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Simple Summary: Triple-negative breast cancer (TNBC) is a heterogeneous disease. A proper
classification system is needed to develop targetable biomarkers and guide personalized treatment in
clinical practice. However, there has been no consensus on the molecular subtypes of TNBC, probably
due to discrepancies in technical and computational methods chosen by different research groups.
In this paper, we reassessed each major step for TNBC subtyping and provided suggestions, which
promote rational workflow design and ensure reliable and reproducible results for future studies.
We presented a recommended pipeline to the existing data, validated established TNBC subtypes
with a larger sample size, and revealed two intermediate subtypes with prognostic significance.
This work provides perspectives on issues and limitations regarding TNBC subtyping, indicating
promising directions for developing targeted therapy based on the molecular characteristics of each
TNBC subtype.

Abstract: Triple-negative breast cancer (TNBC) is a heterogeneous disease with diverse, often poor
prognoses and treatment responses. In order to identify targetable biomarkers and guide personal-
ized care, scientists have developed multiple molecular classification systems for TNBC based on
transcriptomic profiling. However, there is no consensus on the molecular subtypes of TNBC, likely
due to discrepancies in technical and computational methods used by different research groups.
Here, we reassessed the major steps for TNBC subtyping, validated the reproducibility of established
TNBC subtypes, and identified two more subtypes with a larger sample size. By comparing results
from different workflows, we demonstrated the limitations of formalin-fixed, paraffin-embedded
samples, as well as batch effect removal across microarray platforms. We also refined the usage of
computational tools for TNBC subtyping. Furthermore, we integrated high-quality multi-institutional
TNBC datasets (discovery set: n = 457; validation set: n = 165). Performing unsupervised clustering on
the discovery and validation sets independently, we validated four previously discovered subtypes:
luminal androgen receptor, mesenchymal, immunomodulatory, and basal-like immunosuppressed.
Additionally, we identified two potential intermediate states of TNBC tumors based on their resem-
blance with more than one well-characterized subtype. In summary, we addressed the issues and
limitations of previous TNBC subtyping through comprehensive analyses. Our results promote the
rational design of future subtyping studies and provide new insights into TNBC patient stratification.

Keywords: triple-negative breast cancer; molecular subtype; subtyping benchmark; microarrays;
clustering; biomarker discovery; pipeline

Cancers 2022, 14, 2571. https://doi.org/10.3390/cancers14112571 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14112571
https://doi.org/10.3390/cancers14112571
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-3938-5924
https://orcid.org/0000-0002-9677-1699
https://doi.org/10.3390/cancers14112571
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14112571?type=check_update&version=1


Cancers 2022, 14, 2571 2 of 17

1. Introduction

Triple-negative breast cancer (TNBC) accounts for 10–20% of primary breast cancers
that lack expression of estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor 2 (HER2) [1]. TNBC is highly invasive and metastatic,
prone to relapse, and has a poor prognosis. Moreover, due to its molecular phenotype,
TNBC is not sensitive to anti-estrogen/androgen hormone therapies or HER2-targeted
therapy [2]. Since it is a heterogeneous group without specific molecular features, TNBC
varies in prognosis and response to treatment [3]. Therefore, a classification system for
TNBC is urgently needed to develop potential biomarkers or drug targets and to promote
personalized care for TNBC patients.

Several studies have identified molecular subtypes of TNBC based on gene expression
profiles. Lehmann et al. [4] used publicly available expression data to divide TNBC into
six subtypes: basal-like 1 (BL1), basal-like 2 (BL2), mesenchymal (M), mesenchymal stem-
like (MSL), immunomodulatory (IM), and luminal androgen receptor (LAR). Later, they
refined the classification into four subtypes (BL1, BL2, M, and LAR) by histopathological
quantification and laser-capture microdissection [5]. Burstein et al. [6] first used immunohis-
tochemistry (IHC)-confirmed TNBC samples to get four subtypes with distinct prognosis:
LAR, M, basal-like immunosuppressed (BLIS), and basal-like immune-activated (BLIA). Liu
et al. [7] considered long noncoding RNAs (lncRNAs) and got a similar four-subtype classi-
fication. Jézéquel et al. [8,9] used fuzzy clustering and identified three subtypes: LAR and
two basal-like subtypes with different immune responses. Other studies explored TNBC
classification based on immune signatures [10,11] and microenvironment features [12]. Al-
though several studies have investigated TNBC subtypes, their sample quality and chosen
methods vary. The lack of consistency in TNBC subtyping methods and results is a huge
barrier to developing standards and guidelines for researchers and clinicians.

The primary purpose of this work is to provide perspectives on the molecular subtyp-
ing of TNBC and to help with the rational design of studies. We present a modularized
pipeline for the analysis and reassess widely used methods in each step (Figure 1). The
pipeline is applied on selected publicly available datasets to validate TNBC subtyping
results with a larger sample size.
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Figure 1. A modularized pipeline for TNBC subtyping. Each step provides alternative methods and
data types. Several optional modules are listed for downstream analysis after subtype discovery. This
pipeline is also applicable for similar research in other cancer types.
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2. Materials and Methods
2.1. Data Collection

We collected 11 publicly available breast cancer datasets (Supplementary Table S1)
from the Gene Expression Omnibus database (GEO, https://www.ncbi.nlm.nih.gov/geo/,
accessed on 20 December 2020). Seven of them were IHC-confirmed TNBC microarray
datasets, in which we evaluated the effects of sample preservation and batch effect removal
methods on TNBC subtyping. Our criteria for selecting IHC-confirmed TNBC datasets
were as follows: (1) sufficient sample size; (2) explicit statement of the sample preservation
methods; (3) preferably with previous TNBC subtyping results so that we could assess
the reproducibility. Our own TNBC subtyping was based on the four datasets with fresh-
frozen (FF) tissues: GSE103091, GSE103668, GSE76124 (discovery set), and GSE76250
(validation set).

2.2. Microarray Data Preprocessing

Microarray data was RMA normalized and log transformed using the R package oligo.
For the Affymetrix Human Transcriptome Array (HTA) 2.0 platform [13], control probes
were removed using R package affycoretools. For one probe targeting multiple genes, the
first gene in the annotation was chosen. For genes with multiple probes, the probe with the
highest average expression across samples was chosen to represent the gene. Probe ID was
converted to Entrez Gene ID and Gene Symbol. The batch effect was removed using the
removeBatchEffect function in the R package limma [14].

2.3. Gene Selection and Subtype Discovery

The most differentially expressed genes with the top 10% standard deviations were
selected for the discovery set and validation set, respectively. Then, we found their union
set for clustering to ensure that the same genes were used as clustering features. We
performed consensus clustering using k-means with 1000 iterations independently on the
discovery set and validation set. The optimal number of clusters (k) was determined by
the cumulative distribution function (CDF) curve, where the increase in k does not result
in a substantial increase in the relative area change under the CDF curve. Heatmaps were
generated using the R package ComplexHeatmap [15] to visualize the results.

2.4. Differential Expression and Pathway Enrichment Analysis

We used the R package limma [13] to find differentially expressed genes (DEGs). After
correction of false discovery rate (adjusted p value < 0.05), genes with fold change ≥1.5
were considered to be significantly differentially expressed. For each subtype, we compared
it with the rest samples to identify DEGs specific to this certain subtype. GO pathway
enrichment analysis was performed using Metascape 3.5 (metascape.org, accessed on
15 April 2021) [16].

2.5. Comparison with Established Subtypes

The R package genefu [17] was used to assign samples to intrinsic subtypes of breast
cancer. We chose the PAM50 [18] classifier with the robust scaling method in our analysis.
We obtained Lehmann’s classification using the TNBCtype tool [19] and labeled those
samples that could not pass the ER-positive filter as an additional group. Burstein et al. [6]
provided an 80-gene centroid signature of the 4 subtypes they discovered, which we
downloaded from their Supplementary Materials. Using this signature, we have assigned
all samples to Burstein’s subtypes. Specifically, we used the expression values of the 80
signature genes in our datasets and calculated a Pearson correlation coefficient with the
centroid values. For each sample, a Burstein’s subtype was assigned based on the highest
Pearson correlation coefficient found among the 4 subtypes.

https://www.ncbi.nlm.nih.gov/geo/
metascape.org
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2.6. Survival Analysis

We used the dataset GSE103091, which has available metastasis-free survival (MFS)
records, to compare prognosis differences among the discovered subtypes. Survival curves
were established by the Kaplan–Meier method. The log-rank test was used to test sur-
vival differences between the subtypes. Survival analysis was performed using the R
package survival.

2.7. Microenvironment Cell Abundance Calculation

We used the tool CIBERSORT [20] to estimate the abundance of 22 types of tumor-
infiltrating immune cells with its default signature gene file LM22 and permutation number
of 100. Since LM22 has not been validated on the microarray platform HTA 2.0 and may
produce unreliable results, we eliminated the dataset GSE76250 from this analysis.

3. Results
3.1. Intrinsic Subtype Distributions Are Impacted by Sample Preservation Methods

RNA profiling requires nucleic acid extraction from FF or formalin-fixed, paraffin-
embedded (FFPE) tissues. Although FFPE samples make long-term storage and retrospec-
tive analysis possible, the quality of nucleic acids in FFPE samples is far from optimal due
to chemical cross-linking and nucleic acid fragmentation [21]. Therefore, we evaluated
whether sample preservation methods could affect TNBC subtyping results.

When performing intrinsic subtyping [18] on the seven publicly available IHC-confirmed
TNBC datasets (Supplementary Table S1), we found that datasets using FFPE tissues had low
basal-like proportions (Figure 2A), which is inconsistent with the consensus that ~75% TNBCs
are basal-like [22]. Surprisingly, GSE76250 has a much lower proportion (~50%) of basal-like
tumors than the original results (60–80%) [12], possibly because almost one-third of samples
were excluded from their analysis. There was not enough information to explain how and why
they excluded these samples, so we retained all of the data in our analysis.

To further investigate whether sample preservation methods influence gene expression
and affect basal-like proportions, we performed differential gene analysis between the basal-
like tumors in FFPE and FF samples. Four more public breast cancer datasets were included
(Supplementary Table S1). Differentially expressed genes (adjusted p value < 0.05 and fold
change ≥ 1.5) were identified independently for each microarray platform (Figure 2B). Using
the Affymetrix Human Genome U133 Plus 2.0 Array (U133 Plus 2) platform, FFPE samples had
17 upregulated and 33 downregulated genes; for the Affymetrix Human Transcriptome Array
2.0 (HTA 2.0) platform, FFPE samples had 27 upregulated and 11 downregulated genes. In
addition, 6 out of 88 differentially expressed genes (ESR1, FOXA1, SFRP1, MELK, CDC20, and
NUF2) overlapped with the PAM50 gene set. The results indicated that sample preservation
methods may influence subtype distributions by changing the expression patterns of some
essential genes. Therefore, we suggest that researchers pay attention to this issue when using
FFPE samples.

3.2. Cross-Platform Batch Effect Removal Results in Less Stable Clusters

When datasets from multiple centers, cohorts, or array platforms are used in a single
analysis, it is necessary to consider batch effects in data preprocessing [23]. Principal
component analysis (PCA) showed that each dataset we used formed a separate cluster
without batch effect removal (Figure 2C). When these datasets are used for TNBC subtype
discovery, batch effects may lead to problematic group assignment that relies largely on
technical differences among datasets instead of meaningful biological differences. Therefore,
adjustment for batch effects before clustering is generally required when such effects exist.
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Figure 2. Effects of sample preservation and batch effect removal on TNBC subtyping. (A) PCA
plot of the 7 datasets (GSE103668, GSE103091, GSE76124, and GSE76250 were generated from FF
tissues; GSE86945, GSE86946, and GSE106977 were generated from FFPE samples) without batch
effect removal. (B) Log-transformed robust multichip average (RMA) value density distribution
of each dataset. (C) Intrinsic subtyping of 7 datasets using PAM50 centroids. (D) Volcano plot of
differentially expressed genes between datasets using FFPE and FF tissues. (E) Average silhouette
width of different batch effect removal schemes. From top to bottom: Combining datasets from HTA
2.0 and U133 Plus 2 by cross-platform batch effect removal; Removing batch effect separately for
datasets from HTA 2.0 and U133 Plus 2, respectively. The red lines represent the value of the average
silhouette width across all samples.

To address this issue, several tools have been developed and are in common use, such
as the removeBatchEffect function (using a two-way ANOVA) in the limma package [14] and
the Combat function (using an empirical Bayes method) in the sva package [24]. However,
evidence shows that these methods can also exaggerate group differences when the group–
batch distribution is unbalanced [25]. It is important to note that batch effect removal
requires additional consideration in particular cases.

Since data distribution differs greatly among platforms (Figure 2D), we evaluated
whether batch effect removal across different microarray platforms would affect down-
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stream clustering analysis for TNBC subtyping. For comparison, we conducted batch effect
removal in two different ways: (1) concatenating datasets from different platforms, remov-
ing batch effect, and performing clustering as a single dataset; or (2) concatenating datasets
with the same platform, removing batch effect independently for each platform, and per-
forming clustering separately for each platform. When compared to combining datasets
from different platforms, removing batch effects separately for each platform showed a
significantly higher average silhouette width (Wilcoxon signed-rank test: p = 2.2 × 10−16),
indicating more stable clustering results (Figure 2E). Therefore, we suggest removing batch
effects separately for different microarray platforms in TNBC subtyping.

3.3. Proper Clustering Features and Algorithms Should Be Chosen for Subtype Discovery

Choosing proper features for unsupervised clustering is an important step in TNBC
subtype discovery. Gene expression is the most commonly used feature. Generally, genes
with standard deviations exceeding a certain threshold are selected for clustering [4,7,8].
Features derived from raw gene expression profiles can also be used. For instance, pathway-
level features quantified by algorithms such as single-sample gene-set enrichment analysis
(ssGSEA) could produce more stable and reproducible cancer classification results [26,27].
Besides, certain features can be used to investigate specific questions, e.g., immune-related
pathway signatures [10,11] or immune infiltration cell abundance [12] help to identify
TNBC subtypes that may be responsive to immunotherapy. Moreover, gene expression
profiles can be combined with other information, such as the protein interaction network, to
develop new features and to obtain more stable and comprehensive clustering results [28].

Several clustering algorithms have been used for TNBC subtype discovery (Table 1).
The performance of common clustering algorithms has been evaluated on cancer subtyping
problems. A large-scale analysis of 7 clustering methods and 35 cancer microarray datasets
revealed that the finite mixture of Gaussians and k-means showed the best clustering
results [29]. The hierarchical methods, although widely used in biomedical literature,
performed poorly when compared to other methods [29]. Brunet et al. [30] successfully
applied non-negative matrix factorization (NMF) on cancer microarray data to identify
molecular patterns and demonstrated its advantages over hierarchical clustering and self-
organizing maps (SOMs). However, NMF requires intensive computations, which are
highly time-consuming for large-scale expression data [31].

Table 1. Clustering algorithms for subtype discovery.

Methods a Descriptions

Partitioning-based
Partitioning clustering iteratively assigns samples between clusters based on their similarity. It is
relatively efficient, but sensitive to outliers and needs the number of clusters to be specified in advance.

k-means
k-medoids b

Fuzzy c-means [32]

Hierarchical clustering Hierarchical clustering creates homogeneous groups of samples by either a top-down (divisive) or a
bottom-up (agglomerative) approach. The output dendrogram is easy to understand.Divisive

Agglomerative

Density-based Density-based clustering works by detecting densely connected regions. It does not require the number
of clusters to be specified and can deal with noisy data and non-convex clusters. However, it is not
suitable when there are significant density differences.

DBSCAN c

OPTICS d [33]
DPCA e [34]

Spectral clustering
RatioCut [35] Spectral clustering is based on graph theory. It reduces the dimensionality of the dataset and then

applies a basic clustering algorithm.Ncut [36]

Non-negative matrix factorization
(NMF) [30]

NMF reduces the dimension of expression data, and in the meantime, places each sample into a cluster
corresponding to the metagene.

Model-based Unlike traditional algorithms, model-based clustering attempts to provide soft assignment and
measures the probability of a sample belonging to each cluster.Gaussian mixture models

Self-organizing maps [37]

Note: a Only lists some representative algorithms are listed here. There are also other clustering algorithm
categories and variations to each method. b Also known as: partition around medoids (PAM). c DBSCAN:
density-based spatial clustering of applications with noise. d OPTICS: ordering points to identify clustering
structure. e DPCA: density peaks clustering algorithm.
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Besides the above-mentioned algorithms, consensus clustering is an analogy to en-
semble learning methods in supervised learning. The clustering result is the consensus
over multiple runs of a basic algorithm, such as k-means and hierarchical clustering [38].
Consensus clustering is more robust and shows advantages for discovering biological
meaningful clusters [38]. To improve the stability of the clusters, we suggest considering
consensus clustering instead of using results directly from a single run.

3.4. Existing Algorithms Could Be More Suitable for TNBC Subtype Prediction than the Simple
Nearest Centroid Classifier

After identifying subtypes in the discovery set, it is necessary to reproduce the clas-
sification on the validation set or to develop a subtyping tool for unclassified datasets.
Prediction algorithms to label independent datasets with the discovered subtypes are
presented in Table 2. The most straightforward method is the simple nearest centroid
classifier (SNCC). It computes centroids for each class in the discovery dataset and as-
signs a new sample to one of the classes based on the lowest Euclidean distance or the
highest correlation coefficient. This method is used in the web-based tool TNBCtype for
Lehmann’s classification of TNBC [19] and the R package genefu for intrinsic subtyping of
breast cancers [17].

Table 2. Algorithms for subtype prediction.

Methods a Descriptions

Centroid-based Centroid-based methods assign new samples to one of the
existing classes based on centroids computed from the
discovery set. PAM and ClaNC are examples of modified
simple nearest centroid methods.

Simple nearest centroid classifier (SNCC)
Prediction analysis of microarrays (PAM) [39]
Classification to nearest centroids (ClaNC) [40]

Supervised machine learning Supervised machine learning methods can learn rules from
labeled training data. For cancer subtyping, machine learning
models could be trained on the discovery set and used to
predict class assignment on the new datasets. Traditional and
simple methods could already achieve good performance.

Support vector machine (SVM)
k-nearest neighbor (k-NN)
Linear discriminant analysis (LDA)
Decision trees

Note: a Only some representative algorithms are listed here. There are also other algorithms and variations for
each method.

There are modified centroid-based methods that further improve SNCC. Prediction
Analysis of Microarrays (PAM) [39] shrinks the centroids and gives higher weights to
genes that are more stable within samples of the same class. Compared with SNCC, PAM
demonstrates higher prediction accuracy with only a small subset of centroids. A study on
breast cancer classification also confirmed PAM’s superiority over SNCC [41]. Classification
to Nearest Centroids (ClaNC) [40] aims to be simpler and even more interpretable than
PAM. It ranks genes by standard t-statistics but does not shrink centroids. It is shown that
the prediction error rate of ClaNC is significantly lower than that of PAM.

In addition to centroid-based methods, supervised machine learning could also be
applied. Several machine learning methods on multiclass cancer subtyping have been
assessed [42]. It is indicated that the support vector machine (SVM) is the best classifier.
k-nearest neighbor (k-NN) also achieves satisfactory accuracy on most datasets. Both of
them outperformed decision trees [42]. Simple classifiers, such as linear discriminant
analysis (LDA) and k-NN, performed markedly better than more sophisticated algorithms
such as aggregated classification trees [43].

Although widely used in existing tools, SNCC gives each feature the same weight,
which may not be suitable for cancer subtyping. Specific genes in the centroids may
contribute more to distinguishing different subtypes [44]. To obtain better prediction
results, further research could focus on testing modified centroid-based methods or machine
learning algorithms such as SVM, LDA, or k-NN when developing TNBC subtyping tools.



Cancers 2022, 14, 2571 8 of 17

3.5. Intrinsic Subtypes Could Not Be Reliably Assigned Due to Large Discrepancy of Different
Gene Sets

In 2000, Perou et al. [45] first identified five intrinsic molecular subtypes for breast
cancer (luminal A, luminal B, HER2-enriched, basal-like, and normal-like) by gene ex-
pression profiling. The ‘intrinsic’ gene set used to discover these subtypes is defined as
genes for which expression varies significantly greater between tumor samples from dif-
ferent patients than between paired samples from the same person. Later, the intrinsic
subtyping system was validated on independent datasets, which confirmed its clinical
significance [46]. The intrinsic gene set was modified several times by Sorlie et al. in
2003 [47] and Hu et al. in 2006 [48]. In 2009, Parker et al. [18] developed a 50-gene classifier
called PAM50, which further reduced the intrinsic gene number to 50 and made it more
efficient for clinical testing. Since the intrinsic classification is well established and has a
clinical impact, many studies on TNBC subtyping compare it with their results. A useful
tool for intrinsic subtyping is the R package genefu [17].

In genefu, the intrinsic subtyping function requires two main parameters: the centroid
gene set and the gene expression standardization method (without scaling, traditional
scaling, or robust scaling). The traditional scaling method is based on mean and standard
deviation, while the robust scaling method is based on the 0.025 and 0.975 quantiles. The
robust method has been tested in numerous breast cancer samples and reached the best
concordance with the clinical test [17]. To provide suggestions for the proper use of genefu,
we evaluated the effect of the two parameters on the subtyping results. The subtyping
results without scaling were distinctly unstable when compared with standard or robust
scaling. Therefore, performing intrinsic subtyping without scaling the gene expression
values is not recommended (Figure 3A).

Cancers 2022, 14, x 9 of 18 
 

 

In genefu, the intrinsic subtyping function requires two main parameters: the centroid 
gene set and the gene expression standardization method (without scaling, traditional 
scaling, or robust scaling). The traditional scaling method is based on mean and standard 
deviation, while the robust scaling method is based on the 0.025 and 0.975 quantiles. The 
robust method has been tested in numerous breast cancer samples and reached the best 
concordance with the clinical test [17]. To provide suggestions for the proper use of genefu, 
we evaluated the effect of the two parameters on the subtyping results. The subtyping 
results without scaling were distinctly unstable when compared with standard or robust 
scaling. Therefore, performing intrinsic subtyping without scaling the gene expression 
values is not recommended (Figure 3A). 

 
Figure 3. Effects of the centroid gene set and scaling method on intrinsic subtyping. (A) Distribution 
of intrinsic subtypes among gene sets using different scaling methods. (B) Robustness of intrinsic 
subtypes using either different gene sets or scaling methods. When using different parameters, 
samples with identical intrinsic subtype assignments are labeled ‘identical’. Samples with 
completely different intrinsic subtype assignments are labeled ‘different’. Sample with only 2 
different intrinsic subtype assignments using 3 different gene sets are labeled ‘partial’. (C) Circos 
plot of 3 intrinsic gene sets. The purple line links identical genes and the blue line denotes functional 
correlations. (D) GO pathway enrichment visualized with heatmap. A lower p value with a deeper 
color suggests more genes are enriched in the pathway. 

We then evaluated the effect of the two parameters independently. When fixing the 
gene set, the majority of the samples (over 80%) were assigned to the same subtype with 
a different scaling method. When fixing the scaling method, the results of the three gene 
sets were identical in more than 50% of the samples, but ~20% of the samples were 
assigned to completely different subtypes (Figure 3B). The choice of gene sets produced 
significantly different subtype distributions (Chi-squared test: p = 1.2 × 10−14, 1.5 × 10−10 for 
using standard and robust scaling, respectively). It shows that changing gene sets has a 
greater impact on the subtyping results than using different scaling methods, probably 
because of the large discrepancy among the three gene sets (Figure 3C). Our results 
indicated that different gene sets do not reliably assign the sample patients to the same 

Figure 3. Effects of the centroid gene set and scaling method on intrinsic subtyping. (A) Distribution
of intrinsic subtypes among gene sets using different scaling methods. (B) Robustness of intrinsic
subtypes using either different gene sets or scaling methods. When using different parameters,
samples with identical intrinsic subtype assignments are labeled ‘identical’. Samples with completely
different intrinsic subtype assignments are labeled ‘different’. Sample with only 2 different intrinsic
subtype assignments using 3 different gene sets are labeled ‘partial’. (C) Circos plot of 3 intrinsic gene
sets. The purple line links identical genes and the blue line denotes functional correlations. (D) GO
pathway enrichment visualized with heatmap. A lower p value with a deeper color suggests more
genes are enriched in the pathway.
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We then evaluated the effect of the two parameters independently. When fixing the
gene set, the majority of the samples (over 80%) were assigned to the same subtype with a
different scaling method. When fixing the scaling method, the results of the three gene sets
were identical in more than 50% of the samples, but ~20% of the samples were assigned to
completely different subtypes (Figure 3B). The choice of gene sets produced significantly
different subtype distributions (Chi-squared test: p = 1.2 × 10−14, 1.5 × 10−10 for using
standard and robust scaling, respectively). It shows that changing gene sets has a greater
impact on the subtyping results than using different scaling methods, probably because
of the large discrepancy among the three gene sets (Figure 3C). Our results indicated that
different gene sets do not reliably assign the sample patients to the same intrinsic subtypes,
which is consistent with a previous study [49]. Therefore, the use of microarray gene
profiling needs more stringent standardization of methodologies.

Interestingly, although the genes have few overlaps among the three gene sets, they are
enriched in almost identical biological pathways (Figure 3D), probably due to the fact that
different intrinsic gene sets focused on similar biological processes. We suggest developing
pathway-based intrinsic subtyping methods, which may produce more robust results than
gene-based methods.

Notably, Parker et al. [18] identified four additional groups that could possibly rep-
resent intermediate states or ambiguity in their clustering. We also noticed that some
samples had very similar correlation coefficients for several subtypes, and so the highest
correlation may not be a reliable assignment indicator. Nevertheless, the function in genefu
does not label any sample as ‘unclassified.’ We recommend considering the possible ambi-
guity of the intrinsic classification and further process the subtyping results to find those
unclassifiable samples.

3.6. mRNA-Based ER-Positive Filters Cause Unwanted Exclusion of IHC-Confirmed TNBC Samples

Lehmann et al. [4] first identified the molecular subtypes of TNBC and developed
a web-based tool TNBCtype to perform their classification, which is now widely used
in subtyping studies of TNBC [19]. However, several key issues may affect the usage of
the tool.

First, Lehmann’s classification was modified in 2016, when two of the original six
subtypes were no longer retained [5]. However, the tool was not updated accordingly
and thus later studies were not aware of the change and still used six subtypes [9,12].
Therefore, we recommend reanalyzing the results of TNBCtype to get the updated four-
subtype classification. Our re-analyzation code is available in the Supplementary Material
for reference.

Second, before performing the analysis, TNBCtype filters the expression matrix by
checking if there are ER-positive samples (defined as samples that have ER expression
values greater than the upper quartile of the gene expression values). However, when we
uploaded the datasets with only IHC-confirmed TNBC samples (GSE76124 and GSE76250),
a large proportion of samples still did not pass this quality assessing step. The problem
lies in Lehmann’s filtering method. Instead of IHC detection, which is the “gold standard”
in clinical situations [4], TNBCtype applied an in-house filter based on mRNA expression.
Although TNBC patients do not express ERα, ~30% of them overexpress another form
of the estrogen receptor, ERβ [50]. ERβ can form functional heterodimers with androgen
receptor (AR), which might produce TNBC samples with ER-positive-like gene expression
patterns [51]. These mechanisms suggest that the ER filter of TNBCtype is problematic and
may skew the subtyping results.

3.7. Unsupervised Clustering Reveals Six Molecular Subtypes of TNBC

We selected four public TNBC datasets with FF tissues and divided them into discovery
(GSE103091, GSE103668, and GSE76124) and validation sets (GSE76250) according to
different microarray platforms. We then performed consensus clustering independently on
the two sets. Using k-means clustering with 1000 iterations, the relative area changes under
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the consensus distribution function (CDF) curve indicated the optimal number of clusters
was 6 [38] (Figure 4A).
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optimal cluster number, 6, is determined as the point where there is a relatively small increase
of the area change under the CDF curve with increasing k. (B) Heatmap shows the distinct gene
expression pattern of the 6 named subtypes in both the discovery (457 of 457, U133 Plus 2 platform)
and validation sets (165 of 165, HTA 2.0 platform). (C) Distribution of other TNBC subtyping results
(PAM50 subtypes, Burstein’s subtypes, and Lehmann’s TNBC subtypes) among the 6 subtypes.
Samples that could not pass the ER-positive filter of TNBCtype are labeled as ‘ERP’.

Differentially expressed genes (adjusted p value < 0.05 and fold change ≥ 1.5) for
each subtype were identified and visualized (Figure 4B). The six subtypes showed con-
sistent expression patterns between the discovery set and validation set, indicating re-
producible clusters. Pathway enrichment analysis on these differentially expressed genes
confirmed the molecular characteristics of each subtype. In conclusion, we validated four
previously defined subtypes (Subtypes 1, 3, 4, and 5) and discovered two more subtypes
(Subtypes 2 and 6).

Subtype 1 is characterized by the downregulation of immune-related pathways, such
as leukocyte migration, inflammatory response, and interleukin production. Meanwhile,
this subtype shows the upregulation of cell cycle-regulated pathways, indicating its highly
proliferative nature. Intrinsic subtyping with PAM50 showed that Subtype 1 tumors are
mostly basal-like (Figure 4C). TNBC subtyping with Burstein’s centroids confirmed that
Subtype 1 corresponds to the BLIS subtype of previous studies [6,7] (Figure 4C).

In contrast to the BLIS subtype, Subtype 3 exhibits upregulated immunoregulation
pathways, including the activation of B cell, T cell, and natural killer cell-regulated path-
ways. Thus, we consider Subtype 3 as the IM subtype [4,7]. Subtyping with Burstein’s
centroids and TNBCtype showed that the previously discovered BLIA subtype [6] is basi-
cally the same as the IM subtype (Figure 4C).
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Subtype 4 tumors show enrichment in steroid hormone-related pathways. Although
confirmed by IHC as ER-negative, this subtype has the upregulation of AR, ESR1, and other
estrogen-regulated genes such as FOXA, XBP1, and GATA3. These features suggest that
subtype 1 is the previously defined LAR subtype [4,6] (Figure 4C). The LAR subtype may
respond to anti-estrogen or anti-androgen therapies. Since this subtype has ER-positive-like
expression patterns, many samples that are classified as the LAR subtype could not pass
the ER-positive filter when using TNBCtype (Figure 4C). The results suggested that this
filtering step is not necessary and may skew the subtype distribution.

Subtype 5 shows a variety of upregulated pathways, including extracellular structure
organization, response to growth factor, and lipid metabolic process. In addition, cell
cycle-related pathways are inhibited in subtype 5. This subtype matches the description
of the MES or MSL subtype in previous studies [4,6,7], which can also be supported by
subtyping with Burstein’s centroids and TNBCtype (Figure 4C). We finally labeled it as the
MES subtype in the subsequent analysis. Interestingly, many MES tumors also could not
pass the ER-positive filter of TNBCtype. Further research could focus on finding out why
some of the MES tumors produce ER-positive-like expression patterns.

In addition to these previously defined subtypes, we also identified two clusters
(Subtype 2 and 6) that have not been characterized in previous studies, which possibly
represent intermediate states of tumors considering their resemblance of expression pat-
terns with the other four subtypes. Therefore, we termed them as the INT1 and INT2
subtype, respectively. The INT1 subtype has similar expression patterns as the BLIS sub-
type, except that the INT1 subtype does not show immune response inhibition. The INT1
subtype is characterized by the upregulation of MUC16, TMPRSS3, and ART3. MUC16 is
a well-known cancer biomarker and has becomes a potential target for therapy in recent
years [52]. The INT2 subtype shares characteristics with both the BLIS (upregulation of cell
cycle-related pathways) and MES (upregulation of extracellular matrix-related pathways)
subtypes. The INT2 subtype is characterized by the upregulation of CXCL13, CXCL9, and
POU2AF1. The upregulation of immune-related genes indicates a certain extent of immune
activation in INT2.

The INT1 and INT2 subtypes might be easily mixed up with the other four well-
defined subtypes since they do not have distinct expression features. However, they differ
in some important characteristics and should not be simply assigned to the other four
subtypes. These features, such as immune response and the upregulation of specific genes,
have potential clinical implications that could help guide proper treatment for TNBC
patients with an ambiguous classification.

3.8. TNBC Subtypes Stratify Patients’ Survival

Clinical outcome data were available for dataset GSE103091. Analysis of MFS showed
a trend in survival difference among six subtypes (Figure 5A), although it did not reach
significance (log-rank test: p = 0.2). The IM subtype and the BLIS subtype tended to have
the best and the worst prognosis, respectively, which could be explained by their molecular
characteristics. Immune suppression and upregulated proliferation-related pathways are
possibly the cause of the poor prognosis of the BLIS subtype. On the contrary, the activation
of various immune-related pathways in the IM subtype leads to a good prognosis. Previous
studies also found similar survival differences for the IM [6] and the BLIS subtypes [6,7].

Interestingly, the INT1 and INT2 subtypes also tended to have better survival than the
BLIS subtype (Figure 5A), although they sharing some features in their expression patterns.
It is an indicator that differentiating these two subtypes from the other four stable subtypes
could have clinical implications.
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It should be noted that the non-significant statistical result is probably due to the lack
of available follow-up clinical outcome data and the uneven distribution of samples among
the six subtypes. However, this trend for the prognostic difference seems to be meaningful
and explainable. Future research could test this in larger cohorts.

3.9. TNBC Subtypes Differ in Microenvironment Phenotypes

Since intratumor response plays a vital role in basal-like tumors and has prognostic
significance, we focused on the immune response of the four basal-like subtypes: BLIS,
IM, INT1, and INT2. We calculated the composition of infiltrating immune cells by CIBER-
SORT. After excluding immune cell types with a median proportion value lower than 0.01,
eight were kept for the analysis and were assigned to pro-tumorigenic (associated with
better survival in TNBC patients) and anti-tumorigenic (associated with worse survival
in TNBC patients) based on previous studies [9]. In concordance with previous studies,
BLIS tumors were highly infiltrated by the three pro-tumorigenic cell types (Figure 5B)
and were associated with worse survival (Figure 5A). On the contrary, IM tumors were
highly infiltrated by four anti-tumorigenic cell types and were associated with improved
survival. INT1 tumors, which were mostly Burstein’s BLIA subtype (Figure 4C), had a
significantly higher abundance of T follicular helper cells (Tfhs) (Wilcoxon signed-rank
test: p = 2.3 × 10−9 and a lower abundance of resting mast cells (Wilcoxon signed-rank
test: p = 1.4 × 10−6) as compared to IM tumors. Similarly, INT2 tumors that were mostly
Burstein’s BLIS subtype, had a significantly lower abundance of Tfhs (Wilcoxon signed-rank
test: p = 2.5 × 10−4) and a higher abundance of resting mast cells (Wilcoxon signed-rank
test: p = 1.64 × 10−3) and macrophage M1 (Wilcoxon signed-rank test: p = 1.7 × 10−9) as
compared to BLIS tumors. The results indicated that an increase in the ratio of infiltrating
anti-tumorigenic to pro-tumorigenic cells is associated with improved MFS. The different
survival outcomes and patterns of immune signatures within the four subtypes suggest the
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necessity to differentiate the extra two intermediate subtypes. Interestingly, although Tfh is
considered as anti-tumorigenic and is known to activate B cells to facilitate the anti-tumor
response [53], we observed a significantly high abundance of Tfhs in BLIS tumors but low
abundance in IM tumors. Considering that the association of various tumor-infiltrating
lymphocytes (TILs) with the clinical outcome of cancer has always been controversial [54],
distinct immunological mechanisms might take place in different cancer subtypes and
under specific conditions. Thus, more studies concerning the origin and development
dynamics of TILs on the TNBC subtype level are still needed to improve our understanding
of the heterogeneity of TNBC.

4. Conclusions and Discussion

Subtyping of TNBC is essential for patient stratification and personalized treatment.
Although several studies have investigated this question, their results lack consistency due
to the choice of different analytical workflows, sampling methods, and computational tools.
By reviewing literature and analyzing public datasets, we reassessed the usage of available
tools and presented a guideline for performing molecular subtyping of TNBC (Figure 1),
which will be helpful for the rational design of future research. Based on our analysis,
we also provided a series of suggestions regarding some issues on either general cancer
subtyping or specific to TNBC subtyping. In particular, researchers must pay attention
to specific procedures, including the utilization of FFPE samples, batch effect removal
across microarray platforms, parameter selection of commonly used computational tools,
and the interpretation of Lehmann’s TNBCtype. Note that although most previous TNBC
subtyping studies were based on microarrays, RNA sequencing (RNA-seq) technologies
have emerged in recent years. Since both RNA-seq and microarray are gene expression
profiling methods, their gene expression matrices do not have major differences. As long as
researchers follow standard data preprocessing pipelines for RNA-seq data, our results and
conclusions should also be applicable to future TNBC subtyping studies based on RNA
sequencing (RNA-seq) data.

Furthermore, by properly selecting and integrating public microarray datasets, we
performed TNBC subtyping on a larger sample size. Our results validated the four pre-
viously discovered subtypes: LAR, MES, IM, and BLIS. Interestingly, these four subtypes
overlapped with Burstein’s subtyping results, despite the clustering methods (k-means and
NMF). Considering the intensive computation of NMF, future studies could use k-means to
reproduce previous results.

In addition to the four stable and typical subtypes, we report the first discovery of
another two subtypes that potentially represent the intermediate states of tumors. Their
expression patterns share some similarities with the BLIS and the MES subtypes, but they
also differ in some important features, including regulation of immune-related pathways,
prognosis, and tumor microenvironment phenotypes.

Previous studies commonly discovered intermediate subtypes without in-depth inves-
tigation. Parker et al. [18] found four intermediate subtypes additional to the intrinsic sub-
types that resemble luminal tumors, but these subtypes were eliminated from downstream
analysis. Lehmann et al. [19] grouped the samples with ambiguous subtype assignments
as unclassifiable. The existence of intermediate tumors reflects the heterogeneity of tissues.
Breast tumors contain various cell types in addition to the carcinoma cells [55]. Each cluster
of cells may demonstrate distinct gene expression patterns. Single-cell RNA-seq further
showed that different cells from the same TNBC patient could be assigned to different
subtypes [56]. When performing bulk sampling, this heterogeneity might be blurred by
averaged expression patterns and result in intermediate states.

Due to their mixed molecular features, intermediate tumors bring challenges to the
treatment. Therapies targeting the predominant subclones cannot eliminate other subclones,
causing poor treatment effect or tumor recurrence [57]. Thus, we consider the intermediate
subtype as a promising research question that has clinical implications. For example, new
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subtyping methods could be developed based on paired single-cell and bulk samples to
better understand local and global features of the heterogeneous tumor microenvironment.

Molecular subtyping for TNBC based on gene expression profiles is still immature for
clinical application [49]. Several limitations exist in current studies. First, the current gold
standard for molecular testing in clinical settings such as IHC is mostly protein-based. How-
ever, previous studies on TNBC subtyping are mostly based on transcriptomics. Intrinsic
subtyping shows that basal-like tumors (triple-negative at the mRNA level) cannot over-
lap with TNBC completely [22], indicating differences between transcriptomic subtypes and
proteomic subtypes. A few studies have integrated proteomics into TNBC research [58,59].
Future studies could conduct a more comprehensive analysis on the protein level and develop
clinical biomarkers.

Second, understanding of cancer immunology revolutionized cancer treatment in
recent years by leading to the development of immunotherapy. TILs have been used as
clustering features [10,12]. However, the association between some immune cells and
clinical outcomes of TNBC remains controversial. It is recommended to conduct large-scale
tumor microenvironment analysis of existing TNBC subtypes and to develop computational
methods for identifying clinically targetable immune subtypes based on the features of TILs.

Third, gene expression levels fluctuate under different conditions, but traditional
transcriptomic or proteomic data are measured at a fixed time point. Further studies could
consider this issue by integrating time-series data and adjusting feature weights based on
the range of gene expression changes. Researchers could also use some features that are
more resistant to gene expression fluctuations such as gene interaction perturbations [28]
and rank-based signatures [60].

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers14112571/s1, Table S1: Description of public datasets, downloaded
from Gene Expression Omnibus.
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5. Lehmann, B.D.; Jovanović, B.; Chen, X.; Estrada, M.V.; Johnson, K.N.; Shyr, Y.; Moses, H.L.; Sanders, M.E.; Pietenpol, J.A.
Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection. PLoS
ONE 2016, 11, e0157368. [CrossRef] [PubMed]

6. Burstein, M.D.; Tsimelzon, A.; Poage, G.M.; Covington, K.R.; Contreras, A.; Fuqua, S.A.; Savage, M.I.; Osborne, C.K.; Hilsenbeck,
S.G.; Chang, J.C.; et al. Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer.
Clin. Cancer Res. 2015, 21, 1688–1698. [CrossRef] [PubMed]

7. Liu, Y.-R.; Jiang, Y.-Z.; Xu, X.-E.; Yu, K.-D.; Jin, X.; Hu, X.; Zuo, W.-J.; Hao, S.; Wu, J.; Liu, G.-Y.; et al. Comprehensive transcriptome
analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. Breast Cancer Res. 2016,
18, 33. [CrossRef]

8. Jézéquel, P.; Loussouarn, D.; Guérin-Charbonnel, C.; Campion, L.; Vanier, A.; Gouraud, W.; Lasla, H.; Guette, C.; Valo, I.; Verrièle,
V.; et al. Gene-expression molecular subtyping of triple-negative breast cancer tumours: Importance of immune response. Breast
Cancer Res. 2015, 17, 43. [CrossRef]

9. Jézéquel, P.; Kerdraon, O.; Hondermarck, H.; Guérin-Charbonnel, C.; Lasla, H.; Gouraud, W.; Canon, J.-L.; Gombos, A.; Dalenc, F.;
Delaloge, S.; et al. Identification of three subtypes of triple-negative breast cancer with potential therapeutic implications. Breast
Cancer Res. 2019, 21, 65. [CrossRef]

10. He, Y.; Jiang, Z.; Chen, C.; Wang, X. Classification of triple-negative breast cancers based on Immunogenomic profiling. J. Exp.
Clin. Cancer Res. 2018, 37, 327. [CrossRef]

11. Romero-Cordoba, S.; Meneghini, E.; Sant, M.; Iorio, M.V.; Sfondrini, L.; Paolini, B.; Agresti, R.; Tagliabue, E.; Bianchi, F. Decoding
Immune Heterogeneity of Triple Negative Breast Cancer and Its Association with Systemic Inflammation. Cancers 2019, 11, 911.
[CrossRef] [PubMed]

12. Xiao, Y.; Ma, D.; Zhao, S.; Suo, C.; Shi, J.; Xue, M.-Z.; Ruan, M.; Wang, H.; Zhao, J.; Li, Q.; et al. Multi-Omics Profiling Reveals
Distinct Microenvironment Characterization and Suggests Immune Escape Mechanisms of Triple-Negative Breast Cancer. Clin.
Cancer Res. 2019, 25, 5002–5014. [CrossRef] [PubMed]

13. Palermo, M.; Driscoll, H.; Tighe, S.; Dragon, J.; Bond, J.; Shukla, A.; Vangala, M.; Vincent, J.; Hunter, T. Expression Profiling
Smackdown: Human Transcriptome Array HTA 2.0 vs. RNA-Seq. J. Biomol. Tech. 2014, 25, S20–S21.

14. Ritchie, M.E.; Belinda, P.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [CrossRef]

15. Gu, Z.; Eils, R.; Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics
2016, 32, 2847–2849. [CrossRef]

16. Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a
biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [CrossRef]

17. Gendoo, D.; Ratanasirigulchai, N.; Schröder, M.; Pare, L.; Parker, J.S.; Prat, A.; Haibe-Kains, B. Genefu: An R/Bioconductor
package for computation of gene expression-based signatures in breast cancer. Bioinformatics 2016, 32, 1097–1099. [CrossRef]

18. Parker, J.S.; Mullins, M.; Cheang, M.C.U.; Leung, S.; Voduc, D.; Vickery, T.; Davies, S.; Fauron, C.; He, X.; Hu, Z.; et al. Supervised
Risk Predictor of Breast Cancer Based on Intrinsic Subtypes. J. Clin. Oncol. 2009, 27, 1160–1167. [CrossRef]

19. Chen, X.; Li, J.; Gray, W.H.; Lehmann, B.D.; Bauer, J.A.; Shyr, Y.; Pietenpol, J.A. TNBCtype: A Subtyping Tool for Triple-Negative
Breast Cancer. Cancer Inform. 2012, 11, 147–156. [CrossRef]

20. Chen, B.; Khodadoust, M.S.; Liu, C.L.; Newman, A.M.; Alizadeh, A.A. Profiling Tumor Infiltrating Immune Cells with CIBERSORT.
Methods Mol. Biol. 2018, 1711, 243–259.

21. Fedorowicz, G.; Guerrero, S.; Wu, T.D.; Modrusan, Z. Microarray analysis of RNA extracted from formalin-fixed, paraffin-
embedded and matched fresh-frozen ovarian adenocarcinomas. BMC Med. Genom. 2009, 2, 23. [CrossRef] [PubMed]

22. Cancer Genome Atlas Network. Comprehensive molecular portraits of human breast tumours. Nature 2012, 490, 61–70. [CrossRef]
[PubMed]

23. Lazar, C.; Meganck, S.; Taminau, J.; Steenhoff, D.; Coletta, A.; Molter, C.; Weiss-Solís, D.Y.; Duque, R.; Bersini, H.; Nowé, A. Batch
effect removal methods for microarray gene expression data integration: A survey. Brief. Bioinform. 2013, 14, 469–490. [CrossRef]
[PubMed]

24. Leek, J.T.; Johnson, W.E.; Parker, H.S.; Jaffe, A.E.; Storey, J.D. The sva package for removing batch effects and other unwanted
variation in high-throughput experiments. Bioinformatics 2012, 28, 882–883. [CrossRef] [PubMed]

25. Nygaard, V.; Rødland, E.A.; Hovig, E. Methods that remove batch effects while retaining group differences may lead to
exaggerated confidence in downstream analyses. Biostatistics 2016, 17, 29–39. [CrossRef] [PubMed]

26. Gatza, M.L.; Lucas, J.E.; Barry, W.T.; Kim, J.W.; Wang, Q.; Crawford, M.D.; Datto, M.B.; Kelley, M.; Mathey-Prevot, B.; Potti, A.;
et al. A pathway-based classification of human breast cancer. Proc. Natl. Acad. Sci. USA 2010, 107, 6994–6999. [CrossRef]

27. Kim, S.; Kon, M.; DeLisi, C. Pathway-based classification of cancer subtypes. Biol. Direct 2012, 7, 21. [CrossRef]

http://doi.org/10.1097/CCO.0b013e32834bf8ae
http://www.ncbi.nlm.nih.gov/pubmed/21986848
http://doi.org/10.1172/JCI45014
http://www.ncbi.nlm.nih.gov/pubmed/21633166
http://doi.org/10.1371/journal.pone.0157368
http://www.ncbi.nlm.nih.gov/pubmed/27310713
http://doi.org/10.1158/1078-0432.CCR-14-0432
http://www.ncbi.nlm.nih.gov/pubmed/25208879
http://doi.org/10.1186/s13058-016-0690-8
http://doi.org/10.1186/s13058-015-0550-y
http://doi.org/10.1186/s13058-019-1148-6
http://doi.org/10.1186/s13046-018-1002-1
http://doi.org/10.3390/cancers11070911
http://www.ncbi.nlm.nih.gov/pubmed/31261762
http://doi.org/10.1158/1078-0432.CCR-18-3524
http://www.ncbi.nlm.nih.gov/pubmed/30837276
http://doi.org/10.1093/nar/gkv007
http://doi.org/10.1093/bioinformatics/btw313
http://doi.org/10.1038/s41467-019-09234-6
http://doi.org/10.1093/bioinformatics/btv693
http://doi.org/10.1200/JCO.2008.18.1370
http://doi.org/10.4137/CIN.S9983
http://doi.org/10.1186/1755-8794-2-23
http://www.ncbi.nlm.nih.gov/pubmed/19426511
http://doi.org/10.1038/nature11412
http://www.ncbi.nlm.nih.gov/pubmed/23000897
http://doi.org/10.1093/bib/bbs037
http://www.ncbi.nlm.nih.gov/pubmed/22851511
http://doi.org/10.1093/bioinformatics/bts034
http://www.ncbi.nlm.nih.gov/pubmed/22257669
http://doi.org/10.1093/biostatistics/kxv027
http://www.ncbi.nlm.nih.gov/pubmed/26272994
http://doi.org/10.1073/pnas.0912708107
http://doi.org/10.1186/1745-6150-7-21


Cancers 2022, 14, 2571 16 of 17

28. Chen, Y.; Gu, Y.; Hu, Z.; Sun, X. Sample-specific perturbation of gene interactions identifies breast cancer subtypes. Brief. Bioinform.
2021, 22, bbaa268. [CrossRef]

29. de Souto, M.C.P.; Costa, I.G.; de Araujo, D.S.A.; Ludermir, T.B.; Schliep, A. Clustering cancer gene expression data: A comparative
study. BMC Bioinform. 2008, 9, 497. [CrossRef]

30. Brunet, J.-P.; Tamayo, P.; Golub, T.R.; Mesirov, J.P. Metagenes and molecular pattern discovery using matrix factorization. Proc.
Natl. Acad. Sci. USA 2004, 101, 4164–4169. [CrossRef]

31. Gaujoux, R.; Seoighe, C. A flexible R package for nonnegative matrix factorization. BMC Bioinform. 2010, 11, 367. [CrossRef]
[PubMed]

32. Ruspini, E.H. A new approach to clustering. Inf. Control 1969, 15, 22–32. [CrossRef]
33. Ankerst, M.; Breunig, M.M.; Kriegel, H.-P.; Sander, J. OPTICS: Ordering points to identify the clustering structure. ACM Sigmod

Rec. 1999, 28, 49–60. [CrossRef]
34. Rodriguez, A.; Laio, A. Machine learning. Clustering by fast search and find of density peaks. Science 2014, 344, 1492–1496.

[CrossRef] [PubMed]
35. Song, W.; Siskind, J.M. Image segmentation with ratio cut. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 675–690. [CrossRef]
36. Jianbo, S.; Malik, J. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2000, 22, 888–905. [CrossRef]
37. Tamayo, P.; Slonim, D.; Mesirov, J.; Zhu, Q.; Kitareewan, S.; Dmitrovsky, E.; Lander, E.S.; Golub, T.R. Interpreting patterns of gene

expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci. USA 1999,
96, 2907–2912. [CrossRef]

38. Monti, S.; Tamayo, P.; Mesirov, J.P.; Golub, T.R. Consensus Clustering: A Resampling-Based Method for Class Discovery and
Visualization of Gene Expression Microarray Data. Mach. Learn. 2003, 52, 91–118. [CrossRef]

39. Tibshirani, R.; Hastie, T.; Narasimhan, B.; Chu, G. Diagnosis of multiple cancer types by shrunken centroids of gene expression.
Proc. Natl. Acad. Sci. USA 2002, 99, 6567–6572. [CrossRef]

40. Dabney, A.R. Classification of microarrays to nearest centroids. Bioinformatics 2005, 21, 4148–4154. [CrossRef]
41. Mullins, M.; Perreard, L.; Quackenbush, J.F.; Gauthier, N.; Bayer, S.; Ellis, M.; Parker, J.; Perou, C.M.; Szabo, A.; Bernard, P.S.

Agreement in breast cancer classification between microarray and quantitative reverse transcription PCR from fresh-frozen and
formalin-fixed, paraffin-embedded tissues. Clin. Chem. 2007, 53, 1273–1279. [CrossRef] [PubMed]

42. Li, T.; Zhang, C.; Ogihara, M. A comparative study of feature selection and multiclass classification methods for tissue classification
based on gene expression. Bioinformatics 2004, 20, 2429–2437. [CrossRef] [PubMed]

43. Dudoit, S.; Fridlyand, J.; Speed, T.P. Comparison of Discrimination Methods for the Classification of Tumors Using Gene
Expression Data. J. Am. Stat. Assoc. 2002, 97, 77–87. [CrossRef]

44. Golub, T.R.; Slonim, D.K.; Tamayo, P.; Huard, C.; Gaasenbeek, M.; Mesirov, J.P.; Coller, H.; Loh, M.L.; Downing, J.R.; Caligiuri,
M.A.; et al. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 1999,
286, 531–537. [CrossRef]

45. Perou, C.M.; Sørlie, T.; Eisen, M.B.; Van De Rijn, M.; Jeffrey, S.S.; Rees, C.A.; Pollack, J.R.; Ross, D.T.; Johnsen, H.; Akslen, L.A.;
et al. Molecular portraits of human breast tumours. Nature 2000, 406, 747–752. [CrossRef]

46. Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; et al.
Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA
2001, 98, 10869–10874. [CrossRef]

47. Sørlie, T.; Tibshirani, R.; Parker, J.; Hastie, T.; Marron, J.S.; Nobel, A.; Deng, S.; Johnsen, H.; Pesich, R.; Geisler, S.; et al. Repeated
observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA 2003, 100, 8418–8423.
[CrossRef]

48. Hu, Z.; Fan, C.; Oh, D.S.; Marron, J.S.; He, X.; Qaqish, B.F.; Livasy, C.; Carey, L.A.; Reynolds, E.; Dressler, L.; et al. The molecular
portraits of breast tumors are conserved across microarray platforms. BMC Genom. 2006, 7, 96. [CrossRef]

49. Weigelt, B.; Mackay, A.; A’hern, R.; Natrajan, R.; Tan, D.S.; Dowsett, M.; Ashworth, A.; Reis-Filho, J.S. Breast cancer molecular
profiling with single sample predictors: A retrospective analysis. Lancet Oncol. 2010, 11, 339–349. [CrossRef]

50. Wang, J.; Zhang, C.; Chen, K.; Tang, H.; Tang, J.; Song, C.; Xie, X. ERβ1 inversely correlates with PTEN/PI3K/AKT pathway and
predicts a favorable prognosis in triple-negative breast cancer. Breast Cancer Res. Treat. 2015, 152, 255–269. [CrossRef]

51. Anestis, A.; Sarantis, P.; Theocharis, S.; Zoi, I.; Tryfonopoulos, D.; Korogiannos, A.; Koumarianou, A.; Xingi, E.; Thomaidou, D.;
Kontos, M.; et al. Estrogen receptor beta increases sensitivity to enzalutamide in androgen receptor-positive triple-negative breast
cancer. J. Cancer Res. Clin. Oncol. 2019, 145, 1221–1233. [CrossRef] [PubMed]

52. Felder, M.; Kapur, A.; Gonzalez-Bosquet, J.; Horibata, S.; Heintz, J.; Albrecht, R.; Fass, L.; Kaur, J.; Hu, K.; Shojaei, H.; et al. MUC16
(CA125): Tumor biomarker to cancer therapy, a work in progress. Mol. Cancer 2014, 13, 129. [CrossRef] [PubMed]

53. Hollern, D.P.; Xu, N.; Thennavan, A.; Glodowski, C.; Garcia-Recio, S.; Mott, K.R.; He, X.; Garay, J.P.; Carey-Ewend, K.; Marron, D.;
et al. B Cells and T Follicular Helper Cells Mediate Response to Checkpoint Inhibitors in High Mutation Burden Mouse Models
of Breast Cancer. Cell 2019, 179, 1191–1206.e21. [CrossRef] [PubMed]

54. Gao, Z.-H.; Li, C.-X.; Liu, M.; Jiang, J.-Y. Predictive and prognostic role of tumour-infiltrating lymphocytes in breast cancer
patients with different molecular subtypes: A meta-analysis. BMC Cancer 2020, 20, 1150. [CrossRef] [PubMed]

55. Rønnov-Jessen, L.; Petersen, O.W.; Bissell, M.J. Cellular changes involved in conversion of normal to malignant breast: Importance
of the stromal reaction. Physiol. Rev. 1996, 76, 69–125. [CrossRef] [PubMed]

http://doi.org/10.1093/bib/bbaa268
http://doi.org/10.1186/1471-2105-9-497
http://doi.org/10.1073/pnas.0308531101
http://doi.org/10.1186/1471-2105-11-367
http://www.ncbi.nlm.nih.gov/pubmed/20598126
http://doi.org/10.1016/S0019-9958(69)90591-9
http://doi.org/10.1145/304181.304187
http://doi.org/10.1126/science.1242072
http://www.ncbi.nlm.nih.gov/pubmed/24970081
http://doi.org/10.1109/TPAMI.2003.1201819
http://doi.org/10.1109/34.868688
http://doi.org/10.1073/pnas.96.6.2907
http://doi.org/10.1023/A:1023949509487
http://doi.org/10.1073/pnas.082099299
http://doi.org/10.1093/bioinformatics/bti681
http://doi.org/10.1373/clinchem.2006.083725
http://www.ncbi.nlm.nih.gov/pubmed/17525107
http://doi.org/10.1093/bioinformatics/bth267
http://www.ncbi.nlm.nih.gov/pubmed/15087314
http://doi.org/10.1198/016214502753479248
http://doi.org/10.1126/science.286.5439.531
http://doi.org/10.1038/35021093
http://doi.org/10.1073/pnas.191367098
http://doi.org/10.1073/pnas.0932692100
http://doi.org/10.1186/1471-2164-7-96
http://doi.org/10.1016/S1470-2045(10)70008-5
http://doi.org/10.1007/s10549-015-3467-3
http://doi.org/10.1007/s00432-019-02872-9
http://www.ncbi.nlm.nih.gov/pubmed/30805773
http://doi.org/10.1186/1476-4598-13-129
http://www.ncbi.nlm.nih.gov/pubmed/24886523
http://doi.org/10.1016/j.cell.2019.10.028
http://www.ncbi.nlm.nih.gov/pubmed/31730857
http://doi.org/10.1186/s12885-020-07654-y
http://www.ncbi.nlm.nih.gov/pubmed/33238978
http://doi.org/10.1152/physrev.1996.76.1.69
http://www.ncbi.nlm.nih.gov/pubmed/8592733


Cancers 2022, 14, 2571 17 of 17

56. Karaayvaz, M.; Cristea, S.; Gillespie, S.M.; Patel, A.P.; Mylvaganam, R.; Luo, C.C.; Specht, M.C.; Bernstein, B.E.; Michor, F.; Ellisen,
L.W. Unravelling subclonal heterogeneity and aggressive disease states in TNBC through single-cell RNA-seq. Nat. Commun.
2018, 9, 3588. [CrossRef]

57. Greaves, M.; Maley, C.C. Clonal evolution in cancer. Nature 2012, 481, 306–313. [CrossRef] [PubMed]
58. Kosok, M.; Alli-Shaik, A.; Bay, B.H.; Gunaratne, J. Comprehensive Proteomic Characterization Reveals Subclass-Specific Molecular

Aberrations within Triple-negative Breast Cancer. Iscience 2020, 23, 100868. [CrossRef]
59. Lawrence, R.T.; Perez, E.; Hernández, D.; Miller, C.P.; Haas, K.M.; Irie, H.Y.; Lee, S.-I.; Blau, C.A.; Villén, J. The proteomic

landscape of triple-negative breast cancer. Cell Rep. 2015, 11, 630–644. [CrossRef]
60. Qi, L.; Chen, L.; Li, Y.; Qin, Y.; Pan, R.; Zhao, W.; Gu, Y.; Wang, H.; Wang, R.; Chen, X.; et al. Critical limitations of prognostic

signatures based on risk scores summarized from gene expression levels: A case study for resected stage I non-small-cell lung
cancer. Brief. Bioinform. 2016, 17, 233–242. [CrossRef]

http://doi.org/10.1038/s41467-018-06052-0
http://doi.org/10.1038/nature10762
http://www.ncbi.nlm.nih.gov/pubmed/22258609
http://doi.org/10.1016/j.isci.2020.100868
http://doi.org/10.1016/j.celrep.2015.03.050
http://doi.org/10.1093/bib/bbv064

	Introduction 
	Materials and Methods 
	Data Collection 
	Microarray Data Preprocessing 
	Gene Selection and Subtype Discovery 
	Differential Expression and Pathway Enrichment Analysis 
	Comparison with Established Subtypes 
	Survival Analysis 
	Microenvironment Cell Abundance Calculation 

	Results 
	Intrinsic Subtype Distributions Are Impacted by Sample Preservation Methods 
	Cross-Platform Batch Effect Removal Results in Less Stable Clusters 
	Proper Clustering Features and Algorithms Should Be Chosen for Subtype Discovery 
	Existing Algorithms Could Be More Suitable for TNBC Subtype Prediction than the Simple Nearest Centroid Classifier 
	Intrinsic Subtypes Could Not Be Reliably Assigned Due to Large Discrepancy of Different Gene Sets 
	mRNA-Based ER-Positive Filters Cause Unwanted Exclusion of IHC-Confirmed TNBC Samples 
	Unsupervised Clustering Reveals Six Molecular Subtypes of TNBC 
	TNBC Subtypes Stratify Patients’ Survival 
	TNBC Subtypes Differ in Microenvironment Phenotypes 

	Conclusions and Discussion 
	References

