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Simple Summary: The gut microbiome develops rapidly after birth and is constantly modified by
many factors, especially, lifestyle, diet, and drugs. It affects the performance of the immune system,
and it also impacts the response to immunotherapy. This article presents the association between the
response to anti-PD-1 therapy and the baseline gut microbiome, alongside selected agents modifying
the microbiome composition in a Polish cohort of melanoma patients.

Abstract: The gut microbiota is considered a key player modulating the efficacy of immune checkpoint
inhibitor therapy. The study investigated the association between the response to anti-PD-1 therapy
and the baseline gut microbiome in a Polish cohort of melanoma patients, alongside selected agents
modifying the microbiome. Sixty-four melanoma patients enrolled for the anti-PD-1 therapy, and ten
healthy subjects were recruited. The response to the treatment was assessed according to the response
evaluation criteria in solid tumors, and patients were classified as responders or non-responders. The
association between selected extrinsic factors and response was investigated using questionnaire-
based analysis and the metataxonomics of the microbiota. In the responders, the Bacteroidota to
Firmicutes ratio was higher, and the richness was decreased. The abundance of Prevotella copri
and Bacteroides uniformis was related to the response, whereas the non-responders’ gut microbiota
was enriched with Faecalibacterium prausnitzii and Desulfovibrio intestinalis and some unclassified
Firmicutes. Dietary patterns, including plant, dairy, and fat consumption as well as gastrointestinal
tract functioning were significantly associated with the therapeutic effects of the therapy. The specific
gut microbiota along with diet were found to be associated with the response to the therapy in the
population of melanoma patients.

Keywords: microbiome; melanoma; immune checkpoint inhibitor; diet; immunotherapy

1. Introduction

Immune checkpoint inhibitor (ICI) therapy has revolutionized oncology and become
the major approach to fight various cancers, including melanoma [1]. The ICI mechanism
relies on blocking the immune checkpoints or their ligands through specific antibodies
to prevent their binding and enhance the anticancer responses. Cytotoxic T lymphocyte-
associated molecule-4 (CTLA-4) or programmed cell death receptor-1 (PD-1) and its major
ligand—programmed cell death receptor-1 ligand (PD-L1) are the best-described targets
for ICI therapy [2,3].
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Despite the notable and long-lasting benefits from ICI therapy observed in melanoma
patients, up to 65% and more than 70% of patients receiving PD-1 and CTLA-4 inhibitors,
respectively, did not respond to therapy due to primary resistance, and one-third of ini-
tially responding patients developed drug resistance and melanoma progression within
3 years [4].

Several tumor- and host-associated agents are considered predictive biomarkers for
response to the treatment, and their correlation with ICI therapy’s efficacy was broadly
described in our previous paper [5]. Numerous studies have consistently demonstrated
the association of the gut microbiota composition with the response and survival benefits
from ICI therapy, mostly manifested as progression-free survival (PFS) or overall survival
(OS); however, there were contradictions in the specific taxa identified as positively or
negatively associated with the clinical outcomes between various cohorts [6]. A recent
study demonstrated that this link is cohort-dependent, and the presence or absence of
a single species cannot serve as a predictive biomarker across various populations [7].
Moreover, several factors, such as diet or concomitant drugs [8,9], were associated with
changes in the gut microbiota composition and immune system functions, and their role in
ICI efficacy modulation has yet to be fully elucidated.

The primary goal of our study was to investigate the association between the response
to anti-PD-1 therapy and the baseline gut microbiome, alongside selected agents modifying
microbial composition in the intestines in a cohort of melanoma patients. To our knowledge,
this is the first study on the Polish population analyzing this aspect, and we believe that
the present study will give new insight into the complex relationship between the gut
microbiome and ICI treatment efficacy.

2. Materials and Methods
2.1. Study Cohort and Data Collection

Patients with histologically confirmed unresectable stage III or stage IV cutaneous
melanoma enrolled in treatment with anti-PD-1 therapy (nivolumab or pembrolizumab),
as a part of the Ministry of Health (Poland) drug program [10], were recruited to the study
at the Department of Medical and Experimental Oncology, Heliodor Święcicki Clinical
Hospital, Poznan University of Medical Sciences (Poznan, Poland), from June 2018 to
December 2021. Furthermore, we also recruited healthy subjects, who served as a control
group. They were patients’ close relatives living in the same household. The enrolled
cohort comprised 64 melanoma patients and 10 healthy subjects. Written informed consent
was obtained from all participants. The study was approved by the Bioethics Committee at
Poznan University of Medical Sciences (registration number 402/18).

Clinical information including tumor stage and serum lactate dehydrogenase (LDH)
concentration was collected from the medical records. Response to ICI therapy was assessed
according to the response evaluation criteria in solid tumors (RECIST) v.1.1 criteria. On
that basis, responders (R) were defined as patients with complete (CR) or partial (PR)
response, while non-responders (NR) were defined as patients with disease stabilization
(SD) or progression (PD). Additional classification categorized patients into those who
exhibited clinical benefit (CB) from ICI therapy (CR, PR, and SD) and those who did not
(PD) abbreviated as ‘NB’.

2.2. Questionnaire

All study participants were asked to fill out anonymized questionnaire (included in
supplemental information Document S1) during their visit to the hospital and return it
to the medical staff, who did not intervene in the survey completion. The questionnaires
were collected before starting the anti-PD-1 therapy, consisted of 39 closed questions, and
covered socio-demographic, anthropometric, clinical, lifestyle, and dietary variables. Statis-
tical analysis of the data obtained from the questionnaires was performed in R language
environment v. 4.1.3. The Kruskal–Wallis test (for numerical data) and Fisher’s exact test
(for categorical data) were used to study whether there were significant differences between
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responders and non-responders in terms of variables, accepting a confidence level of 95%.
Subsequently, the relative risk (RR) is defined as the probability of reaching the outcome in
the presence of the risk factor, divided by the probability of reaching the outcome in the
absence of this risk factor, which was calculated for selected variables.

2.3. Fecal Sample Collection and Stool Calprotectin Measurement

Fecal samples were collected from melanoma patients before ICI treatment commenced
and from healthy subjects. All participants received oral and written instructions regarding
the stool-collection procedure (according to the modified protocol described by Dore et al.
(2015) [11]). Briefly, they were requested to collect ~30 g of feces into provided fecal
containers, preferably on the day of the scheduled hospital visit, and then store the samples
at room temperature or 2–8 ◦C until they arrived at the hospital. The stool samples were
delivered to the laboratory at room temperature, and 1 g of each stool sample was placed
into a tube with RNAlater and incubated for 1 h at room temperature. Afterward, RNAlater-
preserved feces were homogenized and centrifuged at 10,500 RPM for 3 min, and then the
supernatant was thoroughly removed. Approximately 250 mg of fecal slurry was aliquoted
into tubes and frozen at −20 ◦C until metagenomic DNA extraction.

Additionally, 15 mg of raw fecal samples was collected, and calprotectin concentration
in stool was measured with IDK Calprotectin ELISA Kit (Immundiagnostik AG, Bensheim,
Germany), according with the instructions of the kit manual.

2.4. Metagenomic DNA Extraction and Metagenome Sequencing

Metagenomic DNA was extracted from approximately 250 mg of RNAlater-preserved
fecal slurry, using commercial system DNeasy PowerSoil Pro (QIAGEN), in accordance
with the protocol of the manufacturer. With an additional step of RNase digestion (50 µg
per sample, 10 min, 60 ◦C) after the bead-beating step. The DNA concentration in the
samples was determined fluorometrically using the QuantiFluor dsDNA System (Promega,
Madison, WI, USA), in accordance with the instructions of the kit manual. All DNA samples
were diluted to a concentration of ~5 ng µL−1 before sequencing.

For 16S-targeted metagenome sequencing, the V3-V4 hypervariable regions of the 16S
rRNA gene were amplified using 341F (5′-TCG TCG GCA GCG TCA GAT GTG TAT AAG
AGA CAG CCT ACG GGN GGC WGC AG-3′) and 785R (5′-GTC TCG TGG GCT CGG
AGA TGT GTA TAA GAG ACA GGA CTA CHV GGG TAT CTA ATC C-3′) primers [12]
and KAPA HiFi HotStart Ready Mix (Roche, Basel, Switzerland). The NEBNext Ultra DNA
library for Illumina (New England BioLabs, Ipswich, MA, USA) was used to generate
sequencing libraries, in accordance with the recommendations of the manufacturer. The
library quality check was performed with a Qubit 2.0 Fluorometer (Thermo Scientific,
Waltham, MA, USA) and Agilent Bioanalyzer 2100 system. The sequencing was carried
out on Illumina MiSeq PE300. Both second stage of library preparation and metagenome
sequencing was done by Genomed S.A. (Warsaw, Poland). The 16S rRNA gene sequences
undergone initial processing using the DADA2 v. 1.21.0 package in the R language environ-
ment v. 4.1.3. Forward reads were truncated at 275 bp, and reverse reads were truncated
at 220 bp, before merging. Then, chimeric sequences were removed, and taxonomy as-
signed to each merged sequence, referred to as amplicon sequence variants (ASVs) at 100%
similarity, using the SILVA SSU database release 138 [13]. The alpha- and beta-diversity
measures were calculated in the R using the Microbiome 1.13.8, Phyloseq 1.34.0, and vegan
2.5.7 packages.

Shotgun library preparation and metagenome sequencing were performed by Genomed
S.A. (Warsaw, Poland). For library preparation, 250 ng DNA per sample fragmented in
E220 Focused-ultrasonicator (Covaris LLC., Woburn, MA, USA) was used with NEBNext
Ultra II DNA Library Prep Kit for Illumina (New England Biolabs, Ipswich, MA, USA),
in accordance with the guidelines of the manufacturer. Sequencing was performed using
Illumina NovaSeq 6000 PE150. The quality of data received from the sequencing company
was checked with FastQC (mean quality score > 35). All samples were pre-filtered, and
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adapters were removed by the sequencing company. The sequences were further analyzed
with Genome Extraction from Shotgun Metagenome Sequence Data workflow [14] on the
KBase.us server [15].

3. Results
3.1. Characteristics of the Study Cohort

In total, we recruited 64 patients with unresectable stage III or stage IV cutaneous
melanoma, eligible for ICI treatment using the anti-PD-1 molecules (nivolumab or pem-
brolizumab), and 10 healthy subjects, who served as controls. The questionnaires and stool
samples were collected from the enrolled patients before (at baseline) the initiation of the
anti-PD-1 infusion and from the healthy subjects, who accompanied the patients during
their visit to the hospital.

The baseline socio-demographic and clinical characteristics of patients and controls
are shown in Table 1. Sex distribution was comparable between groups (p > 0.05). Statistical
analysis showed that the control group consisted of significantly younger individuals
than the patient group (p < 0.05). The distribution of the metastatic stage did not differ
in both groups (p > 0.05). Moreover, the concentration of serum LDH that qualified as
elevated (>250 U/L) was observed in 21% of the responders and 42% of the non-responders.
Although no statistically significant differences (p > 0.05) in the normal and elevated serum
LDH level distribution between the responders and non-responders were found to be
qualified according to Deckers et al. [16], the median value of the marker was significantly
higher (p < 0.05) in the non-responders compared to the responders.

Table 1. Baseline characteristics of all ICI patients and healthy subjects (n = 64).

Subjects
Characteristics

Responders
(R; n = 28)

Non-Responders
(NR; n = 36)

p Value
(R~NR)

Controls
(C; n = 10)

p Value
(C~R + NR)

Sex, n (%)
0.2 a 0.732 aMale 15 (54) 25 (69) 5 (50)

Female 13 (46) 11 (31) 5 (50)

Age (years),
0.2 b 0.0193 b

median (range) 64 (41–84) 69 (32–92) 52.5 (36–67)

M-stage at diagnosis c, n (%)

0.3 a NA NA

IV M1a 7 (25) 9 (23)
IV M1b 5 (18) 5 (14)
IV M1c 9 (32) 13 (36)
IV M1d 4 (14) 9 (25)

IIIc 3 (11) 0 (0)

Serum LDH, n (%)

0.1 a NA NA
Normal

(≤250 U/L) 22 (79) 21 (58)
Elevated

(>250 U/L) 6 (21) 15 (42)

Serum LDH,
0.04 b NA NAmedian (range) 197.5 (121–474) 238 (141–1173)

LDH, lactate dehydrogenase. a Fisher’s exact test. b Kruskal–Wallis test. c American Joint Committee on Cancer
(AJCC) 8th edition.

3.2. Baseline Gut Microbiota- and Immune Response-Modifying Agents Significance in the
Response to Anti-PD-1 Therapy in the Cohort of Melanoma Patients

The questionnaire-based analysis revealed statistically significant differences between
the patient groups. The data collected from the returned questionnaires are summarized in
Table 2.
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Table 2. Summary of the socio-demographic and dietary characteristics of study participants.

Demography Responders
(R, n = 25)

Non-Responders
(NR, n = 32)

Controls
(C, n = 10)

p Value
(R~NR)

p Value
(C~R + NR)

Clinical
Benefit

(CB, n = 34)

No Clinical
Benefit

(NB, n = 23)

p Value
(CB~NB)

Sex, (n)
0.163 a 0.191 a 0.401 aMale 14 24 5 21 17

Female 11 8 5 13 6

Age (years), median (range) 64 (40–84) 67.5 (32–92) 52.5 (36–67)

0.239 b

0.183 a
0.0193 b

0.073 a

63 (32–85) 70 (38–92)

0.163 b

0.578 a

31–40 0 2 1 1 1
41–50 4 0 2 4 0
51–60 5 6 3 7 4
61–70 7 7 4 9 5
71–80 7 9 0 8 8
>80 2 6 0 4 4

BMI, median (range) 27.8 (20–34.9) 27.5 (17.5–56.2) 25.1 (19.1–29)

0.526 b

0.497 a
0.273 b

0.194 a

27.1 (20–41.9) 27.8 (17.5–56.2)

0.612 b

0.401 a

Underweight (<18.5 kg/m2) 0 1 0 0 1
Normal (18.5–24.9 kg/m2) 9 6 5 5 2
Overweight (25.0–29.9 kg/m2) 9 13 5 6 2
Obese (≥30 kg/m2) 7 10 0 22 17

Blood group:

0.635 a 0.407 a 0.323 a
O 6 3 1 6 3
A 8 10 3 13 5
AB 1 2 3 1 2
B 6 9 2 7 8

Blood Rh-type:
0.101 a 0.127 a 0.041 a“−” 3 9 4 4 8

“+” 18 15 5 23 10

Antibiotic treatment:

0.804 a 0.455 a 0.850 a
During last 2 months 3 2 0 4 1
2–6 months ago 6 6 0 8 4
6–12 months ago 3 6 2 5 4
Over 12 months ago 11 13 8 14 10
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Table 2. Cont.

Demography Responders
(R, n = 25)

Non-Responders
(NR, n = 32)

Controls
(C, n = 10)

p Value
(R~NR)

p Value
(C~R + NR)

Clinical
Benefit

(CB, n = 34)

No Clinical
Benefit

(NB, n = 23)

p Value
(CB~NB)

PPI usage:

1.0 a 0.889 a 1.0 aNo 20 26 8 27 19
Occasionally 3 3 2 4 2
Regularly 1 1 0 1 1

Antacid usage:

0.687 a 0.267 a 1.0 aNo 21 26 7 27 20
Occasionally 2 4 3 4 2
Regularly 0 0 0 1 0

Oral NSAID usage:

0.837 a 0.523 a 0.767 aNo 13 15 3 18 10
Occasionally 11 12 7 13 10
Regularly 1 3 0 2 2

Low-dose ASA:
0.741 a 0.825 a 1.0 aNo 21 24 9 27 18

Yes 4 6 1 6 4

Birth:
1.0 a 0.907 a 0.738 aNatural 24 29 9 32 21

Caesarean section 0 1 0 0 1

Birthplace:
0.264 a 0.058 a 0.172 aHome 9 14 3 12 11

Hospital 16 12 7 20 8

Breastfed:
1.0 a 1.0 a 1.0 aNo 0 0 0 0 0

Yes 19 22 6 23 23

Breastfed duration (months):

0.785 a

0.670 a,h
0.708 a

1.0 a,h
0.829 a

0.547 a,h

24 8 9 2 10 7
1 8 6 4 8 6
0.25 1 0 0 1 0
0.1 0 1 0 0 1
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Table 2. Cont.

Demography Responders
(R, n = 25)

Non-Responders
(NR, n = 32)

Controls
(C, n = 10)

p Value
(R~NR)

p Value
(C~R + NR)

Clinical
Benefit

(CB, n = 34)

No Clinical
Benefit

(NB, n = 23)

p Value
(CB~NB)

Prevailing dietary fat type:

0.033 a 0.092 a 0.064 aPlant-based 12 19 7 16 15
Mixed 9 2 1 10 1
Animal-based 4 8 2 7 5

Meat portions consumed:

0.53 a 0.391 a 0.801 a1 or fewer weekly 5 4 4 5 4
2–6 weekly 15 23 6 22 16
1 or more daily 3 2 0 4 1

Vegetable portions consumed:

0.705 a 0.695 a 0.523 a
1 or fewer daily 6 5 1 6 5
2–3 daily 13 19 5 18 14
4–5 daily 6 6 4 9 3
Over 5 daily 0 0 0 0 0

Fruit portions consumed:

0.768 a 0.948 a 0.422 a
1 or fewer daily 8 7 3 10 5
2–3 daily 13 20 6 17 16
4–5 daily 3 2 1 4 1
Over 5 daily 1 1 0 2 0

Plant portions consumed c: 0.082 a

0.058 a,d

0.041 a,e

0.033 a,d,e

0.190 a

0.132 a,d

0.041 a,e

0.032 a,d,e

0.031 a

0.044 a,d

0.041 a,e

0.032 a,d,e

Low 2 11 1 4 9
Recommended 10 14 5 13 11
High 7 5 3 10 2

Fermented veg. consumption:

0.835 a 0.815 a

0.403 a,d
1.0 a

0.820 a,d
No 3 2 0 3 2
Rarely 6 8 4 8 6
Often 16 20 6 22 14

Salt consumption:

0.316 a 0.596 a 0.216 aLow 10 12 5 12 10
Average 14 13 4 19 8
High 1 5 1 2 4
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Table 2. Cont.

Demography Responders
(R, n = 25)

Non-Responders
(NR, n = 32)

Controls
(C, n = 10)

p Value
(R~NR)

p Value
(C~R + NR)

Clinical
Benefit

(CB, n = 34)

No Clinical
Benefit

(NB, n = 23)

p Value
(CB~NB)

Dairy portions consumed:

0.072 a

0.050 a,g 0.217 a 0.037 a

0.024 a,g

1 or fewer daily 14 8 4 17 5
2–3 daily 10 19 5 13 16
4–5 daily 1 1 1 1 1
Over 5 daily 0 2 0 2 0

Bread type consumption:

0.55 a

0.200 a,d
0.744 a

0.507 a,d
0.181 a

0.266 a,d

Light only 2 5 1 4 3
Mostly white 9 13 6 11 11
Mostly wholemeal 11 8 2 15 4
Wholemeal only 2 3 1 2 3

Cereal consumption:
0.93 a

0.821 a,d

0.764 a,h

0.866 a

0.581 a,d

0.769 a

0.725 a,d

0.547 a,h

Breakfast cereals, white rice 3 3 0 3 3
Mostly listed above 6 5 3 7 4
Mostly listed below 5 8 1 8 5
Oatmeal, muesli, brown rice 9 9 4 13 5

Beverage sweetening habits:

0.293 a 0.366 a

0.194 a,d
0.353 a

0.164 a,d
Do not sweeten 12 20 7 18 14
Use artificial sweetener 1 2 1 1 2
Use sugar 12 8 2 14 6

Soft drink consumption:

0.71 a 0.469 a

0.446 a,d
0.976 a

0.909 a,d

1 or fewer servings/month 10 14 5 15 9
2–3 servings/month 3 6 4 5 4
1–3 servings/week 5 6 0 6 5
More than 3 servings/week 5 3 1 5 3

Defecation frequency:

0.01 a 0.038 a 0.720 a
Twice or more per day 5 4 3 3 1
Once a day 15 13 5 6 7
Every second day 1 12 2 17 11
Seldom 3 1 0 6 3
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Table 2. Cont.

Demography Responders
(R, n = 25)

Non-Responders
(NR, n = 32)

Controls
(C, n = 10)

p Value
(R~NR)

p Value
(C~R + NR)

Clinical
Benefit

(CB, n = 34)

No Clinical
Benefit

(NB, n = 23)

p Value
(CB~NB)

Bristol Stool Form Scale:

0.689 a 0.713 a 0.747 a

Type 1 1 5 2 3 3
Type 2 2 2 0 3 1
Type 3 3 6 2 9 3
Type 4 13 14 5 15 12
Type 5 2 2 0 2 2
Type 6 0 0 0 0 0
Type 7 0 0 1 0 0

Diet alterations:

0.362 a 0.182 a 0.373 a
No 23 25 8 30 18
Yes, during last 2 weeks 1 4 1 0 0
Yes, during last month 0 0 1 0 0
Yes, over 1 month ago 0 0 0 2 3

Current probiotics use:
1.0 a 1.0 a 0.362 aNo 21 23 9 28 16

Yes 2 3 1 2 3

Probiotic use history:

0.649 a 0.740 a 0.218 a
In last 2–3 weeks 0 1 1 0 1
Over 3 weeks ago 1 2 0 3 0
In last 6 months 1 2 1 2 1
Over 6 months ago 3 1 3 4 0

Tobacco smoking:
1.0 a 0.494 a 1.0 aNo 20 26 7 27 19

Yes 4 4 3 5 3

Smoking cessation:

1.0 a 0.339 a 0.251 aLess than 1 year ago 0 1 0 0 1
1 to 2 years ago 1 1 1 2 0
Over 2 years ago 7 8 3 10 5
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Table 2. Cont.

Demography Responders
(R, n = 25)

Non-Responders
(NR, n = 32)

Controls
(C, n = 10)

p Value
(R~NR)

p Value
(C~R + NR)

Clinical
Benefit

(CB, n = 34)

No Clinical
Benefit

(NB, n = 23)

p Value
(CB~NB)

Alcohol consumption history:

0.253 a 0.430 a 0.740 aNever 3 5 1 5 3
In the past 8 12 3 11 9
Currently 14 8 6 15 7

Alcohol consumption freq. f:

0.495 a 0.748 a 0.491 a

1 or fewer servings/month 6 1 0 6 1
2–4 servings/month 5 4 3 6 3
1–6 servings/week 1 2 2 1 2
1–2 servings/day 1 1 0 1 1
3 or more servings/day 1 0 0 1 0

NSAID, non-steroidal anti-inflammatory drugs; PPI, proton pump inhibitor. a Fisher’s exact test. b Kruskal–Wallis test. c Pooled categories of vegetable and fruit portions. d Only those
that declared no diet change. e For low versus high. f In group declaring present alcohol consumption. g For ‘1 or fewer servings daily’ versus ‘2–3 servings daily’. h Collapsed to
2 categories.
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There was a significantly lower frequency of Rh-positive and a higher frequency of Rh-
negative blood type patients, showing the progression of the disease (p < 0.05), compared
to those with clinical benefit.

Furthermore, differences in baseline dietary patterns among the patients undergoing
anti-PD-1 therapy were also taken into consideration. Analysis of the prevailing fat type in
the patients’ diet showed statistically significant differences between the responders and
non-responders (p < 0.05). The most pronounced difference between the patient groups
was found in terms of both the plant- and animal-based (mixed) dietary fat consumption,
as 36.0% of the responders declared consumption of mixed dietary fats, whereas 6.9%
of the non-responders followed a similar dietary pattern. Furthermore, prevailing plant-
based meal consumption was also found to be significantly associated with the response
to antiPD-1 therapy (p < 0.05). Plant-based meal consumption was assessed as low or
high and consisted of pooled categories of fruit and vegetable portions consumed daily.
Participants who declared a diet change were excluded from the analysis; however, the vast
majority of participants, 95.8% of the responders, 86.2% of the non-responders, and 80.0%
of the controls, had not changed their diet recently. We found that the high consumption of
plant portions was associated with a 2.9-fold increase in the probability of responding to
anti-PD-1 therapy. However, when we analyzed vegetable and fruit portion consumption
independently, we did not find any statistically significant differences between the studied
groups (p > 0.05). Moreover, an analysis of dairy portion consumption that included the
most numerous cohorts, i.e., those who declared the consumption of either 1 or fewer or
2–3 dairy portions daily, showed significant differences between the responders and non-
responders (p = 0.05) and between CB and NB (p < 0.05). We found that low consumption
(1 or fewer daily) of dairy portions was associated with a 2.0-fold increase in the probability
of responding to anti-PD-1 therapy.

Additionally, significant differences between the responders versus the non-responders
and between the patients versus the controls were found (p < 0.05), regarding baseline defe-
cation frequency. We observed that regular once-a-day defecation was a practice of 62.5%
of the responders, 43.3% of the non-responders, and 50.0% of the controls. Additionally,
40.0% of the non-responders, 4.2% of the responders, and 20.0% of the controls defecated
every second day.

The other investigated factors were not found to be significantly associated with the
clinical outcome to anti-PD-1 therapy in the melanoma patient cohort.

Moreover, a borderline significance was found, in terms of the birthplace, between the
controls and patients (p = 0.058). Briefly, 70.0% of the controls and 54.9% of the patients
were born in a hospital.

3.3. Baseline Gut Microbiota of Responders Was Enriched with Prevotella copri and
Bacteroides Uniformis

The analysis of the gut microbiota composition included 25 responders, 32 non-
responders, and 10 controls.

Firmicutes and Bacteroidota were found to be the most abundant taxa at the phylum
level in the responders, non-responders, and controls (Figure 1). The median Bacteroidota
to Firmicutes ratio was higher in the responder group (0.51) than in the control group
(0.44), whereas it was lower in the non-responder group (0.42). The difference between the
R–NR groups was statistically significant (p < 0.05, Figure 2). The commensal microbiota
modulates inflammatory/immune responses in the organism and is, therefore, likely to
play a major role in regulating inflammation and immunity to cancer at different levels [17].
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The enrichment in Bacteroidota can lead to a reduction in intestinal inflammation [18–20].
Therefore, we analyzed the concentration of fecal calprotectin, which is an intestinal inflam-
matory marker. The median calprotectin concentration in the stool was 32.75, 54.69, and
76.99 µg/mL, respectively, for the control, responder, and non-responder groups (Figure 3),
which indicates lower inflammatory responses in the responder group and is in agreement
with the B/F ratio. However, the differences in the calprotectin concentration between the
study groups were not statistically significant (p > 0.05).

Furthermore, the alpha and beta diversity of the gut microbiota among the studied
groups were analyzed. Alpha diversity is a measure of the compositional complexity of a
community within a sample. Its value increases with the number of identified species and
with the evenness of their relative abundances. Richness indices evaluate the number of
different species in a sample; evenness indices weigh up the species’ relative abundances,
without focusing on their total number; and diversity indices consider both the species’
relative abundances and the total number of different species [21]. We found that the gut
microbial community of the patients responding to anti-PD-1 therapy was significantly less
rich in bacterial species than that of the non-responders (p < 0.05, Figure 4).



Cancers 2022, 14, 5369 13 of 23Cancers 2022, 14, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 3. The inflammatory state of gut mucosa was evaluated by calprotectin concentration meas-
urement in the stool of study participants. Comparison between groups of controls (C) and the anti-
PD-1 recipients before the first injection of the ICI therapeutics, classified as responders (R) and non-
responders (NR) according to the clinical outcome of ICI therapy. The p-values describing the sta-
tistical significance of the calprotectin level in the study groups were calculated with Wilcoxon Rank 
Sum Test. The plot is in a logarithmic scale. 

Furthermore, the alpha and beta diversity of the gut microbiota among the studied 
groups were analyzed. Alpha diversity is a measure of the compositional complexity of a 
community within a sample. Its value increases with the number of identified species and 
with the evenness of their relative abundances. Richness indices evaluate the number of 
different species in a sample; evenness indices weigh up the species’ relative abundances, 
without focusing on their total number; and diversity indices consider both the species’ 
relative abundances and the total number of different species [21]. We found that the gut 
microbial community of the patients responding to anti-PD-1 therapy was significantly 
less rich in bacterial species than that of the non-responders (p < 0.05, Figure 4). 

 
Figure 4. Plots depicting a comparison of bacterial ASV alpha diversity of the stool microbiota as 
estimated regarding richness (ACE, Chao1, and observed indices), evenness (Pielou index), and di-
versity (Shannon and Simpson indices) measures in study groups (R—responders, NR—non-re-
sponders, and C—controls). Wilcoxon Rank Sum Test indicated that the responder and non-re-
sponder groups’ microbiota differed in regards to richness (p < 0.05). 

Differences between the bacterial microbiota composition (beta diversity) in the 
study groups were examined using non-metric multidimensional scaling (NMDS, Figure 
5). We found that the baseline gut microbiota of the patients responding to anti-PD-1 ther-
apy was significantly different from that of the non-responders’ (R2 = 0.0357, p = 0.0033), 
as determined with permutational multivariate analysis of variance (PERMANOVA). By 
applying a two-group comparison at the community level with a linear model [22] (limma 
package [23]), we were able to identify the most significantly different taxa between the 

Figure 3. The inflammatory state of gut mucosa was evaluated by calprotectin concentration mea-
surement in the stool of study participants. Comparison between groups of controls (C) and the
anti-PD-1 recipients before the first injection of the ICI therapeutics, classified as responders (R) and
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statistical significance of the calprotectin level in the study groups were calculated with Wilcoxon
Rank Sum Test. The plot is in a logarithmic scale.
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Figure 4. Plots depicting a comparison of bacterial ASV alpha diversity of the stool microbiota as
estimated regarding richness (ACE, Chao1, and observed indices), evenness (Pielou index), and
diversity (Shannon and Simpson indices) measures in study groups (R—responders, NR—non-
responders, and C—controls). Wilcoxon Rank Sum Test indicated that the responder and non-
responder groups’ microbiota differed in regards to richness (p < 0.05).

Differences between the bacterial microbiota composition (beta diversity) in the study
groups were examined using non-metric multidimensional scaling (NMDS, Figure 5). We
found that the baseline gut microbiota of the patients responding to anti-PD-1 therapy
was significantly different from that of the non-responders’ (R2 = 0.0357, p = 0.0033), as
determined with permutational multivariate analysis of variance (PERMANOVA). By
applying a two-group comparison at the community level with a linear model [22] (limma
package [23]), we were able to identify the most significantly different taxa between the
responders and non-responders. The analysis revealed a strong association between the
response and enrichment in the ASVs belonging to Prevotella copri and Bacteroides uniformis.
However, ASVs that were unidentified to species level, belonging to orders Izemoplasmatales
and Clostridia UCG-014, to family Oscillospiraceae, and to species Faecalibacterium prausnitzii
and Desulfovibrio intestinalis, were significantly enriched in the non-responders (Table 3).
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Table 3. Bacterial ASVs significantly enriched in responders (log2FC positive values) and non-
responders (log2FC negative values).

log2FC p-Value FDR
p-Value

Phylum
Class

Order
Family

Genus
Species

ASV621 −24.39 3.29 × 10−28 6.24 × 10−25 Firmicutes
Bacilli

Izemoplasmatales
NA

NA
NA

ASV865 −23.52 9.94 × 10−23 9.41 × 10−20 Firmicutes
Clostridia

Oscillospirales
Oscillospiraceae

NA
NA

ASV147 −23.73 3.19 × 10−20 2.01 × 10−17 Firmicutes
Clostridia

Clostridia UCG-014
NA

NA
NA

ASV338 −25.25 1.29 × 10−17 6.11 × 10−15 Firmicutes
Clostridia

Clostridia UCG-014
NA

NA
NA

ASV166 −23.70 1.06 × 10−15 4.03 × 10−13 Firmicutes
Clostridia

Oscillospirales
Ruminococcaceae

Faecalibacterium
prausnitzii

ASV85 23.48 1.62 × 10−15 4.89 × 10−13 Bacteroidota
Bacteroidia

Bacteroidales
Prevotellaceae

Prevotella
copri

ASV112 23.44 1.81 × 10−15 4.89 × 10−13 Bacteroidota
Bacteroidia

Bacteroidales
Prevotellaceae

Prevotella
copri

ASV394 22.61 1.69 × 10−14 4.00 × 10−12 Bacteroidota
Bacteroidia

Bacteroidales
Bacteroidaceae

Bacteroides
uniformis

ASV809 −22.22 5.49 × 10−14 1.15 × 10−11 Desulfobacterota
Desulfovibrionia

Desulfovibrionales
Desulfovibrionaceae

Desulfovibrio
intestinalis

Furthermore, we performed shotgun sequencing of selected gut microbiota samples
(n = 16), which resulted in an average of 41.37 million high-quality reads and 40.24 million
reads of 145–151 bp read-size distributions. The received sequences were pre-filtered, had
adapters removed by the sequencing company, and were further evaluated with FastQC
software [24]. The adapter content was lower than 0.1%, and the mean quality score was
>35. The high-quality filtered paired-end reads were assembled into contigs (Table S1)
using metaSPAdes v3.15.3 [25] and MEGAHIT v1.2.9 [26], which resulted in an average of
29.25 thousand contigs per sample. For further processing, the better assembly was used
as determined by the Compare Assembled Contig Distributions v1.1.2 application [15].
The assembled metagenomic contigs were clustered into bins, each of which corresponds
to a putative population genome with MaxBin2 v2.2.4 [27], CONCOCT v1.1 [28], and
MetaBAT2 v1.7 [29]. The bacterial and archaeal binned contigs from the above-mentioned
binning algorithms were integrated to calculate an optimized, non-redundant set of bins
from a single assembly with DAS Tool v1.1.2 [30]. An average of 7.69 thousand binned
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contigs resulted in the assembly of an average of 59 bins per sample. The binned contigs
underwent further quality assessment with CheckM v1.0.18 [31] and were filtered for >90%
completeness and <5% contamination. The filtered bins were annotated with RASTtk
v1.073 [32] and classified with GTDB-Tk v1.7.0 [33] to obtain reconstructed metagenome-
assembled genomes (MAGs). Out of 631 reconstructed MAGs in total, 19 were classified to
the Prevotellaceae family and 15 to Prevotella spp., among which only 2 were P. copri. Recent
findings indicated that P. copri is not a monotypic species but is composed of four distinct
clades [34], so we decided to determine the clade to which our MAGs belong. A comparison
of all 19 Prevotellaceae MAGs, with 20 selected exemplars, curated P. copri MAGs (Table
S2) with dRep v3.1.0 [35] and revealed another member of P. copri, previously classified
as Prevotella sp900313215 by GTDB-Tk, as determined by MASH Average Nucleotide
Identity [36]. Among three P. copri MAGs, two belonged to clade A and one to clade B
(Figure S1).

4. Discussion

Here, we present the prospective cohort study with the main goal of identifying
the association of the baseline gut microbiome and the selected factors affecting the gut
microbiota and/or immune responses, with the therapeutic effectiveness of ICI therapy in
the cohort of metastatic melanoma patients.

We analyzed the baseline gut microbiota composition by targeted NGS, as the im-
munomodulatory effects of the gut microbiota and microbial metabolites are well-established,
and numerous studies have demonstrated remarkable differences in the gut microbiota
composition between various cancer patients, responding and non-responding to ICI ther-
apy, indicating its impact on treatment efficacy [6]. Our analysis included fecal samples
derived from 25 responders, 32 non-responders, and 10 controls. In our cohort, the baseline
gut microbiota was dominated by Firmicutes and Bacteroidota phyla (Figure 1). However,
the median Bacteroidota to Firmicutes ratio was significantly higher in the responders than
in the non-responders (Figure 2), indicating that there was an increased relative abundance
of Bacteroidota to Firmicutes in the responders compared to the non-responders. Contra-
dictory findings were demonstrated by Chaput et al. (2017), who found that patients whose
baseline gut microbiota was enriched with Faecalibacterium and other Firmicutes benefited
more from the anti-CTLA-4 therapy (manifested as longer PFS and OS) than those with
Bacteroides-driven microbiota [37].

The Bacteroidota to Firmicutes ratio is considered a marker of homeostasis in the
intestines, and any alterations in the relative abundance may lead to the development
of various diseases. Overall, studies reported that an increase in the abundance of spe-
cific Firmicutes species is associated with obesity, due to their carbohydrate and lipid
fermentation and metabolism properties. Whereas, Bacteroidota species were found to
exert pro-inflammatory responses that correlated with inflammatory bowel disease (IBD)
development [38]. However, both Firmicutes and Bacteroidota are large phyla that cover
numerous species with various properties. For instance, the gut microbiota enrichment
with Bacteroides species can lead to a reduction in intestinal inflammation, as B. fragilis
induces regulatory T cells to produce anti-inflammatory interleukin (IL)-10 inside the
gut [18]. Another study demonstrated the anti-inflammatory and epithelium-reinforcing
properties of Bacteroides and Parabacteroides spp. [39]. In fact, the fecal calprotectin con-
centration at the baseline revealed that the intestinal inflammation in the responders was
lower than in the non-responders; however, the difference was not statistically significant
(Figure 3). A comparable correlation between low baseline intestinal inflammation and
disease control was demonstrated in patients with hepatocellular carcinoma (HCC) treated
with the CTLA-4 and/or PD-L1 inhibitors, suggesting that durable inflammation in the gut
may lead to the exhaustion of the immune system and, in consequence, facilitate tumor
immune escape [40]. It is worth noting that there are age-related changes in fecal calpro-
tectin concentration, and the lowest median calprotectin level was observed in the controls
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(Figure 3) that were significantly younger than the patients (Table 1); this result is in a line
with previous studies [41].

In our cohort, the richness, evenness, and diversity of the gut microbiota were de-
creased in the responders compared to the non-responders. However, the significance of
the difference was reached between the responders and non-responders only regarding
richness (Figure 4). In contrast, several studies reported that high gut microbiota richness
and diversity correlated with response and survival benefits from ICI therapy in various
cohorts of cancer patients [42–45]. In addition, significant compositional differences in the
gut microbiota (beta diversity) were found between the responders, non-responders, and
controls (Figure 5).

Furthermore, the abundance of Prevotella copri and Bacteroides uniformis was related
to the response to anti-PD-1 therapy in our cohort of melanoma patients (Table 3). Jin
et al. (2019) also demonstrated that the gut microbiota of Chinese patients with advanced
non-small cell lung cancer (NSCLC) responding to anti-PD-1 therapy was enriched with P.
copri [45]. Studies demonstrated that P. copri is more abundant in rural and isolated (non-
Westernized) populations that follow traditional lifestyles and plant-based diets compared
to industrialized (Westernized) populations [46]. In our study, there was a significantly
higher consumption of plants (pooled fruit and vegetable portions) in the responders
compared to the non-responders (Table 2). However, P. copri was found to induce proin-
flammatory responses that may lead to the development of several diseases [47]. For
instance, the abundance of P. copri in the intestinal microbiota correlated with rheumatoid
arthritis [48–50], colon dysbiosis in HIV-infected subjects [51], and insulin resistance [52].
In contrast, another study indicated that P. copri was associated with improved glucose
metabolism in subjects on a fiber-rich diet [53]. The discrepancies presented in the previ-
ous studies may be related to the heterogeneity within P. copri species; however, further
research should be done to investigate this aspect. Tett et al. (2019) revealed that P. copri is
composed of four distinct clades with diversified functional properties that are frequently
co-present within non-Westernized individuals [34]. Our research indicated the presence
of P. copri belonging to clades A and B in our cohort of melanoma patients (Figure S1).
Clade A is the most prevalent (91.5% in non-Westernized populations versus 26.9% in
Westernized populations), and clade B is the most genetically divergent from the other
clades, with genetic distances between clades (interclade) of approximately 20% shown as
pairwise average nucleotide identity distances (ANI distance). Moreover, the four P. copri
complex clades show distinct carbohydrate metabolism repertoires [34] that may provide
an advantage only in the case of a plant-rich diet [53].

Numerous studies demonstrated that ICI efficacy was associated with an abundance
of Bacteroides species. For instance, baseline gut microbiota enrichment with Bacteroides
was associated with shorter PFS and OS in melanoma patients treated with CTLA-4 in-
hibitors [37]. Comparably, the abundance of B. ovatus, B. dorei, and B. massiliensis was found
to be related to poor clinical outcomes in another cohort of melanoma patients undergo-
ing ICI therapy [44]. In contrast, it was also demonstrated that B. thetaiotaomicron and B.
fragilis improved the CTLA-4 inhibitor efficacy [54], and B. caccae and B. thetaiotaomicron
correlated with the response to ICIs [55]. In our cohort, enrichment with B. uniformis was
significantly associated with response to the anti-PD-1 therapy (Table 3). Overall, im-
munomodulatory properties of B. uniformis were reported. For instance, the administration
of B. uniformis improved the metabolic and immune functions in mice with diet-induced
obesity [56–58]. Moreover, in vitro studies demonstrated that B. uniformis reduced the
lipopolysaccharide-induced release of interleukin 8 (IL-8) and enhanced the integrity of
enterocytes [39]. In addition, decreased glycosaminoglycan metabolism, associated with
depletion of B. uniformis, promoted rheumatoid arthritis and osteoarthritis [59].

Furthermore, the abundance of F. prausnitzii, D. intestinalis and some unclassified
Firmicutes were associated with disease stabilization or progression in our study (Table 3).
In contrast, numerous studies indicated that the gut microbiota enrichment with Faecal-
ibacterium spp. was associated with the response and prolonged clinical benefits from
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ICI therapy in various cohorts of melanoma patients [37,42,44,55,60]. Chaput et al. (2017)
demonstrated that melanoma patients, whose baseline gut microbiota was driven by Faecal-
ibacterium spp., had a lower frequency of regulatory T cells (Tregs) and α4+β7+CD4+ and
α4+β7+CD8+ T cells before the anti-CTLA-4 therapy commencement compared to those
with Bacteroides-driven gut microbiota, which was also associated with clinical benefit [37].
Another study revealed that Faecalibacterium spp. abundance correlated with higher levels
of tumor-infiltrating CD8+ T cells and effector CD4+ and CD8+ T cells in the systemic
circulation and peripheral cytokines that promoted a response to anti-PD-1 therapy, and
these markers were inverse in those with Bacteroidota abundance [42]. Interestingly, another
study indicated that F. prausnitzii abundance was negatively associated with the serum
butyrate concentration that was found to reduce anti-CTLA-4 therapy efficacy [60].

Another species enriched in the non-responders was D. intestinalis, which was iden-
tified in humans [61] and animals [62,63]; however, little is known about the function of
D. intestinalis in the human gut. The bacterium produces hydrogen sulfide (H2S), an en-
dogenous signaling gasotransmitter with both pro- and anti-inflammatory properties [64].
Overall, D. intestinalis belongs to the sulfate-reducing bacteria, and their increased abun-
dance was found to be associated with IBD development [65,66]. Nevertheless, Desulfovibrio
is associated with healthy hosts in some human populations [67].

A recent study conducted on several cohorts of melanoma patients treated with ICI
therapies demonstrated that the association between the gut microbiome and the response
to ICIs is cohort-dependent, and the microbiome-based signatures are not consistent across
cohorts [7]; therefore, our data provide an important supplement to the overall information
in the field.

Furthermore, in the questionnaire-based analysis, we investigated the influence of sev-
eral factors that were previously reported to affect clinical outcomes and/or gut microbiota
composition, such as perinatal factors, BMI, diet, lifestyle habits, or medication, in response
to anti-PD-1 therapy in our cohort of melanoma patients.

A borderline higher frequency of individuals born in hospitals versus at home was
observed in the control group compared to the patients (Table 2). We suggest that this
discrepancy is associated with the changes in the approach to delivery that occurred in
Poland in the 1960s, when most deliveries started to take place in hospitals [68]. The
controls were significantly younger than the patients, and the median age of controls was
52.5, which corresponds with the time of such changes in approach to deliveries in Poland
(Table 1).

Moreover, we found a significantly higher frequency of the Rh-positive blood-type
patients in the group, who benefited from the anti-PD-1 therapy, versus those with dis-
ease progression (Table 2); however, we did not find any study that demonstrated a
similar correlation.

Analysis of dietary patterns demonstrated several differences between the responders
and non-responders. Firstly, we found a correlation between dietary fat type and response
to anti-PD-1 therapy (Table 2). Our analysis did not indicate, however, which type of
fat prevailing in diet would be associated with a response to treatment; in addition, the
responders more frequently consumed mixed (both plant- and animal-based) dietary fat
types than the non-responders. In the questionnaire, the prevailing dietary fat type was
categorized as animal-based or plant-based; therefore, we did not have a broad insight
into the range of products that were consumed by patients, especially those who declared
consumption of the mixed dietary fat type. However, the impact of dietary fats on clinical
outcomes of ICI therapy should be further investigated, as dietary fatty acids were shown
to affect the functions of both innate and adaptive immune responses through multiple
pathways. Their influence may depend on the balance between the n-6 and n-3 polyun-
saturated fatty acids, diet diversity, or microbiome [69]. To our knowledge, an analysis of
the direct association between dietary fat consumption and the clinical outcomes of ICI
therapy has not been performed yet. However, polyunsaturated fatty acids were found to
exert effects that, potentially, would enhance immunotherapy efficacy [70].



Cancers 2022, 14, 5369 18 of 23

We also found that high plant consumption was significantly associated with the
improved clinical outcomes of anti-PD-1 therapy in our cohort (Table 2). Patients con-
suming high portions of plants gained a 2.9-fold increase in the possibility of response
to the treatment. Various components included in fruits and vegetables, i.e., fiber, folate,
vitamins, and non-nutrient phytochemicals, such as carotenoids and flavonoids, which
have a profound impact on the immune system, may potentially also affect the clinical
outcomes of ICI therapy [71]. A recent study demonstrated that sufficient dietary fiber
intake (≥20 g/day) improved ICI therapy efficacy in melanoma patients [72]. This effect
was corroborated in conventionally housed, but not germ-free, mice fed with a fiber-rich
diet, which suggests the involvement of the gut microbiota in antitumor response, and
differences in the gut microbiota of mice on a fiber-rich versus a fiber-low diet were found.
Moreover, mice on a fiber-rich diet had a significantly higher level of stool propionate, but
not total stool short-chain fatty acid (SCFA) levels, and a significantly higher antitumor T
cell response. SCFAs, such as acetate, propionate, and butyrate, are products of microbial
conversion of ingested dietary fiber and mucosal glycans and exert an impact on immune
responses [73]. Several studies reported that high fecal and plasma SCFA levels correlated
with the improved clinical outcomes to anti-PD-1 therapy [74,75]. In contrast, another study
demonstrated that high plasma SCFA levels were associated with shorter PFS in cancer
patients treated with CTLA-4 inhibitors [60]. High plant consumption may correlate with
increased dietary fiber intake not only because of fruits and vegetables but also because
cereals and nuts are known as the main sources of dietary fiber [76]. Analysis of other
fiber-rich product consumption in our study revealed that pooled plants, but not fruit,
vegetable, bread type, and cereal consumption, analyzed independently was significantly
associated with response to the anti-PD-1 therapy (Table 2).

Our data indicated that the patients consuming low dairy portions (1 or fewer per
day) gained a 2.0-fold increase in the probability of responding to anti-PD-1 therapy
compared to those who consumed high dairy portions (from 2 to 3 per day) in our cohort
(Table 2). To our knowledge, the association between dairy product consumption and ICI
efficacy has not been elucidated. Previous studies demonstrated contradictory findings
in terms of the correlation between dairy products’ consumption and obesity [77], type
2 diabetes [78], or cardiovascular disease development [79]. Moreover, several studies
presented the association between dairy product consumption and favorable changes
in the gut microbiota composition, and these changes correlated with a reduced risk
of cardiovascular disease development in mice and humans [80–82]. In addition, dairy
products were found to affect immune and metabolic pathways [83]. A growing body of
evidence presenting the association between dairy product consumption and gut microbiota
composition and immunity, alongside the results found in the present study, suggest that
the response to anti-PD-1 therapy may be affected by dairy product consumption. Yet,
further studies, including a larger sample size and the heterogeneity of available dairy
products, are warranted to better understand this aspect.

In our study, bowel movement frequency, but not stool type, was significantly associ-
ated with the response to anti-PD-1 therapy (Table 2). The majority of the responders and
non-responders reported defecating once a day. However, significantly more of the non-
responders reported frequently defecating every second day compared to the responders.
Our results suggest that there is a correlation between gastrointestinal tract functioning
and clinical responses to ICI treatment. This is in agreement with previous studies that
demonstrated a negative correlation between bowel dysfunction (defined as constipation
or laxative use) and clinical outcomes of ICI therapy in NSCLC and urothelial cancer
patients [84,85]. Moreover, it was also indicated that stool consistency and frequency were
associated with gut microbiota richness and composition [86,87]. For instance, one study
demonstrated that individuals with a loose stool had lower microbial richness and higher
abundance of the Prevotella enterotype compared to those with harder stools, whose fecal
samples were enriched with the Ruminococcaceae-Bacteroides enterotype [86]. Another
study demonstrated that there was a higher microbial richness and Bacteroidota to Firmi-
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cutes ratio in the individuals with a small number of defecations (≤2 times/week) than
in those with a normal (1 time/day or 1 time/2 day) or large (≥2–3 times/day) number
of defecations [87]. In our cohort, there were also revealed significant differences in the
gut microbiota composition between the study groups (Figure 5). Moreover, there was a
significant difference in the bowel movement frequency between the patients and controls,
and the latter defecated more frequently, twice or more per day (Table 2).

Our study had several limitations. Firstly, the control group consisted of a small
number of individuals, and the controls were significantly younger than the patients
(Table 1). Moreover, several significant differences in terms of birthplace, plant portion
consumption, and defecation frequency were found between the patients and controls
(Table 2). These discrepancies between the study groups were taken into consideration
during the analysis of the gut microbiota composition, as these factors were reported to
affect the microbial composition in the intestines. Besides, the results from the questionnaire-
based analysis led us to the conclusion that several aspects should be more specifically
investigated. For instance, we found a correlation between dietary fat type consumption
and the response to anti-PD-1 therapy (Table 2). However, we cannot indicate which type
of dietary fat (or products) is associated with improved clinical outcomes, as the responders
and non-responders differed significantly in terms of mixed dietary fat type consumption,
and, additionally, there is a broad range of products that would be classified as a plant-
or animal-based fats, which has a different impact on human health. Further studies
investigating the impact of extrinsic factors modifying the gut microbiota and/or immune
response, such as diet or medication use, should be more specified to better understand
this complex interaction.

5. Conclusions

Based on our results presented in this paper and the published papers of other groups,
we can hypothesize that a therapeutic intervention targeted for immunologic signaling can
be modulated by different members of the gut microbiota, leading to the same therapeutic
outcome. Gut-microbiota-specific members of distinct populations interplay with the same
inflammatory/immunologic signaling pathways by different metabolites and/or nodes.
Therefore, a personalized or at least population-based approach is more rational rather
than a globalized undertake in modulating gut microbiota, for the improvement of ICI
immunotherapy.

Further studies investigating the correlation between dietary patterns and the response
to immunotherapy are needed. However, our results demonstrated that several dietary rec-
ommendations may be introduced before anti-PD-1 therapy commencement, to potentially
improve clinical outcomes.
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