markers have instead been de-
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scribed as altered in PC [16,38], P53 downregulation and MDM2 overexpression may occur
only in the advanced stage of prostatic carcinogenesis, after malignant transformation.

Our results show downregulation of the AR gene and protein levels in PIA samples,
as compared to normal prostate samples. The AR gene has a key role in prostatic devel-
opment and maintenance [39]. In dogs, downregulation of the AR gene is common in
PC development [39]. Previously, our research group demonstrated an AR copy number
loss in canine PC [16], indicating AR loss as an important event in canine PC develop-
ment. Since we demonstrated the downregulation of AR, this gene may be altered in
the early stages of neoplastic development and this result supports the hypothesis of the
potential progression from PIA to PC. The lack of AR expression in canine PC has been
widely demonstrated in previous studies [16,25–27,38]. Additionally, our results have
demonstrated that PIA with AR downregulation may be a precursor lesion to PC. Together,
this information reinforces the idea of PIA progression into invasive PC in dogs. However,
since we demonstrated an intermediate phenotype for PIA lesions, the AR downregulation
may occur due the cell differentiation from basal cells into luminal cells. Thus, this result
should be evaluated carefully.

Another gene undergoing downregulation in PIA lesions is PTEN. In human PC,
PTEN loss is correlated with PC androgen independence [40]. PTEN downregulation is
associated with decreased AR levels and these alterations are associated with activation of
the anti-apoptotic pathway [40,41]. In knockout PTEN mice (Pten+/−), used as models
of prostate carcinogenesis, the animals developed spontaneous inflammation with a high
number of preneoplastic lesions and carcinomas compared to the controls [42]. Thus, PTEN
loss is likely important during the carcinogenic process of the prostate gland [42].

Mice are the classical animal models used for studying the development of PIN and
PC [43]. However, even though they may experience high-grade inflammation, PIA cannot
be induced in these experimental models [42]. Thus, dogs represent a unique opportunity
for comparative studies in order to evaluate the role of PIA as preneoplastic lesions in the
prostate.

The high proliferative index and the downregulation of PTEN and AR in PIA lesions
may reflect their preneoplastic potential. The PIA premalignant potential is strongly
supported by the high mutation index identified in our sequencing analysis. A total of six
out of 12 samples (50%) showed mutations, and canine PC is strongly associated with AR
decreased expression (even in castrated dogs). Thus, mutations in the AR gene can lead to
the progression of PIA to PC in intact dogs.

4. Materials and Methods
4.1. Animals and Experimental Design

This study was performed in accordance with the National and International Recom-
mendations for the Care and Use of Animals (National Research Council) [44]. All pro-
cedures have been approved by the Ethics Committee on Animal Use (CEUA) of the
Veterinary Teaching Hospital of São Paulo State University (CEUA/UNESP, #0208/2016).
All samples were obtained from Brazilian dogs.

4.2. Tissue Selection

Four hundred and sixty nine hematoxylin and eosin (H&E) slides from different
canine prostates were selected from the Veterinary Pathology archive of São Paulo State
University—UNESP, between 2011 and 2019. Histological evaluation of normal, PIN,
and PC samples was performed according to the human WHO Tumors of the Urinary
System and Male Genital Organs guidelines [45], which were recently adapted to canine
PC [14]. PIA lesions were identified based on morphological features, as described by De
Marzo et al. [4]. All samples were from adult intact dogs: 50 normal prostates, 140 pro-
static hyperplasia, 171 proliferative inflammatory atrophy (PIA), 84 prostate carcinoma
(PC), 14 prostatic intraepithelial neoplasia (PIN) and 10 bacterial prostatitis samples were
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obtained. The H&E slides from the 84 PC cases were selected to evaluate PIA and PIN
surrounding the neoplastic tissue, as previously described [22].

4.3. PIA Morphological Features

The intensity of inflammation was scored according to De Marzo et al. [4] with modi-
fications. Briefly, all H&E PIA slides (N = 171) were evaluated using a numerical scale from
0 to 6, with 0 representing no inflammation, 1 and 2 mild inflammation, 3 and 4 moderate
inflammation and 5 and 6 severe inflammation. The key morphological findings to identify
PIA lesions in a low power field (5×) were overall hyperchromatic appearance, associated
inflammatory infiltrate, loss of papillary architecture and cuboidal cell morphology. In a
higher power field, key findings were acini showing at least two layers of epithelial cell,
atrophic appearance of cuboidal cells with scant cytoplasm, and in some cases, the presence
of evident nucleolus and mitotic figures [4,12].

Lesions were divided into simple atrophy, PAH and mixed pattern (simple atrophy
and PAH), according to De Marzo et al. [4]. The presence of dilated glands was also
evaluated and referred to as cystic atrophy.

4.4. Immunohistochemistry

Twenty normal prostate samples and 20 PIA paraffin blocks were further selected
to investigate both gene and protein expression of specific markers as outlined below.
Immunohistochemistry for HMWC, P63, Ki67, PTEN, P53, MDM2 and androgen receptor
(AR) was performed with antibodies that had been previously validated to cross-react
with canine tissue samples [15,38]. Slide sections were dewaxed in xylol and rehydrated in
graded ethanol. For antigen retrieval, the slides were incubated with citrate buffer (pH 6.0)
in a pressure cooker (Pascal®; Dako, Carpinteria, CA, USA). The slides were treated with
freshly prepared 3% hydrogen peroxide in methanol for 20 min and further washed in
Tris-buffered saline. The primary antibodies were diluted to 1:500 for PTEN (Bioss, Mas-
sachusets, USA -Bs-0686R), 1:50 for MDM2 (Abcam, Cambridge, UK-ab38618), 1:50 for P53
(Santa Cruz Biotecnology, sc-75366), 1:100 for AR (Abcam, Cambridge, UK-ab77557), 1:300
for HMWC (DakoCytomation, clone: 34βE12), 1:100 for P63 (DakoCytomation, clone 4A4),
1:300 for Pan-cytokeratin (Invitrogen), 1:50 for Ki-67 (DakoCytomation, clone: MIB1) with
an overnight incubation at 4 ◦C. A polymer system (Envision, Dako, Carpinteria, CA, USA)
was applied as a secondary antibody conjugated to peroxidase and 3′-diaminobenzidine
tetrahydrochloride (DAB1, Dako, Carpinteria, CA, USA) was used as the chromogen, for
5 min, followed by Harris hematoxylin counterstain.

Negative controls were performed for all antibodies by omitting the primary anti-
body, replacing them with Tris-buffered saline and also with an iso-type matched im-
munoglobulin according to Hewitt et al. [46]. Normal prostate was used as a positive
control for AR, p63, HMWC and PTEN. A normal lymph node was used as a positive
control for p53, MDM2 and Ki67 according to the Human Protein Atlas recommendation
(www.proteinatlas.org, accessed on 15 November 2020).

4.5. Immunohistochemical Score

As regards P53, MDM2, AR, PTEN, P63 and HMWC, samples were scored based on the
percentage of positive cells for each antibody with the following scores: 1–10% positive cells
(score 0), 11–25% positive cells (score 1); 26–50% positive cells (score 2); 51–75% positive
cells (score 3); and more than 76% positive cells (score 4). The immunohistochemical
results were independently interpreted by three investigators (C.E.F.A., P.E.K. and R.L.A.).
The distribution (basal or luminal cells) of P63 and HMWC was also evaluated. Ten high
power fields were used to establish the final IHC score. Ki-67 analysis was made by
counting the number of positive cells per total of 1000 cells.

www.proteinatlas.org
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4.6. Laser-Capture Microdissection and qPCR

For mRNA extraction, microdissection was performed using a Leica AS LMD laser-
capture system (Leica Microsystems, Wetslzar, Germany), according to [47] with modifi-
cations. mRNA analysis was performed with 20 normal and 20 PIA fresh frozen tissues
(same animal prostates as those used for immunohistochemistry). Briefly, 10 µm tissue
sections were cut in a cryostat (Leica Microsystems) and mounted on Nuclease and Human
Nucleic acid free PEN-membrane slides 2.0 µm (MembraneSlides, Leica Microsystems).
The slides were stained (H&E) and once air-dried, PIA areas were microdissected [47].
mRNA was extracted with RNeasy Micro Kit (Qiagen, Hilden. Germany) according to the
manufacturer instructions. cDNA was synthesized in a final volume of 20 µL, and each
reaction contained 1 µg of total RNA treated with DNAse I (Life Technologies, Rockville,
MD, USA), 200 U of SuperScript III reverse transcriptase (Life Technologies), 4 µL of 5X
SuperScript First-Strand Buffer, 1 µL of each dNTP at 10 mM (Life Technologies), 1 µL
of Oligo-(dT)18 (500 ng/µL) (Life Technologies), 1 µL of random hexamers (100 ng/µL)
(Life Technologies), and 1 µL of 0.1 M DTT (Life Technologies). Reverse transcription was
performed for 60 min at 50 ◦C, and the enzyme was subsequently inactivated for 15 min at
70 ◦C. cDNA was stored at −80 ◦C.

TP53, MDM2, AR and PTEN and the endogenous genes (Table 2) were conducted in a
total volume of 10 µL containing Power SYBR Green PCR Master Mix (Applied Biosystems;
Foster City, CA, USA), 1 µL of cDNA (1:10) and 0.3 µM of each primer. The reactions
were performed in triplicate in 384-well plates using QuantStudio 12K Flex Thermal Cycler
equipment (Applied Biosystems; Foster City, CA, USA). A dissociation curve was included
in all experiments to determine the PCR product specificity. Relative gene expression was
quantified using the 2-∆∆CT method [48].

Table 2. Forward and reverse primer sequence for each gene used in RT-qPCR analyses.

Gene Symbol Location Primer Sequences

AR Chromosome 24
F: 5′-CGCCCCTGACCTGGTTT-3′

R: 5′-GGCTGTACATCCGGGACTTG-3′

PTEN Chromosome 26
F: 5′-CGACGGGAAGACAAGTTCATG-3′

R: 5′-TCACCGCACACAGGCAAT-3′

MDM2 Chromosome 10
F: 5′-GGGCCCCTTCGTGAGAATTG-3′

R: 5′-GGTGTGGCTTTTCTCAGGGATT-3′

TP53 Chromosome 5
F: 5′-GAACGCTGCTCTGACAGTAGTGA-3′

R: 5′-CCCGCAAATTTCCTTCCA-3′

HPRT Chromosome X
F: 5′-AGCTTGCTGGTGAAAAGGAC-3′

R: 5′-TTATAGTCAAGGGCATATCC-3′

F: forward; R: reverse.

4.7. DNA Extraction and Sequencing

DNA extraction of 20 PIA tissues used in mRNA expression was performed using
DNeasy Blood and Tissue Kits (Ambion, Life Technologies, MA, USA), according to
manufacturer’s instructions. The amplification of the androgen receptor (AR) DNA-binding
domain was performed in a Veriti 96-Well Thermal Cycler (Thermo Fisher Scientific, MA,
USA). The methodology was performed according to the previously described by Rivera-
Calderon et al. [49]. Briefly, 5 µL of 10× PfuUltra II, 0.5 µL of 100 µM dNTP, 1 µL of
each oligonucleotide in 10 µM of each primer, 1 µL of genomic DNA (100 ng/µL) and
1 µL PfuUltra II fusion HS DNA polymerase (Agilent, CA, USA). The primers used were
previously published by Lai et al. [50].

After of the amplification, the AR DNA-binding domain was analyzed in 2% agarose
gel stained with Neotaq Brilliant Plus DNA Stain (Neobio, Brazil). Then, the PCR products
were cut from the agarose gel were and the DNA sequencing was evaluated with a BigDye™
Terminator v 3.1 Cycle Sequencing Kit version 3.1, according to the manufacturer’s instruc-
tions (Applied Biosystems, Thermo Fisher Scientific, MA, USA). The RT-amplicons were
directly sequenced at ABI 3500 (Applied Biosystems, Thermo Fisher Scientific, MA, USA).
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The resulting nucleotide sequences were compared to data of the NBCI (National Center
for Biotechnology Information, Bethesda, MD, USA) (gi:6578766).

Sequences analysis was performed in the MEGA Software (www.megasoftware.net,
accessed on 17 February 2021) [51], a FASTA analysis was performed, and the sequences
aligned with the reference gene from NCBI (gi:6578766), according to the previous literature
description [50]. Then, sequences with low quality were excluded.

4.8. Data Analysis

Statistical analyses were performed using GraphPad Prism v.5.0 (GraphPad Software
Inc., La Jolla, CA, USA). Kruskal–Wallis or Mann–Whitney U tests was applied to compare
TP53, MDM2, AR and PTEN transcription levels between normal and PIA samples. The chi-
square exact test was used to evaluate difference in the immunohistochemical expression
between normal and PIA samples.

4.9. Data Availability

The authors confirm that the data supporting the findings of this study are available
within the article and/or its Supplementary Materials.

5. Conclusions

Canine PIA is a common lesion in the dog prostate and shares many morphological
similarities with human PIA. Our results strongly suggest that PIA is a potential pre
neoplastic lesion and is associated with the progression to PC.

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/
article/10.3390/cancers13081887/s1. Figure S1. Canine prostate gland with atrophic lesion. The slides
were stained with hematoxylin and eosin staining and tissue area with inflammatory atrophic gland
were selected (A). Then, lase microdissection was performed to obtain only the epithelial portion of
these atrophic glands (B). Hematoxylin and eosin staining, 200×.
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