
Citation: Lee, S.; Park, Y.S.; Kim, J.H.;

Lim, A.R.; Hyun, M.H.; Kim, B.;

Lee, J.W.; Lee, S.B.; Kim, Y.H.

Identification of Biomarkers

Associated with Liver Metastasis

Progression from Colorectal Cancer

Using Exosomal RNA Profiling.

Cancers 2022, 14, 4723. https://

doi.org/10.3390/cancers14194723

Academic Editor: Mario Mascalchi

Received: 13 June 2022

Accepted: 22 September 2022

Published: 28 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Article

Identification of Biomarkers Associated with Liver Metastasis
Progression from Colorectal Cancer Using Exosomal RNA Profiling
Soohyeon Lee 1,† , Young Soo Park 2,† , Jwa Hoon Kim 1, Ah Reum Lim 1 , Myung Han Hyun 1, Boyeon Kim 2,3,
Jong Won Lee 2,4 , Saet Byeol Lee 2,3 and Yeul Hong Kim 1,2,3,*

1 Division of Medical Oncology and Hematology, Department of Internal Medicine,
Korea University College of Medicine, Seoul 02841, Korea

2 Cancer Research Institute, Korea University College of Medicine, Seoul 02841, Korea
3 Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul 02841, Korea
4 Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
* Correspondence: yhk0215@korea.ac.kr; Tel.: +82-2-920-5569; Fax: +82-2-926-4534
† These authors contributed equally to this work.

Simple Summary: Exosomes are a class of extracellular vesicles released by cancer cells that play
important roles in cancer progression and therapy resistance. Using RNA sequencing in plasma
exosomes from patients with metastatic colorectal cancer (mCRC), we investigated exosomal RNA
expression profiles between initial recurrence and cancer progression after metastasectomy. The
differential expression level of the exosome RNA was enriched in samples from patients with
metastases to the liver, multiple metastatic sites and large tumor burden. In terms of liver metastasis,
the interferon-α response gene set was enriched in a tumor burden of ≥1 cm3, and CXCL10, CXCL11
and SAMD 9 were highly expressed in the exosomal RNA which was validated using GSEA. High
CXCL10 expression was associated with shorter progression-free survival (PFS), but CXCL11 and
SAMD 9 were not correlated with PFS. Exosomal CXCL10 RNA could be a novel biomarker for liver
metastasis from mCRC and a potential target for the prevention and treatment of these patients.

Abstract: This study aimed to identify novel biomarkers for metastatic colorectal cancer progression
using exosomal RNA expression profiling. The exosomal RNA expression profiles of 54 patients with
mCRC were investigated. Exosomal RNA profiling was performed at the time of relapse immediately
before metastasectomy and cancer recurrence or progression after metastasectomy. The up- and
down-regulated RNA expression profiles were screened and analyzed using H-cluster, principle
component analysis and gene ontology. The tissue expression profile of the liver metastases was
compared with the GSE 41258 set using GSEA tools. We identified two distinctive biological process
gene sets (IFNA and PCDB families) related to metastatic progression. The interferon-α response
gene set was enriched, especially when the tumor volume was ≥1 cm3. CXCL10, CXCL11 and SAMD
9 mRNA were highly expressed in the plasma exosome samples of patients with mCRC to the liver.
Furthermore, high expression of CXCL10 but not CXCL11 or SAMD9 was associated with a poor
prognosis and shorter progression-free survival. Conclusions: Cancer-derived exosomal CXCL10
may be a novel biomarker for liver metastasis of mCRC and a potential target for the prevention and
treatment of mCRC with liver metastasis.

Keywords: liquid biopsy; exosomal RNA; metastatic colorectal cancer; liver metastasis; therapy resistance

1. Introduction

Colorectal cancer (CRC) is the third most common cancer in Korea and worldwide [1].
Among patients diagnosed with CRC, 20–25% have metastatic CRC (mCRC), and 40%
present with recurrence after previously treated localized disease [2]. mCRC remains
incurable in most patients, with a 5-year survival rate of less than 20%. The major reason
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for poor outcomes is therapy resistance. Despite the development of chemotherapy and
targeted agents, nearly all patients treated with systemic chemotherapy eventually develop
resistance and ultimately succumb to the progression of metastatic disease. Understanding
the mechanisms by which cancer cells evade treatment could unlock novel therapeutic
strategies to overcome drug resistance and improve survival.

Liquid biopsy in cancer is an attractive option to improve early detection and treatment
stratification as well as to monitor recurrence and detect residual disease [3]. In the context
of liquid biopsies, the advent of exosome research shows promise in the determination
of the complexity of cancer [4]. Exosomes are 30–150 nm phospholipid bilayer-enclosed
vesicles surrounding a small amount of cytosol and are recognized as key autocrine and
paracrine mediators of cell-to-cell communication through the transportation of bioactive
molecules such as mRNA, proteins and microRNAs (miRNAs) [5]. Functionally, exosomes
have been shown to influence the tumor microenvironment as vehicles, harboring a diverse
repertoire of molecular cargo that is shielded from the degradation in circulation and that is
representative of their originating cells. Therefore, the quality, diversity and tumor-specific
nature of exosomal DNA and exosomal RNA provides a potentially favorable alternative
to cell-free nucleic acids for comprehensive high-resolution tumor profiling. The exosomal
proteome may reflect not only aberrant cancer signaling but also the potential stromal re-
sponse of tumors. A key advantage of exosomal RNA is the preserved quality of transcripts,
which alters the transcriptome of the recipient cell, thereby accelerating the progression of
cancer. Exosomal RNAs facilitate drug resistance through the efflux of intracellular drugs,
the inhibition of apoptosis, DNA-repair enhancement and the transport of drug efflux
pumps to drug-sensitive cells. Using tumor tissues and serum exosomes collected before
and after chemotherapy, specific gene expression can be altered in the tissues and exosomes
of progressive/stable disease groups rather than in the partial/complete response group.
Next generation RNA sequencing (RNA-seq) has been employed to explore the expres-
sions of genes that may regulate the drug sensitivity of cancer cells from formalin-fixed
paraffin-embedded [6] exosomes in various types of cancers [7]. However, the mecha-
nism underlying the association between RNA profiling dynamics and mCRC progression
remains to be fully elucidated.

To gain better insight into the key genes and pathways involved in therapy resistance
and progression in mCRC, a bioinformatic analysis of the exosomal RNA in mCRC with
oligometastasis and GSE 41258 gene expression profiles was conducted to identify potential
key genes and pathways associated with metastatic progression after metastasectomy.

2. Materials and Methods
2.1. Study Design and Participants

We prospectively enrolled patients with mCRC who underwent surgical resection
of the primary tumor and distant metastasis with curative intent at the Korea University
Anam Hospital between March 2017 and February 2020. Patients aged >19 years with stage
IV CRC and oligometastasis who were planning metastasectomy with curative intent were
included. The decision regarding the chemotherapy timing and regimen was made by
the treating physicians based on the current mCRC treatment guidelines. In this cohort,
paired blood samples were obtained from 54 patients at the time of premetastasectomy and
cancer progression after metastasectomy. The samples of all participants were collected
with informed consent. This study was approved by the Institutional Review Board of the
Korea University Anam Hospital (2017AN0070).

2.2. Sample Preparation and the Isolation and Identification of Exosomes

Plasma was isolated within 1 h of blood collection by centrifugation of whole blood at
2500 rpm for 7 min at room temperature. The supernatant was transferred to a fresh tube
and centrifuged at 13,000 rpm for 10 min at 4 ◦C. The supernatant was taken as plasma and
aliquoted into a cryo-tube for storage at −80 ◦C until use.
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2.3. Exosomal RNA Extraction and Sequencing

Exosomal RNA was extracted using Qiagen exoRNeasy (Qiagen, Germantown, MD,
USA) according to the manufacturer instructions. The concentration and quality were
measured using a tape station (Agilent, Santa Clara, CA, USA) and a high sensitivity
RNA screen tape. RNA samples were stored at −80 ◦C until sequencing. A low input of
100 pg of RNA samples was used for amplification using the Ion AmpliSeq Transcriptome
Human Gene Expression Kit (Thermo Fisher Scientific, Van Allen Way, Carlsbad, CA, USA).
The RNA libraries were prepared following manufacturer instructions. Briefly, for first
strand cDNA synthesis, 100 pg of low input, high-quality RNA was used to reverse the
transcribe and amplify the targets with maximum PCR cycles. The purified amplicons were
partially digested to remove primer sequences, ligated to adapters with barcode sequences
and purified. The final amplicons were quantified by qPCR for the undiluted Ampli-Seq
Transcriptome library to normalize each library to 100 pM. RNA sequencing was performed
using an Ion Torrent PGM system with a target probe of 25,000 primers, following the
manufacturer recommendations. After sequencing, the average read of the samples was
7,195,306 and of on-target reads was 73.76%.

2.4. Data Processing and Analysis

The sequencing results were normalized as fragments per kilobase of exon per million
(FPKM), and each gene transcript was normalized to beta-actin level. Expression profiles
were compared between baseline and cancer progression. Five-fold increases and decreases in
differential expression genes (DEGs) for each individual were listed as log ratios. A total of
7787 genes were assigned to hierarchical clustering for screening highly contributing genes
using R Bioconductor, and principal component analysis (PCA) was conducted using SPSS soft-
ware. The factor scores for grouping and significance gene lists were used as the significance
gene lists. For further functional enrichment analysis of DEGs in mCRC with oligometastasis,
gene ontology (GO) enrichment analysis, including the biological process (BP) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway were performed using the Database for
Annotation, Visualization and Integrated Discovery (DAVID, http://david.abcc.ncifcrf.gob/
(accessed on 10 November 2021)) web-based platform. Gene set enrichment analysis (GSEA)
from the Broad Institute (software.broadinstitute.org/gsea/index.jsp (accessed on 6 December
2021)) was used to cluster significant gene sets associated with given annotated terms. In
the present study, mCRC samples with liver metastasis were analyzed using GSEA with
the annotation of ‘hallmark gene sets’. A significant cut-off value was defined as p < 0.05.
Candidate gene families were analyzed using MeV software for H-clustering to visualize
clinicopathological information and gene expression. The RNA-seq and validation workflows
are presented in Figure 1.
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2.5. Statistical Analysis

Statistical analysis was performed using the R 4.0.2 software. DAVID gene ontology
was considered statistically significant with p < 0.05 and FDR < 0.25.

3. Results
3.1. Patient Characteristics

This study enrolled consecutive patients with mCRC who had relapsed with oligometasta-
sis and then underwent metastasectomy with or without chemotherapy. The median age of
the patients was 57 years, and more than half of the patients were male (n = 31/54, 57%). Of
the 54 patients who underwent metastasectomy with curative intent, 42 received systemic
chemotherapy before metastasectomy: cytotoxic chemotherapy only (n = 4); bevacizumab-
containing chemotherapy (n = 24); cetuximab-containing chemotherapy (n = 14); and
12 patients underwent metastasectomy immediately without chemotherapy. The median
progression-free survival (PFS) after metastasectomy was 374 days. The recurrence sites
were the liver (n = 16, 30%), lung (n = 15, 28%), liver and lung (n = 20, 37%) and others
(lymph node and peritoneum, n = 3, 6%). The sum of the metastatic tumor burden was
smaller <1 cm3 in 24 patients (46%) and larger than 1 cm3 in 30 patients (54%). The clinical
data of patients are summarized in Table 1.

Table 1. Baseline characteristics.

Clinical Variables Number of Patients (N, %)

Age <65 years 39 (72.2)
≥65 years 15 (27.8)

Gender
Male 31 (57.4)

Female 23 (42.6)

Perioperative therapy

Surgery only 12 (22.2)
Cytotoxic chemotherapy 4 (7.4)

Cetuximab-based therapy 14 (25.9)
Bevacizumab-based therapy 24 (44.4)

Metastatic sites

Liver 16 (29.6)
Lung 15 (27.9)

Multiple (only liver and lung) 20 (37.0)
Others (bone, peritoneum) 3 (5.5)

Metastasis tumor size

<1 cm3 25 (46.3)
Liver 5 (20.0)
Lung 13 (52.0)

Multiple 5 (20.0)
Others 2 (8.0)

≥1 cm3 29 (53.7)
Liver 11 (38.0)
Lung 2 (2.9)

Multiple 15 (51.7)
Others 1 (3.5)

3.2. Exosomal RNA Expression Patterns Analysis Using H-Clustering and PCA

We obtained the gene expression profiles of serum exosomes by mapping RNA se-
quencing reads and identified 7877 expressed genes. To obtain the differential RNA expres-
sion profiles in serum exosomes from patients with mCRC whose cancer had progressed,
we selected the DEGs by pairwise comparison (fold change, 5; p < 0.05) and plotted the
data on heatmaps (Figure 2).

H-clustering analysis revealed a difference in the expression profiles according to
factors such as metastasis location and tumor volume. There was no relationship between
the treatment groups and expression profiles.
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Figure 2. Hierarchical clustering of exosomal RNA expression profiles.

We further analyzed the expression of these genes using PCA so that the top three
principal components and the resulting discriminating exosomal RNA variables displayed
on the hierarchical clustering heatmaps represented 80–100% of the variance in each dataset.
The main contributors to differences between patients with liver, lung and multiple metas-
tasis were demonstrated by the PCA (Figure 3), in which the first two components together
accounted for ~75% of the data variation. The metastatic sites were clearly categorized,
although PC1 and PC2 explained 17% and 22%, respectively.

Cancers 2022, 14, x FOR PEER REVIEW 6 of 11 
 

 

components together accounted for ~75% of the data variation. The metastatic sites were 
clearly categorized, although PC1 and PC2 explained 17% and 22%, respectively. 

 
Figure 3. The principal component analysis (PCA) based on detected exosomal RNA levels. 

3.3. Gene Oncology (GO) Analysis of Exosomal RNA Expression 
As PC1 was a major component in dividing patients according to second metastases 

sites, we sub-listed the top and bottom 1000 genes by the component factor scores and 
applied these genes to an ontology tool using DAVID. The interferon alpha (INFA) family 
is involved in the positive regulation of the serine phosphorylation of the STAT protein, 
natural killer cell activation involved in immune response, T cell activation involved in 
immune response, B cell proliferation, response to exogenous dsRNA, regulation of the 
type I interferon-mediated signaling pathway, B cell differentiation and humoral immune 
response (p-value < 0.01, Benjamini < 0.05). In addition, the protocadherin beta (PCDB) 
family is commonly involved in chemical synaptic transmission, calcium-dependent cell–
cell adhesion via plasma membrane cell adhesion molecules and synaptic assembly (Fig-
ure 4a). The RIG-I-like receptor pathway is closely related to type I and II interferons and 
induces the expression of interferon alpha and beta genes (Figure 4b). The expression pat-
terns and patient clusters showed that not only the liver and multiple metastases but also 
the high tumor volume was dependent on each gene level (Figure 4c). 

3.4. Validation of Tumor RNA Expression Using GSE 41258 
To investigate the exosomal expression of RNA related to drug resistance genes, we 

performed GSEA. We processed the GSE 41258 data set to compare exosomal RNA ex-
pression with tumor tissue RNA expression profiles. Genes up-regulated from the pa-
tients with liver metastasis were enriched terms such as interferon-α response, apical junc-
tion, angiogenesis, myogenesis, TNF-α signaling via NFκB and inflammatory response. 
Interferon-α response was a common enrichment hallmark term (Figure 5a,b). Among the 
INFA response-enriched genes, SAMD9, CXCL10 and CXCL11 genes overlapped in the 
exosomes; tumor tissue overlapped from the core enrichment genes (Figure 5c). A high 
expression of CXCL10 was related to a poor prognosis with short PFS, but CXCL11 and 
SAMD 9 were not correlated with PFS (Figure S1). 

Figure 3. The principal component analysis (PCA) based on detected exosomal RNA levels.

3.3. Gene Oncology (GO) Analysis of Exosomal RNA Expression

As PC1 was a major component in dividing patients according to second metastases
sites, we sub-listed the top and bottom 1000 genes by the component factor scores and
applied these genes to an ontology tool using DAVID. The interferon alpha (INFA) family
is involved in the positive regulation of the serine phosphorylation of the STAT protein,
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natural killer cell activation involved in immune response, T cell activation involved in
immune response, B cell proliferation, response to exogenous dsRNA, regulation of the
type I interferon-mediated signaling pathway, B cell differentiation and humoral immune
response (p-value < 0.01, Benjamini < 0.05). In addition, the protocadherin beta (PCDB) fam-
ily is commonly involved in chemical synaptic transmission, calcium-dependent cell–cell
adhesion via plasma membrane cell adhesion molecules and synaptic assembly (Figure 4a).
The RIG-I-like receptor pathway is closely related to type I and II interferons and induces
the expression of interferon alpha and beta genes (Figure 4b). The expression patterns and
patient clusters showed that not only the liver and multiple metastases but also the high
tumor volume was dependent on each gene level (Figure 4c).
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3.4. Validation of Tumor RNA Expression Using GSE 41258

To investigate the exosomal expression of RNA related to drug resistance genes,
we performed GSEA. We processed the GSE 41258 data set to compare exosomal RNA
expression with tumor tissue RNA expression profiles. Genes up-regulated from the
patients with liver metastasis were enriched terms such as interferon-α response, apical
junction, angiogenesis, myogenesis, TNF-α signaling via NFκB and inflammatory response.
Interferon-α response was a common enrichment hallmark term (Figure 5a,b). Among the
INFA response-enriched genes, SAMD9, CXCL10 and CXCL11 genes overlapped in the
exosomes; tumor tissue overlapped from the core enrichment genes (Figure 5c). A high
expression of CXCL10 was related to a poor prognosis with short PFS, but CXCL11 and
SAMD 9 were not correlated with PFS (Figure S1).
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(b) GSE41258 and (c) common enrichment gene sets in exosome and tumor RNA sequencing.

4. Discussion

Although the survival of patients with mCRC with oligometastasis has significantly
improved with advances in surgical techniques and effective chemotherapy regimens, 75% of
patients who undergo metastasectomy develop recurrence within 18 months of surgery [8–10].
Recurrence occurs even after metastasectomy with or without doublet or triplet chemotherapy
because drug-resistant clones can be seeded in other organs through exosomes. Cancer cells
first shed exosomes into the blood stream at the initiation step of metastasis; the exosomes
travel to distant organs where they settle [11,12]. Exosomes are also potential candidates for
distinguishing CRC patients with and without chemoresistance.

In this study, we revealed differential expression profiles of RNAs in plasma exosomes
from patients with liver metastasis or a high tumor volume. Our data demonstrate the
complexity of gene expression profiles in terms of mRNA and differences. To examine the
direct role of exosomes in mCRC with liver metastasis, this study aimed to identify a novel
biomarker that could indicate tumor progression using exosomal RNA-seq data. We identi-
fied two distinct biological process gene sets (IFNA and PCDB) related to liver metastasis in
patients with mCRC. INFA up-regulation resulted in the enrichment of immune-response
pathways which could be related to liver metastasis and acquired chemo-resistance. The
cluster of the PCDB family that is related to cancer cell progression and distant metastases
is also required for therapy resistance [13–15]. However, the elucidation of the role of the
individual PCDB family members needs further mechanistic studies. Exosomal mRNA
analysis showed that CXCL10, CXCL11 and SAMD9 were highly expressed in CRC patients
with liver metastasis, which was validated by tumor RNA sequencing using GSEA. A
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high expression of CXCL10 was related to shorter PFS, but the expression of CXCL11 and
SAMD9 was not related to PFS based on the exosomal RNA profiling.

CXCL10 is a member of the CXC chemokine family which binds to the CXCR3 receptor
to exert its biological effects. CXCL10, along with other CXC chemokines, binds to G-
protein coupled receptors and induces a wide spectrum of biological and physiological
activities [16]. CXCL10 is transcriptionally regulated in response to external stimuli such
as IFN-γ and lipopolysaccharides (LPS) by a region of 230 nucleotides upstream from the
transcriptional start site [17].

CXCL10 is involved in chemotaxis, the induction of apoptosis, the regulation of cell
growth, the mediation of angiostatic effects and metastasis [18,19] and has been associ-
ated with drug resistance in several studies [20–22]. CXCL10 signaling may induce an
immunosuppressive niche allowing cancer cells to be accepted in various metastatic organs
as well as in the immunosuppressive tumor microenvironment [23,24]. We suggest that
CXCL10 differs from other chemokines by its ability to restrain tumor growth and enhance
antitumor immunity.

There are several limitations to the use of exosomal RNAs as predictive biomarkers.
First, the purity of exosomes is a major concern, and the presence of contaminating proteins
and RNAs in exosomal preparations may compromise the accuracy of exosome-based
diagnosis. Second, there is high heterogeneity in the vesicles depending on how they are
purified. Third, GSEA data were used for indirect validation using exosomal RNA analysis
as tumor RNA sequencing was not performed. Considering the dual effect of CXCL10 on
cell growth, additional validation studies are needed for the relevance of CXCL10 exosomal
RNA to treatment resistance.

Several studies have investigated the relationship between various types of exosome
and therapy resistance. A previous study confirmed the enrichment of oncogene miR-21 in
the exosomes from CRC-associated fibroblasts (CAFs) in chemoresistance to oxaliplatin,
and long noncoding RNA (lncRNA) H19 is highly expressed in the CAFs of CRC patients
and with a marked increase with cancer progression. This lncRNA is transferred to CRC
cells through exosomes and thus contributes to the chemoresistance to oxaliplatin by
inhibiting miR-141 [25]. The studies focusing on the role of macrophages have shown that
tumor-associated macrophages (TAMs) play a dominant role in mediating CXCL12/CXCR4-
induced liver metastasis of CRC. Several miRNAs (miR-25-3p, miR-130b-3p, miR425-
5p), upregulated by the activation of the CLCL12/CXCR4 axis, can be transferred to
macrophages via exosomes [26]. Tumor-derived exosomal miR-934 cancer promotes CRC
with liver metastasis by regulating the crosstalk between CRC cells and TMAs which
reveals a tumor and TAM interaction in the metastatic microenvironment, mediated by
tumor-derived exosomes that affect the liver metastasis of CRC [27].

Overall, analysis of exosomal RNAs unveiled some potential biomarkers for the early de-
tection of liver metastasis of mCRC after metastasectomy and provided clues about the possible
mechanisms of chemoresistance in the context of an immune-suppressive microenvironment.

5. Conclusions

Using the exosomal RNA sequencing method, we analyzed gene expression profiling
between two time points, immediately after curative metastasectomy and metastasis pro-
gression. Even though patients with liver metastases progression from CRC are extremely
heterogeneous, immune evasion with high IFNA response genes can reveal a pivotal role
for immune editing in metastatic progression. The high expression of CXCL10 exosomal
RNA could be a biomarker to suspect disease progression or therapy resistance.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/cancers14194723/s1, Figure S1: Progression-free survival using exosomes
and GSE 41258 with CXCL10 and CXCL11 in mCRC with liver metastasis.

https://www.mdpi.com/article/10.3390/cancers14194723/s1
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