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Simple Summary: Breast cancer remains a leading cause of female cancer related mortality world-
wide. Loss of genomic stability and dysregulation of cellular metabolism are well-recognized features
of breast cancer, presenting an opportunity to study the drivers of breast cancer progression and
resistance to chemotherapy. The overarching goal of this work is to perform combined analysis of
DNA damage repair and cellular metabolism in response to olaparib treatment in a panel of breast
cancer cell lines. By applying a combined untargeted metabolomics and molecular biology approach,
our findings show dysregulation of amino acid metabolism and metabolic reprogramming from gly-
colysis to amino acid utilization to be a common feature in all breast cancer cell lines examined, some
of which are consistent with findings from the analysis of clinical breast cancer tumours. Functional
assessment of genetic alterations offers the scope to design new prognostic tools and inform the
design of new chemotherapies or drug combinations.

Abstract: Metabolic reprogramming and genomic instability are key hallmarks of cancer, the com-
bined analysis of which has gained recent popularity. Given the emerging evidence indicating the role
of oncometabolites in DNA damage repair and its routine use in breast cancer treatment, it is timely to
fingerprint the impact of olaparib treatment in cellular metabolism. Here, we report the biomolecular
response of breast cancer cell lines with DNA damage repair defects to olaparib exposure. Following
evaluation of olaparib sensitivity in breast cancer cell lines, we immunoprobed DNA double strand
break foci and evaluated changes in cellular metabolism at various olaparib treatment doses using
untargeted mass spectrometry-based metabolomics analysis. Following identification of altered
features, we performed pathway enrichment analysis to measure key metabolic changes occurring
in response to olaparib treatment. We show a cell-line-dependent response to olaparib exposure,
and an increased susceptibility to DNA damage foci accumulation in triple-negative breast cancer
cell lines. Metabolic changes in response to olaparib treatment were cell-line and dose-dependent,
where we predominantly observed metabolic reprogramming of glutamine-derived amino acids
and lipids metabolism. Our work demonstrates the effectiveness of combining molecular biology
and metabolomics studies for the comprehensive characterisation of cell lines with different genetic
profiles. Follow-on studies are needed to map the baseline metabolism of breast cancer cells and their
unique response to drug treatment. Fused with genomic and transcriptomics data, such readout can
be used to identify key oncometabolites and inform the rationale for the design of novel drugs or
chemotherapy combinations.

Keywords: breast cancer; triple-negative; oncometabolites; DNA damage; precision medicine;
metabolic reprogramming
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1. Introduction

In a bid to develop new therapies against various cancer types, and genomic instability,
its underpinning mechanisms and contribution to tumorigenesis have been extensively
investigated over the past few decades. Genomic instability, a well-known contributor
to cancer, presents a therapeutic vulnerability that can be targeted in the development of
novel chemotherapy agents [1].

To maintain their genomic integrity, cells are equipped with a range of DNA damage
repair (DDR) pathways and responses to counteract DNA lesions formed in response to
endogenous and exogenous insults [2]. Hereditary mutations in these pathways have
been correlated with increased cancer susceptibility, such that defects in homologous
recombination contribute to approximately 10% of all breast cancers. These defects in
DDR machinery result in the loss of function for genes implicated in DNA repair (i.e.,
breast cancer susceptibility gene 1/2—BRCA1/BRCA2) or dysregulation of cell cycle
phases [3–5]. While these genetic alterations increase the susceptibility to oncogenesis—they
serve as therapeutic vulnerabilities—such that in the presence of a defective DNA repair
pathway the inhibition of an alternate DDR mechanism will lead to cell death. This
concept is referred to as synthetic lethality, which has formed the rationale for existing DDR
inhibitors [6,7]. One such class of drugs, poly(ADP-ribose) polymerase (PARP) inhibitors,
target vulnerabilities in the homologous recombination DDR pathway [8].

PARP inhibitors, as a class of DDR inhibitors, block the activity of PARP enzymes
involved in DNA damage repair, therefore leading to accumulation of DNA double-strand
breaks that gives rise to genomic instability and subsequent apoptosis [9]. Several PARP
inhibitors are currently approved as monotherapies for the treatment of locally advanced
or metastatic breast cancer for patients, with breast cancer harboring germline BRCA1/2
mutations or HER2-negative receptor status [8]. In 2022, olaparib was approved by the
FDA as an adjuvant treatment for patients with human epidermal growth factor receptor 2
(HER2)-negative and germline BRCA-mutated breast cancers following readout from the
OlympiA trial [10].

While PARP inhibitors present a therapeutic opportunity for targeting DDR defects in
breast and ovarian cancers, emerging evidence has shown a role for oncometabolites—small
molecule intermediates of cellular metabolism—in determining the response to these
chemotherapies. The biology of oncometabolites and their role in modulating DDR has
been increasingly studied over the past few years, guiding new combination therapies and
novel biological targets for drug discovery [1].

Metabolic reprogramming—a key feature of all cancers [11]—gives rise to chemoresis-
tance in both treatment-naïve and treatment-resistant breast cancers [12]. As with genomic
instability, drivers of metabolic reprogramming can be broadly classified as intrinsic and
extrinsic in origin [13]. Intrinsic stimuli, such as oncogenes and tumor suppressor genes,
modulate cellular metabolism in breast cancer with several regulators, including BRCA1/2,
MYC, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), and p53 as examples. The
functional interplay between these regulators of cellular metabolism mediates DNA dam-
age repair pathways and subsequent response to DDR chemotherapies. Recent evidence has
shown that the upregulation of glucose utilization and glutamine metabolism are required
to sustain increased tumor bioenergetic and biosynthetic demand, which vary according to
the cellular genetic makeup [14]. Intermediates from glucose and glutamine metabolism
have been identified as key oncometabolites regulating the response to chemotherapy drugs,
presenting novel biomarkers and potential actionable targets for novel drug discovery [13].

DDR mechanisms induce cellular metabolic changes through interference with purine
and pyrimidine biosynthetic pathways, amino acid metabolism, protein biosynthesis, and
energy metabolism, impacting several metabolic routes [15]. Mediators of DDR pathways,
including PARP, regulate several pathways exemplified by the pentose-phosphatase path-
way, the TCA cycle, and glycolysis. In breast cancer, PARP inhibition reduces glucose
consumption and alters amino acid and nucleotide metabolism depending on the different
cellular subtypes [16]. Moreover, BRCA-1 deficient breast tumors appear to rely on glucose
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consumption through enhanced glycolysis [17]. Differences in the metabolic signature
between cell lines harboring different DNA repair mutations and measuring their response
to PARP inhibitors can inform the rationale for selecting PARP inhibitors in certain breast
cancer types and explore potential additional vulnerabilities as druggable targets [18].

DNA repair and regulation of metabolism is critical for maintaining homeostasis in
normal human cells. However, the extensive dysregulation and aberrant function of both
these pathways promotes tumorigenesis. Until recently, DNA repair and metabolic path-
ways have routinely been researched as distinct fields within their own right, but emerging
research evidence an intrinsic inter-dependency between these pathways. Here, we report
the differential cellular response of breast cancer cell line models with different mutational
signatures (see Supplementary Table S1) and DDR defects to olaparib exposure through
combined analysis of DNA damage and metabolomics profiling. Combined evaluation of
the DNA damage response and metabolic reprogramming offers new opportunities in the
development of novel chemotherapies against cancer.

2. Materials
Cell Lines and Chemicals

All cell lines used in this study were purchased from the vendor and maintained
in accordance with manufacturer instructions. All cell culture reagents were obtained
from Gibco (Thermo Fisher Scientific, Loughborough, Leicestershire, UK). MCF7 (RRID:
CVCL_0031, Sigma, EACC collection) and MDA-MB-231 cells (RRID:CVCL_0062, ATCC,
Teddington, Middlesex, UK) were purchased and maintained in Dulbecco’s Modified Eagle
Medium (DMEM, high glucose) supplemented with 10% v/v FBS (high glucose, Invitrogen,
Inchinnan, Renfrewshire, UK), 1% v/v non-essential amino acids (NEAA) and 1% v/v
penicillin-streptomycin (Invitrogen). Corresponding cell line origins, hormone receptor
status and mutational profiles are included in Supplementary Table S1. HCC1937 cells
obtained from ATCC (RRID:CVCL_0290) were maintained in RPMI supplemented with
10% v/v FBS and 1% v/v penicillin-streptomycin. All cell lines were maintained at 37 ◦C in
a pre-humidified atmosphere containing 5% v/v CO2 and used within ten passages for the
purposes of this work (passage 2–10). Olaparib (SantaCruz Biotechnology Inc., Wembley,
Middlesex, UK) was prepared as a 100 mM stock solution in DMSO, aliquoted, and stored
at −20 ◦C until use. γH2AX, p53BP1 primary antibodies (Cell Signaling Technologies,
Danvers, MA, USA), were used for foci immunostaining alongside the Alexa Fluor® 488-
conjugated secondary antibody (Fisher Scientific, Loughborough, Leicestershire, UK).

3. Methods
3.1. Cell Viability Assays

MCF-7, MDA-MB-231, and HCC1937 cells undergoing exponential growth were
seeded at a density of 4,000 cells/well in 96 well plates and incubated overnight to facilitate
cell attachment. On the following day, cells were exposed to either blank growth medium
(control) or growth medium containing different concentrations of olaparib (treatment
medium) ranging from 0.01–500 µM for seven days at 37 ◦C and 5% v/v CO2. Treatment
media were replaced every three days with treatment medium. Following a seven-day
incubation, cell viability was measured using CellTiter 96® Aqueous Non-Radioactive
Cell Proliferation Assay (Promega, Chilworth, Southampton, UK) (3-(4,5-dimethylthiazol-
2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) reagent. The
resultant absorbance at 490 nm was measured using a GM3500 Glomax® Explorer Multi-
mode Microplate Reader (Promega).

Growth curves represent percentage cell growth following treatment with different
concentrations of olaparib and are plotted as a semi-log dose–response curve. The half
maximal inhibitory concentration (IC50) was determined using a linear regression model.
Statistical analysis was performed using GraphPad Prism (RRID: SCR_002798, v.9.0.1).
Three independent biological replicates (five wells per treatment concentration) were
performed for each cell line.
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3.2. Immunostaining for γH2AX and p53BP1

Foci immunodetection for γH2AX and p53BP1 was performed in both control (growth
medium) and for cells treated with olaparib (IC10, IC25, and IC50 doses) for seven days.
Briefly, cell monolayers were fixed in chilled 4% w/v formaldehyde containing 2% w/v su-
crose in PBS, followed by fixation in ice-cold methanol (100% v/v). Subsequently, cells were
permeabilized in 0.25% v/v Triton X-100 in PBS, blocked with 5% v/v goat serum/5% w/v
BSA, immunoprobed with either a primary rabbit anti-γH2AX antibody (RRID:AB_420030)
(1:1000) or primary rabbit anti-P53BP1 (1:200) antibody (RRID:AB_11211252, CST #2675 for
p53BP1) overnight at 4 ◦C. Cell monolayers were treated with goat, anti-rabbit Alexa Fluor®

488 conjugated secondary antibody and counterstained with DAPI. Image acquisition was
carried out using an Invitrogen EVOS Auto Imaging System (AMAFD1000-Thermo Fisher
Scientific) with a minimum of 100 cells imaged per treatment condition. Resultant foci
images were analyzed in Cell Profiler (v.4.2.1.) using a modified version of the speckle
counting pipeline.

3.3. Sample Preparation and Metabolite Extraction

MCF-7, MDA-MB-231, and HCC1937 cells were seeded at a density of 2 × 106 cells
per well in 6-well plates, and exposed to growth medium containing olaparib at IC10, IC25
and IC50 doses, as determined from the MTS assay (n = 5 per treatment concentration).
Following exposure to olaparib, the growth medium was aspirated from each well, cen-
trifuged to remove cell debris, and stored at −80 ◦C. Next, treated cells were washed with
pre-chilled PBS, with the metabolites quenched and extracted in a final volume of 1.5 mL
pre-chilled (−80 ◦C) mixed solvent (Methanol:Acetonitrile:Water = 50:30:20). Resultant
cell pellets were collected, and submerged in liquid nitrogen, vortexed, and sonicated for
3 min in an ice-water bath. This procedure was performed in triplicate. Resultant extracts
were centrifuged at 13,000× g for 10 min at 4 ◦C and the pellets were retained for protein
quantification using the Bradford assay. The resultant supernatant was collected and dried
with a Speed vac centrifuge (Savant-SPD121P). Dried metabolite pellets were reconstituted
in Acetonitrile:Water (50:50) at volumes normalized to the relative protein content. Quality
control (QC) samples were prepared by pooling samples across all control and treatment
groups. Solvent blank and QC samples were inserted in analytical batch after every five
samples to assess the stability of detecting system.

3.4. Liquid Chromatography Tandem Mass Spectrometry (LC-MS/MS)

Metabolite separation was performed on a binary Thermo Vanquish ultra-high per-
formance liquid chromatography system, where 5 µL of reconstituted cellular extract
was injected on to a Thermo Accucore HILIC column (100 mm × 2.1 mm, particle size
2.6 µm). The temperature of the column oven was maintained at 35 ◦C, while the autosam-
pler temperature was set at 5 ◦C. For chromatographic separation, a consistent flow rate of
500 µL/min was used where the mobile phase in positive heated electrospray ionisation
mode (HESI+) was composed of buffer A (10 mM ammonium formate in 95% acetonitrile,
5% Water with 0.1% formic acid) and buffer B (10 mM ammonium formate in 50% acetoni-
trile, 50% Water in 0.1% formic acid) (Table S2). Likewise, in negative ionization mode
(HESI-), buffer A (10 mM ammonium acetate in 95% acetonitrile, 5% water with 0.1% acetic
acid) and buffer B (10 mM ammonium acetate in 50% acetonitrile, 50% water with 0.1%
acetic acid). The elution gradient used for the chromatographic separation of metabolites is
included in Supplementary Information.

A high-resolution Exploris 240-Orbitrap mass spectrometer (Thermo Fisher Scientific)
was used to perform full scan and fragmentation analyses. Global operating parameters
were set as follows: spray voltages of 3900 V in HESI+ mode, and 2700 V in HESI-mode.
The temperature of the transfer tube was set as 320 ◦C with a vaporizer temperature of
300 ◦C. Sheath, aux gas, and sheath gas flow rates were set at 40, 10, and 1 Arb, respectively.
Data-dependent acquisitions (DDA) were performed using the following parameters: full
scan range was 70–1050 m/z with a MS1 resolution of 60,000. Subsequent MS/MS scans
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were processed with a resolution of 15,000. High-purity nitrogen was used as nebulising
and as the collision gas for higher energy collisional dissociation. Further details are
included in Supplementary Information.

3.5. Mass Spectrometry Data Processing

Raw data files obtained from Thermo Scientific XcaliburTM software 4.2 were im-
ported into Compound DiscovererTM 3.2 software where the “Untargeted Metabolomics
with Statistics Detect Unknowns with ID Using Online Databases and mzLogic” feature
was selected (Supplementary Information). The workflow analysis performs retention
time alignment, unknown compound detection, predicts elemental compositions for all
compounds, and hides chemical background (using Blank samples). For the detection
of compounds, mass, and retention time (RT) tolerance were set to 3 ppm and 0.3 min,
respectively. The library search was conducted against the mzCloud, Human Metabolome
Database (HMDB) and Chemical Entities of Biological Interest (ChEBI) database. A com-
pound table was generated with a list of putative metabolites (known and unknown).
Among them, we selected all the known compounds fully matching at least two of the
annotation sources. The selected metabolites were then used to perform pathway and
statistical analysis.

3.6. Pathway Analysis with MetaboAnalyst

Prior to analysis of the metabolic pathways with MetaboAnalyst 5.0 (RRID: SCR_015539,
https://www.metaboanalyst.ca/, accessed 6 May 2022), a HMDB identification code was
assigned to each selected metabolite. A joint pathway analysis was performed by integrat-
ing the genes relative to each cell line (Table S1) with the list of ID compounds and their
associated Log2 Fold change values. The integration method combined both genes and
metabolites into a single query, then was used to perform the enrichment analysis. This
latter was based on a hypergeometric test. Finally, important nodes (compounds) were
scored based on their betweenness centrality, and pathway analysis results were generated.

3.7. Statistical Analysis

All data are presented as mean ± standard deviation (n ≥ 5). For cell viability
and immunofluorescence quantification data, the Shapiro normality test was performed
(Supplementary Table S3). For metabolomics analysis, Principal Component Analysis (PCA)
was performed to test analytical reproducibility of QC injections, reduce the dimensionality
of our data, and determine the metabolic profiles of the different sample groups. Differential
analysis was used to compare differences between control and treatment groups and plotted
as a Volcano plot (log-fold change vs. −log10 p-value). Peak areas were log10 transformed
and p values were calculated for the sample group by analysis of variance (ANOVA) test.
A p value < 0.05 and fold-change of 1.5 was deemed to be statistically significant.

4. Results
4.1. Olaparib Sensitivity Analysis

To determine the olaparib dose range for subsequent foci and metabolomics exper-
iments, we measured the sensitivity of MCF7, MDA-MB-231, and HCC1937 cell lines to
olaparib exposure over a seven-day treatment duration. The rationale behind exploring
the sensitivity to olaparib in these cell lines was to perform a comparison between two
triple-negative (MDA-MB-231 and HCC1937) and a non-triple-negative (MCF-7) cell line.

Our results show that exposure to olaparib caused a reduction in cell viability in all
cell lines in a dose-dependent manner (Figure 1). We observed superior efficacy of olaparib
in reducing cell viability in both MCF7 and MDA-MB-231 cells, with a calculated half
maximal inhibitory concentration (IC50) of 10 µM and 14 µM, respectively. However, in the
case of HCC1937 cells, a higher concentration of olaparib was required to achieve the same
reduction in cell viability (150 µM), indicating a lower efficacy of response to olaparib in
this cell line.

https://www.metaboanalyst.ca/
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Figure 1. Corresponding MTS dose–response curves for MCF7, HCC1937, and MDA-MB-231 cells
treated with ascending doses of olaparib (0.1–500 µM) for seven days. The corresponding R2 values
for fitted dose–response curves in MCF7 (IC50 = 10 µM), MDA-MB-231 (IC50 = 14 µM), and HCC1937
(IC50 = 150 µM) cells were 0.89, 0.91, and 0.85, respectively.

4.2. Exposure to Olaparib Induces Dose-Dependent Formation of γH2AX and 53BP1 Foci in
Breast Cancer Cells

PARP inhibition induced by olaparib exposure results in the accumulation of DNA
damage in cells by compromising their DDR mechanisms. Therefore, we next investigated
the extent to which olaparib exposure at various doses (IC10, IC25, and IC50—determined
from MTS assays) promotes the accumulation of DNA double strand breaks (DSBs) in
MCF-7, MDA-MB-231, and HCC1937 cell lines. Key markers for DNA DSB formation
include phosphorylated histone H2 variant H2AX (γH2AX) [19] and the damage sensor
p53-binding protein 1 (p53BP1), which are rapidly recruited to sites of DNA damage and
their accumulation is directly proportional to the number of DSB lesions [20]. To measure
the extent of DNA DSB formation, we performed immunofluorescence of p53BP1 and
γH2AX foci.

Based on our results, p53BP1 and γH2AX foci levels increased in a dose-dependent
manner in both MCF7 and MDA-MB-231 cells in response to ascending doses of ola-
parib (Figures 2a,b,d,e and 3a,b,d,e). However, in HCC1937 cells, a significant increase in
foci numbers was not observed in comparison to increased foci numbers with ascending
olaparib doses for MCF-7 and MDA-MB-231 cells. the highest olaparib treatment dose
(150 µM), in comparison to the 17 and 50 µM exposure doses (Figures 2,3c,f,S1 and S2). Gen-
erally, a higher number of both p53BP1 (mean > 10 foci per cell) and γH2AX
(mean > 20 foci per cell) foci were observed in the HCC1937 cell line, compared to the MCF7
and MDA-MB-231 cells, where a mean of <10 foci per cell were measured for both markers.
These results are consistent with the dose-dependent sensitivity of MCF7 and MDA-MB-231
cells in response to olaparib exposure, further confirming cell-line-dependent response to
olaparib exposure.
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Figure 2. The formation of p53BP1 foci in response to treatment with either growth medium or
medium containing olaparib at the IC50 dose. Representative images of immunolabelled P53BP1 foci
(red), DAPI (blue) nuclear counterstain and composite (p53BP1 (red) and DAPI (blue)) in MCF-7,
MDA-MB-231, and HCC1937 cells treated with olaparib for seven days (a,c,e). Corresponding p53BP1
foci counts determined using Cell Profiler (b,d,f). 9 repeats with, on average, >100 cells per each
sample. p-values have been determined through ANOVA test. Dunnett’s multiple comparison test
was used as a follow up to ANOVA test and the p-values were represented as: ns, non-significant;
*, 0.05; **, 0.005; ****, >0.00005.
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Figure 3. The formation of γH2AX foci formation in response to treatment with either growth
medium or medium containing olaparib at the IC50 dose. Representative images of immunolabelled
γH2AX foci (green), DAPI (blue) nuclear counterstain and composite (γH2AX and DAPI) in MCF-
7, MDA-MB-231, and HCC1937 cells treated with for seven days (a,c,e). Corresponding γH2AX
foci counts determined using Cell Profiler (b,d,f). (>100 cells per sample). Dunnett’s multiple
comparison test was used as a follow up to ANOVA and corresponding p-values were represented as:
ns, non-significant; **, 0.005; ****, >0.00005.

4.3. Biomolecular Pathways Altered in Response to Olaparib Exposure Vary across Different Cell Lines

To comprehensively measure the extent of variation induced by olaparib exposure in
MCF-7, MDA-MB-231, and HCC1937 cell lines, we profiled their metabolome using an in-
house untargeted liquid chromatography-mass spectrometry-based metabolomics pipeline
(Figure S3a). After data acquisition, data processing and analysis were performed in
Compound Discoverer 3.2. First, we used principal component analysis (PCA) to visualize
and interpret the clustering of quantified metabolite data to examine global differences
between treatment groups and cell lines examined, which was followed by pairwise PCA
between control and treated groups across positive and negative analysis modes (Figure 4).
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Figure 4. Statistical analyses of global metabolic features identified in MCF7, MDA-MB-231, and
HCC1937 upon exposure to the IC50 olaparib dose for seven days acquired in positive and negative
ionization mode. For each treatment group, five replicates were used. Data points in the two-
dimensional PCA score plot were central scaled. (a) PCA pairwise analysis and differential analysis
of metabolites altered in IC50-treated cells, (b) Volcano plots displaying enriched (blue) and depleted
(grey) metabolic features by representing the log2 fold change in altered features and the −log10
adjusted p-values with cut off values selected at >1.5 and <0.05, respectively. Upward arrows
represent enrichment of features, while downward arrows represent depleted features.

Pooled QC data confirm the stability of the data acquisition system across all the mea-
surements performed in positive and negative ionization acquisition modes (Figure S3b).
Distinct clustering patterns were observed, with better separation for the IC50 olaparib
treatment dose across all cell lines (Figures 4a and S4). Volcano plots indicate the differ-
ential number of metabolic features that are significantly altered following exposure to
olaparib, relative to control (Figures 4b and S5, Table S5). From a metabolic perspective, we
observed that HCC1937 (BRCA1-mutated) cells were the most susceptible to exposure at
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the IC50 olaparib treatment dose, while the MCF7 cells showed a higher number of signif-
icantly altered metabolic features at the IC25 olaparib treatment concentration. Together,
these findings show a differential dose- and cell-line-dependent metabolic response to
olaparib exposure.

4.4. Amino Acid and Lipid Metabolism Are Significantly Altered in Response to Olaparib Exposure

To analyze specific biomolecular pathways altered by olaparib exposure, we used Metabo-
Analyst to identify key metabolic pathways significantly perturbed by olaparib treatment and
performed enrichment analysis for both control and treated samples (Figures 5 and S6). Among
the pathways ranked in the top ten, we selected altered pathways with a corresponding
pathway impact >0.1, and a p-value < 0.05.

Figure 5. Pathway enrichment analysis of MCF7 (10 µM), MDA-MB-231 (14 µM), and HCC1937
(150 µM) cells following a seven-day exposure to olaparib. Enrichment analysis was based on the
hypergeometric test. Topological analysis was based on betweenness centrality. The tight integration
method was used by combining genes and metabolites into a single query. A p < 0.05, and pathway
impact >0.1 were deemed significant.

Across all cell lines examined, the top ten putative pathways significantly altered
in Metaboanalyst (Figure 5, Table S6) were based on amino acid (arginine biosynthesis,
glutamine, glycine, serine, and threonine metabolism) and lipid metabolism (butanoate
metabolism). Following the identification of metabolic pathways altered by olaparib
exposure, we constructed a Venn diagram (Figure S7) to outline common overlapping and
cell line-specific altered metabolic features.

Overlapping pathways are mostly represented by amino acid metabolism (glutamine,
glutamate, aspartate, alanine, arginine, and proline), suggesting a strong reliance of breast
cancer cell metabolism on amino acids under baseline conditions (control samples). Upon
olaparib exposure, the same pathways (amino acid metabolism) were among the most
significantly altered across all cell lines, while fatty acid (butanoate metabolism) and
vitamin B6 metabolism were only significantly perturbed in MCF-7 cells.

Next, we explored individual metabolites that were associated with significantly
altered metabolic pathways in response to olaparib exposure and evaluated relative changes
in their levels between control and treatment samples. These results are presented through
a heatmap clustering analysis (Figure 6). A correlation analysis between each metabolite is
shown in Figure S8, and a wider list of compounds specific for each cell type is provided
(Table S7).
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Figure 6. Heatmap cluster analysis of relevant metabolites associated with the pathways altered
upon exposure to olaparib in MCF7 (10 µM), MDA-MB-231 (14 µM), and HCC1937 (150 µM) cells
for seven days. Clustering and distance function are Ward and Euclidean, respectively. Normalized
areas indicate chromatographic peaks areas that have been normalized based on the QC samples to
compensate for batch effects.

Multiple amino acids (glutamine, glutamate, arginine, proline, methionine, glycine,
threonine, taurine, and hypotaurine) were found to be depleted following olaparib exposure
(relative to control) in all cell lines examined. Arginine and proline metabolism were signif-
icantly depleted by olaparib exposure, with depletion of their derived polyamines detected
in all cell lines examined. Conversely, catabolic products of arginine and proline metabolism
(N8-Acetylspermidine, N1-N8-Diacetylspermidine, and N1-N12-Diacetylspermine) were
enriched. Elevated levels of serine were observed in MCF7 and MDA-MB-231 cells, while
depletion of serine levels was seen in HCC1937 cells.

Alpha-ketoglutarate (α-KG-glutamine-derived intermediate of the TCA cycle) was
enriched in MCF7 and depleted in MDA-MB-231 and HCC1937 cells. A negative correlation
was observed between α-KG and glutamine levels, and a positive correlation between
α-KG, and citric and fumaric acid (TCA cycle intermediates). Aspartate (a TCA cycle
product) accumulated in the KRAS-mutant MDA-MB-231 cells, while aspartate depletion
was observed in MCF7 and HCC1937 cells. Glucose levels were significantly elevated
relative to control samples in HCC1937 cells. Asparagine (a byproduct of aspartate) was
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absent in MDA-MB-231 cells, while its enrichment was detected in MCF7 and HCC1937
cells. In parallel, accumulation of AMP was observed in both MCF7 and HCC1937 cell
lines, while it was absent in MDA-MB-231 cells, and enrichment of PPi was detected in all
cell lines examined following olaparib exposure.

In the case of lipid metabolism, we observed a global depletion of phosphocholines
(PC) and phosphoethanolamines (PE) in all cell lines following olaparib treatment. Acylcar-
nitine levels varied across the cell lines, with an overall enrichment of long (C14–C21) and
very-long chain acylcarnitines (>C22) in all cell lines treated with olaparib. Moreover, we
observed enriched alpha-linoleic acid (a polyunsaturated fatty acid-PUFA) levels in MCF7
and MDA-MB-231 cells, which was absent in HCC1937 cells.

Compared to non-treated cells, elevated levels of glucose were detected in all cell
lines studied following olaparib treatment, while downregulation of most nucleobases
was observed. Finally, NAD+ downregulation was detected in all cell lines treated
with olaparib.

An overview of the metabolic features altered in response to olaparib exposure is
given in Figure 7, where we mapped cell line differences in metabolite levels through the
Kyoto Encyclopaedia of Genes and Genomes (KEGG) database. Moreover, in the figure we
represented the fitness effect score of metabolic enzymes relative to each Olaparib-treated
cell, which have been obtained through a cross-comparison with the Dependency Map
Portal (DepMap; Table S8). The fitness effect score measures the effect of knocking out a
gene on cell proliferation. A negative score indicates that the knocked-out gene causes
a slower cell proliferation, while a positive score is indicative of a consequent enhanced
proliferation [21].

Figure 7. A summary of putatively identified metabolic pathways altered in response to olaparib
exposure at IC50 doses. Significantly altered features with a Log2 fold change of >1.5 (blue-enriched
and grey-depleted). Fitness effect score of metabolic enzymes (light-blue boxes) in relation to PARP

expression in each cell line. Positive and negative scores are in green and red, respectively. MCF-7 ( ),

MDA-MB-231 ( ), and HCC1937 ( ). Fitness effect score is based on the Chronos algorithm.
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5. Discussion

PARP inhibitors have shown promising results in the treatment of metastatic breast
cancers harboring germline BRCA1/2 mutations [22,23]. Recent clinical studies have
shown evidence of PARP inhibitor efficacy in the management of breast cancer, irrespective
of tumor BRCAness. Prior work has shown that BRCA1-mutated cells carrying a TP53
mutation are resistant to treatment with PARP inhibitors [24]. Therefore, additional factors
beyond BRCAness may govern sensitivity to PARP inhibition.

In this study we analyzed the sensitivity of two triple-negative (MDA-MB-231 and
HCC1937) and MCF-7 (ER+, PR−, HER2−) cell lines to olaparib PARP inhibition (PARP1/2).
The rationale for selecting these cell lines was to explore how their different genetic profiles
(see Supplementary Table S1) define the observed differential biomolecular perturbations
in response to olaparib treatment. Initially, we examined the responsiveness of MCF-7,
MDA-MB-231, and HCC1937 cell lines to olaparib exposure using the MTS cell viability
assay (Figure 1). Our results show differential sensitivity to olaparib exposure across the cell
lines examined, with MCF-7 and MDA-MB-231 showing sensitivity to olaparib treatment
at lower micromolar concentrations, and the BRCA1-mutant HCC1937 cell line showing
less sensitivity (IC50—150 µM). These findings are in agreement with previous reports of
HCC1937 resistance to PARP inhibition, where the identification of predictive biomarkers
of response to PARP inhibitor treatments was recommended beyond BRCA1/2 status [24].

Our analysis of γH2AX and p53BP1 DNA DSB immunolabelled foci (Figure 3) showed
a higher occurrence of DNA damage foci in HCC1937 cells in comparison with MCF-7
and MDA-MB-231 cells with wild-type BRCA status. These observations suggest that
BRCA status does not necessarily translate to olaparib sensitivity, and additional DDR
components may define responsiveness. At present, routine clinical decision making
surrounding the selection of treatment interventions are based on BRCA status, anatomical
location, hormone receptor status and tumor stage, with very limited attention given
to other mediators of DDR—namely homologous recombination—known to confer a
BRCAness phenotype similar to BRCA 1 or 2 loss. Several recent studies have used
whole-genome sequencing or the integration of homologous recombination panel scoring
systems to provide an additional framework for predicting responders to PARP inhibitor
treatment [25,26].

Genetic biomarkers are routinely used in the clinical stratification of breast cancers
and predicting treatment-emergent resistance [27]. While genome-wide studies have
improved patient stratification efforts, they lack the potential to account for functional
phenotypic effects resulting from protein expression levels, or gain- or loss of function
effects. Metabolomics has emerged in the past decade as an additional research toolbox for
studying potential biomarkers of breast cancer, with a range of applications ranging from
early detection to the discovery of new metabolites and prognostic classification of patients
with breast cancer [28].

Our goal in the present study was to apply combined analysis of DNA damage foci
formation with global untargeted mass-spectrometry based metabolomics to map the
metabolic changes occurring following exposure to olaparib. We examined the baseline
differences in cellular metabolism across the cell line panel and extended this evaluation to
examine cell-line-dependent response to olaparib treatment. Under baseline cell culture
conditions, we found overlapping metabolic features (alanine, aspartate, glutamine, argi-
nine, proline, glycine, serine, and threonine) occurring across all three breast cancer cell
lines studies, and metabolic signatures that were unique to specific cell lines (MCF7: sph-
ingolipid and glycerophospholipid metabolism; MDA-MB-231: taurine and hypotaurine
metabolism; HCC1937: glyoxylate and dicarboxylate metabolism) (Figures 5 and 6).

Our analysis of metabolites significantly altered in response to olaparib treatment
correlate with reports from Bhute et al., where metabolic markers of PARP inhibition were
reported as changes in amino acid metabolism (glutamine and alanine), downregulation
of osmolyte levels (taurine, and GPC), phosphocreatine, lactate, and pyruvate in MCF7
cells [29]. We reported downregulation of those metabolites in the MDA-MB-231 and
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HCC1937 cells, while low levels of fumarate were observed only in the HCC1937 cells
(Figure 6). Bhute et al. also reported increased NAD+ levels for cells treated with veliparib.
In our results, NAD+ levels increased in the MCF7 cells treated with olaparib at the
IC10 treatment concentration, accompanied by a decrease in NAD+ levels at ascending
concentrations of olaparib. Reduced levels of NAD+ were also detected in the MDA-
MB-231 and HCC1937 cells at all treatment concentrations. Recent studies have shown
that in TNBC cells, olaparib enhances the signaling pathways of other NAD+-dependent
deacetylase (i.e., sirtuins) [29,30]. These findings are in agreement with our observation of
depleted acetyl-amino acid levels and enrichment of methyl-pyridines, -pyrrolidines, and
-nucleosides. Further studies are needed to confirm the divergence of NAD+ flow towards
alternative pathways and its association with specific breast cancer subphenotypes.

Glutamine, a precursor for protein, nucleotide, and lipid biosynthesis, is a fundamental
amino acid in breast cancer cell metabolism, playing a pivotal role in providing anaplerotic
intermediates for the tricarboxylic acid (TCA) cycle [31]. Previous reports have indicated
a reduction of glutamine levels only for the TNBC cells after treatment with veliparib,
and in the MCF7 cells only in combination with other DDR inhibitors [16]. Our results
show reduced glutamine levels in all cell lines treated with olaparib, suggesting increased
glutamine utilization. Once internalized by cells, glutamine can be converted to glutamate
and alpha-ketoglutarate (α-KG). α-KG—a by-product of isocitrate—is oxidized in the TCA
cycle through a reaction catalyzed by isocitrate dehydrogenase (IDH), which is frequently
mutated in cancer. Several studies have studied α-KG as an oncometabolite, where elevated
levels induce the reversal of enhanced glycolysis through downregulation of the Hypoxia-
inducible factor (HIF1), which, following PARP inhibition, leads to cell death [32,33]. Recent
findings have shown that mutant IDH—and the consequent synthesis of aberrant α-KG
forms—confers a BRCAness phenotype [34], downregulating the expression of the DNA
repair enzyme Ataxia-telangiectasia mutated (ATM) kinase [35], altering the methylation
status of loci surrounding DNA breaks [36]. Together, these alterations lead to homology-
dependent repair (HDR) impairment and increase susceptibility to PARP inhibition. On this
basis, the reduced α-KG levels observed in olaparib-treated MDA-MB-231 and HCC1937
cells shows the basis for potential resistance to the anti-proliferative effects of olaparib. The
increased utilization of α-KG by HCC1937 cells is paralleled by an increased consumption
of serine at ascending doses of olaparib. These observations are consistent with reports that
in BRCA1-mutated TNBC cell lines, approximately 50% of α-KG results from the flux of
serine metabolism [37].

Glutamine is also a source of nitrogen groups for the synthesis of nucleobases and
nucleotides, either directly or through a process involving the transamination of glutamate
and the TCA cycle-derived oxaloacetate that generates aspartate [38–40]. Our results
show that low levels of glutamine are associated with overall reduction in nucleobase
and nucleotide levels. MCF7 and HCC1937 cells showed accumulation of adenosine
monophosphate (AMP), which represents a depleted energy and nutrient status of the cells
known to activate the metabolic sensor AMP-activated protein kinase (AMPK) leading
to cell growth inhibition [41]. Different studies have considered activation of AMPK a
metabolic cancer suppressor and an attractive therapeutic target for TNBC [42], however,
its signaling network in response to PARP inhibition in different breast cancer cells needs to
be established. In opposition to what was observed by Bhute et al., aspartate, a byproduct
of the TCA cycle, accumulated in the MDA-MB-231 cells after PARP inhibition compared
to its reduction in the MCF7 and HC1937 cells. Lowered plasma aspartate levels have
been diagnosed in breast cancer patients, suggesting an increased tumor utilization of this
metabolite [43]. Moreover, we observed that aspartate metabolism is relevant both in the
baseline model and in response to olaparib, which suggests a role of this metabolite in
regulating the different metabolic phenotypes of breast cancer cells. However, its role has
been poorly investigated, and little is known about its association with PARP inhibition.

Among the pathways of aspartate utilization, asparagine is converted through the
enzyme asparagine synthetase (ASNS). The reaction requires glutamine as a substrate
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and consumption of adenosine triphosphate (ATP) to produce adenosine monophosphate
(AMP) and pyrophosphate (PPi). Physiological levels of asparagine occur at levels of
<0.05 mM in human plasma [44]. Cancer cells harboring mutant KRAS (e.g., MDA-MB-231)
possess lower ASNS expression levels, leading to lower baseline aspartate levels explaining
the rationale for the lack of aspartate detection in MDA-MB-231 lines [45]. In breast cancer
cells, the increased bioavailability of asparagine promotes metastatic progression [46] due
to its role in protein synthesis and regulation of amino acid homeostasis [47]. We found
elevated asparagine levels in olaparib-treated MCF7 and HCC1937 cells, suggesting a role
for asparagine in the observed responses to exposure to PARP inhibitor.

Beyond asparagine synthesis, aspartate amidation through ASNS presents a source
of amino building blocks for the synthesis of arginine in the urea cycle, which is in turn
responsible for the synthesis of polyamines catalyzed by ornithine decarboxylase (ODC).
Polyamine accumulation has previously been correlated with the increased proliferation of
both hormone-dependent and independent breast cancer cells [48], and was recently found
to contribute to BRCA1-mediated DNA repair [49]. Moreover, metabolic profiling of plasma
samples from patients with TNBC revealed an increase of diacetyl spermines associated
with elevated expression of MYC, a well-known oncogene driving TNBC development
and proliferation. Here, we found elevated diacetyl spermine levels following olaparib
treatment in both TNBC and non-TNBC cells, suggesting an upregulation of polyamine
catabolism, irrespective of cell line BRCA- and hormone receptor status. Parallel to their
relevance in cellular metabolism, amino acids also serve as biological buffers through
regulation of cellular pH. Low extracellular pH is associated with positively charged
amino acids and a known hallmark of cancer arising from enhanced glycolysis, production
and altered lactate metabolism, resulting in altered mTOR pathway activation, ultimately
regulating cancer cell metabolism [50,51].

Glutathione (GSH) is involved in the protection against ROS and regulation of intra-
cellular redox homeostasis. Elevated GSH levels have previously been reported in TNBC
compared to luminal breast cancers, suggesting the relevance of GSH to our observations
of lower sensitivity to olaparib in TNBC cell lines [17,52].

Lipids mediate various cellular biological functions, including energy storage, cell mem-
brane structural composition and signal transduction, the increased biosynthesis of which is a
marker of metabolic rewiring observed in malignant breast cancers [53,54]. Our findings show
downregulation of fatty acid biosynthesis following olaparib treatment, with a reduction
in phospholipid levels, including lysophosphatidylcholines and glycerolphosphocholines,
in all cell lines. Poly-unsaturated fatty acids (PUFAs) have previously been implicated in
MCF7 and MDA-MB-231 cell apoptosis through the induction of lipid peroxidation and
altered cellular redox state [55]. Moreover, elevated PUFA levels have been associated
with the proteolytic cleavage of PARP and its inhibition, leading to cell death [56]. On this
basis, the reduced PUFA levels observed in HCC1937 cells may indicate their resistance to
olaparib treatment. Only a limited number of studies have reported a correlation between
PUFAs and breast cancer subphenotypes, requiring further validation by additional studies.

Future targeted metabolomics studies using additional TNBC cell lines and clinical
tumor clinical specimens are required to validate our observations. Validation of our
findings could define prognostic biomarkers that will aid evaluation of patient prognosis in
the clinical setting and enable the implementation of precision medicine in the management
of breast cancer.

6. Conclusions

Our data show differential sensitivity of breast cancer cell lines to olaparib treatment
that was dose-dependent and demonstrated the increased sensitivity of TNBC cells to DNA
damage foci accumulation. The application of metabolomics to the study of breast cancer
remains in its infancy, with only a handful of studies reporting combined metabolomics and
phenotypic analyses. Data acquired from metabolomics analysis can be validated against
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routine molecular biology and phenotypic assays, providing a powerful platform for
biomarker detection or the discovery of novel actionable pathways for drug development.

Our results show that fingerprinting the metabolic profile of cells can be a powerful
tool for uncovering potential oncometabolites or mechanisms giving rise to chemoresis-
tance. Findings from such studies may provide potential additional actionable targets
for modulating response to drug treatment or the design of new drug combinations that
will overall enhance DNA damage efficacy, ultimately improving patient response to
radiotherapy and adjuvant chemotherapy.
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www.mdpi.com/article/10.3390/cancers14153661/s1, Figure S1: The formation of p53BP1 foci in
response to treatment with either growth medium or medium containing Olaparib at various doses,
Figure S2: The formation of γH2AX foci formation in response to treatment with either growth
medium or medium containing olaparib at various doses, Figure S3: Untargeted mass spectrometry-
based metabolomics and data analysis pipeline (a- created in Biorender.com). Global metabolic
features identified in MCF7, MDA-MB-231 and HCC1937 upon exposure to IC10, IC25 and IC50
olaparib doses for seven days acquired in positive and negative ionization mode (b), Figure S4:
PCA pairwise analysis of untargeted metabolomics data collected, in both positive and negative
mode, from MCF7, MDA-MB-231, and HCC1937 cells treated with IC10, IC25 and IC50 olaparib
treatment doses in positive and negative ionization modes, Figure S5: Volcano plots showing the
log2 fold change and the -log10 adjusted p-values in metabolite levels induced by treatment with
different doses of Olaparib (IC10, IC25, and IC50) in MCF7, MDA-MB-231 and HCC1937 cells,
Figure S6: Enrichment analysis of non-treated MCF7, MDA-MB-231 and HCC1937 cells, Figure S7:
Venn diagram representing the metabolic pathways in MCF7, MDA-MB-231 and HCC1937 cells,
Figure S8: Pearson’s correlation analysis between the relevant metabolites identified within each
different breast cancer cell line, Table S1: Cell lines used in this study and their corresponding
clinicopathologic profiles, Table S2: Corresponding elution gradient used for the chromatographic
separation of metabolite extracts, Table S3: Normality test for cell viability and immunofluorescence
quantification data, Table S4: ANOVA analysis of olaparib dose-dependent DNA DSB immunofoci
formation, Table S5: Global differential number of altered metabolites for samples treated with IC10,
IC25 and IC50 of Olaparib and their relative control (non-treated) samples, Table S6: Metabolic
pathways in different breast cancer cells (MCF7, MDA-MB-231, and HCC1937) before and after
treatment with IC50 dose of Olaparib, Table S7: Classification of the metabolites identified in MCF7,
MDA-MB-231 and HCC1937 at all olaparib doses (IC10, IC25 and IC50) after seven days treatment,
Table S8: Effect scores of enriched metabolic genes in MCF-7, MDA-MB-231 and HCC1937 cells
evaluated through the Dependency Map Portal (DepMap) database. Fitness effect score is based on
the Chronos algorithm.
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