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Simple Summary: This paper aims to develops a new Manta Ray Foraging Optimization Transfer
Learning technique that is based on Gastric Cancer Diagnosis and Classification (MRFOTL-GCDC)
using endoscopic images.

Abstract: Gastric cancer (GC) diagnoses using endoscopic images have gained significant attention
in the healthcare sector. The recent advancements of computer vision (CV) and deep learning
(DL) technologies pave the way for the design of automated GC diagnosis models. Therefore, this
study develops a new Manta Ray Foraging Optimization Transfer Learning technique that is based
on Gastric Cancer Diagnosis and Classification (MRFOTL-GCDC) using endoscopic images. For
enhancing the quality of the endoscopic images, the presented MRFOTL-GCDC technique executes
the Wiener filter (WF) to perform a noise removal process. In the presented MRFOTL-GCDC
technique, MRFO with SqueezeNet model is used to derive the feature vectors. Since the trial-
and-error hyperparameter tuning is a tedious process, the MRFO algorithm-based hyperparameter
tuning results in enhanced classification results. Finally, the Elman Neural Network (ENN) model is
utilized for the GC classification. To depict the enhanced performance of the presented MRFOTL-
GCDC technique, a widespread simulation analysis is executed. The comparison study reported the
improvement of the MRFOTL-GCDC technique for endoscopic image classification purposes with an
improved accuracy of 99.25%.

Keywords: gastric cancer; medical diagnosis; deep learning; transfer learning; endoscopic images

1. Introduction

Gastric cancer (GC) is the fifth most common cancer across the globe and the third
leading factor of tumor death [1]. There is an extensive geographic variance in its preva-
lence, with the maximum occurrence rate being in East Asian countries. In China, almost
498,000 new cases of GC have been identified in 2015, and here, it is the 2nd leading factor
of cancer-related deaths. As surgical intervention, prior detection, and precise analysis are
the decisive elements to reduce the GC death rates, robust and reliably actual pathology
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services are necessary [2]. However, there is a lack of anatomical diagnosticians globally
and nationally, which has formed over-loaded workers, therefore affecting their diagnostic
precision. A rising number of pathology labs have implemented digital slides in the form
of whole slide images (WSI) in regular diagnostics [3]. The alteration of the practices from
microscopes to WSIs has laid the foundation for utilizing artificial intelligence (AI)-guided
mechanisms in pathology treatments to address the human limits and minimize the diagnostic
faults [4]. This has permitted the growth of new techniques, such as AI through deep learning.
The research has concentrated on formulating techniques that could flag suspicious zones,
urging pathologists to scrutinize the tissue completely at high magnifications or by using
immunohistochemical (IHC) test if they are needed to accomplish a precise analysis [5].

Radiotherapists have started to utilize this technology for reading medical images for
several ailments with the growth of AI [6]. AI has a set of inter-related practical methods
which overlap the fields of statistics and mathematics, and mathematical functions are
considered to be appropriate for radiology due to the pixel values of an MRI image which
are computable. Artificial neural networks (ANNs), for example, are one of the methods
that is utilized in the sub-discipline of classifier mechanisms [7]. The ideology of deep
learning (DL) has garnered substantial interest in ANNs. Several sorts of sub-techniques
considering the advancements in memory enhancement, fast processing, and novel model
features and models have been constantly upgraded and developed [8]. The common
ANN that is utilized by DL is the convolutional neural network (CNNs), which is the
most suitable neural network (NNs) for radiology when the images are the main units of
evaluation [9]. A CNN can be biologically inspired networks which mimic the brain cortex
behavior, which has a complicated structure of cells that are sensitive to smaller areas of
the visual domain [10]. The CNN does not just contain a sequence of layers which would
map image inputs into desirable end points, it also studies high-level imaging features.

This study focuses on the development of the new Manta Ray Foraging Optimization
Transfer learning-based Gastric Cancer Diagnosis and Classification (MRFOTL-GCDC)
method using endoscopic images. The presented MRFOTL-GCDC technique executes the
Wiener filter (WF) to achieve a noise removal process. Moreover, the MRFOTL-GCDC
technique makes use of the SqueezeNet model to derive the feature vectors, and the MRFO
algorithm is exploited as a hyperparameter optimizer. Furthermore, the Elman Neural
Network (ENN) method was utilized for the GC classification. For ensuring the improvised
performance of the presented MRFOTL-GCDC method, a widespread simulation analysis
has been carried out.

2. Related Works

In [11], a noble openly accessible Gastric Histopathology Sub-size Image Database
(GasHisSDB) was established for identifying the classifier outcomes. For proving that
the techniques of distinct periods during the domain of image classifiers were discrepant
when they were using GasHisSDB, the authors chose a variety of classifications for the
calculation. Seven typical ML techniques, three CNN techniques, and a new transformer-
based classification were selected to test on image classifier task. Sharanyaa et al. [12]
concentrated on developing a robust predictive system which utilizes an image processing
approach for detecting the initial stage of cancer with lightweight approaches. The testing
images in the pathology dataset termed the BioGPS were pre-processed primarily to remove
the noisy part of the pixels. This was realized in deep Color-Net (Deep CNET) technique
which relates the trained vector with a testing vector to determine a maximal correlation.
With a superior match score, the classifier outcomes defines the occurrence of GC and
emphasizes the spread region in the provided test pathology data.

Qiu et al. [13] intended to improve the performance of GC analysis, thus, the DL
techniques were tentatively utilized for supporting doctors in the analysis of GC. The lesion
instances in the images were each noticeable by several endoscopists who had several years
of medical experience. Afterward, the gained trained set was used as an input for the CNN
to train on, and at last, they obtained the technique DLU-Net. In [14], a fully automated
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system was executed to distinguish between the differentiated or undistinguished and non-
mucinous or mucinous cancer varieties from a GC tissue whole-slide image in the Cancer
Genome Atlas (TCGA) stomach adenocarcinoma database (TCGA-STAD). Valieris et al. [15]
examined an effectual ML technique that could forecast DRD in a histopathological image
(HSI). The efficacy of our technique is demonstrated by assuming the recognition of MMRD
and HRD in breast and GC tissues, correspondingly.

Meier et al. [16] examined the novel approaches for predicting the risk for cancer-
specified death in the digital image of immunohistochemically (IHC) stained tissue microar-
rays (TMAs). Especially, the authors estimated a cohort of 248 GC patients utilizing CNNs
in an end-to-end weakly supervised system which was self-determined by a particular
pathologist. For the account of the time-to-event features of the output data, the authors
established novel survival techniques for guiding the trained network. An et al. [17] in-
tended to validate and train real-time FCNs to allocate a resection margin of early GC
(EGC) in indigo carmine chromoendoscopy (CE) or white light endoscopy (WLE), and they
estimated their efficiency and that of the magnifying endoscopy with narrow-band imag-
ing (ME-NBI). The authors gathered the CE and WLE images of the EGC lesions to train
the FCN technique in ENDOANGEL. From the literature, it is apparent that the existing
approaches do not concentrate on the hyperparameter selection process which primarily
affect the performance of the classification models. Specifically, the hyperparameters such
as the epoch count, batch size, and learning rate selection become important when one is
trying to accomplish an improved performance. As the manual trial-and-error technique
for hyperparameter tuning is a tiresome and erroneous process, metaheuristic algorithms
can be applied. Therefore, in this work, we employ an MRFO algorithm for the parameter
selection of the SqueezeNet model.

3. The Proposed Model

In this study, an automated GC classification using an MRFOTL-GCDC technique
has been developed for endoscopic images. The presented MRFOTL-GCDC technique
exploited the endoscopic images for GC classifications to be made. To accomplish this, the
MRFOTL-GCDC technique encompasses the image pre-processing, the SqueezeNet feature
extraction, the MRFO hyperparameter tuning, and the ENN classification. Figure 1 defines
the block diagram of the MRFOTL-GCDC system.

Figure 1. Block diagram of MRFOTL-GCDC system.

3.1. Stage I: Pre-Processing

In the beginning, the presented MRFOTL-GCDC technique exploited the WF technique
to perform a noise eradication process. Noise elimination can be referred as an image pre-
processing method which intends to improvise the attributes of the image which has
been corrupted through noise [18]. The specific case will be an adaptive filter where the
denoising process was reliant on the noise content in the image, locally. Assuming that
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the images which are corrupted were denoted as Î(x, y), the noise variance over whole
has been represented as σ2

y , the local mean can be represented as µ̂L regarding the pixel
window, and the local variance from the window was rendered by σ̂2

y . Then, the probable
method of denoising an image is exhibited below:

ˆ̂I = Î(x, y)−
σ2

y

σ̂2
y

(
Î(x, y)− µ̂L

)
(1)

At this point, if the noise variance across the image was equivalent to 0, σ2
y = 0 =>

ˆ̂I = Î(x, y). If the global noise variance was less than this, and local variance was more
than the global variance, the ratio was nearly equivalent to 1. If σ̂2

y � σ2
y , then ˆ̂I = Î(x, y).

It was assumed that a higher local variance exemplifies the presence of the edge from the
image window. During this case, if the global and local variances were matching, then the
formula formulates ˆ̂I = µ̂L as σ̂2

y ≈ σ2
y .

3.2. Stage II: Feature Extraction

At this stage, the MRFOTL-GCDC technique has utilized the SqueezeNet model for the
feature extraction. Squeezenet is a type of DNN that has eighteen layers and can be mainly
used in computer vision (CV) and image processing programs [19]. The main aims and
the purposes of the authors, in the progression of SqueezeNet, were to frame the small NN
that has some variables and to perform an easy transmission over the computer network
(necessitating minimal bandwidth). Additionally, it must also fit into computer memory,
effortlessly (necessitating minimum memory). The primary edition of this structure has
been accomplished on top of a DL method that is named Caffe. After a while, the researchers
started to use this structure in several publicly available DL structures. Initially, SqueezeNet
was labelled, where it is compared with AlexNet. Both SqueezeNet and AlexNet were two
distinct DNN structures until now, and they have one common feature, which is termed
precision, whenever they are predicting the ImageNet image dataset. The main goal of
SqueezeNet was to reach a higher accuracy level while utilizing fewer variables. To achieve
this, three processes were employed. Mainly, a filter of size 3 × 3 was replaced by a filter
of size 1 × 1 with fewer variables. Then, the number of input channels was minimized to
3 × 3 filters. Lastly, the subsampled function was executed at the final stages to obtain a
convolution layer which had a large activation function. SqueezeNet can depend on the
idea of an Inception component module for devising a Fire component that has expansion
and squeeze layers. Figure 2 establishes the architecture of SqueezeNet method.

In this study, the MRFOTL-GCDC technique designed the MRFO algorithm for the
parameter tuning. Zhao et al. [20] proposed an MRFO that was inspired by the foraging
approach of a giant marine creature named a Manta ray which are shaped like a bird. This
initializes a population of candidate solutions, similar to how Manta rays individually
search for better locations. The plankton is focused on; the best solution attained at any
point represents the plankton. The search process comprises three stages: somersault
foraging, cyclone foraging and chain foraging.

3.2.1. Chain Foraging Phase

In the chain foraging process, each fish in the Manta rays’ school follow the front
individual by moving in foraging chain and a better solution has not been found until now.
The mathematical formula for chain foraging can be given below:

xt+1
i =

{
xt

i + r
(
xb − xt

i
)
+ a
(
xb − xt

i
)
→ i = 1

xt
i + r

(
xt

i−1 − xt
i
)
+ a
(
xb − xt

i
)
→ i = 2, . . . , N (2)

a = 2r
√
| log (r)| (3)
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where xt
i indicates the i-th individual location at the iteration (t), r denotes the random

vector belongs to zero and one, and xb signifies the better location that has been attained
so far. The upgraded location

(
xt+1

i

)
can be implemented using the existing location

(
xt

i
)

and the preceding location
(

xt
i−1
)

and the better location.

Figure 2. Structure of SqueezeNet model.

3.2.2. Cyclone Foraging

The Manta ray individual creates a foraging chain and makes a spiral movement when
it searches for food sources. In this step, flocked Manta rays pursue the Manta ray that
faces the chain and chase the spiral pattern to approach the prey. This spiral motion of the
Manta ray in terms of its behavior in the n dimension search space can be mathematically
devised below:

xt+1
i =

{
xb + r

(
xb − xt

i
)
+ B ·

(
xb − xt

i
)
→ i = 1

xb + r
(
xt

i−1 − xt
i
)
+ B ·

(
xb − xt

i
)
→ i = 2, . . . , N (4)

B = 2 exp
(

r1 ·
T − t + 1

T

)
· sin (2πr1), (5)

where B indicates the weight coefficient, T denotes the overall iteration count, and r,
r1 ∈ [0, 1] characterize a random number. Cyclone foraging allows for the individual
Manta rays to use the potential area and obtain a better solution [21]. Furthermore, for
better exploration, every individual was forced to discover a novel location that was located
farther from its existing location by allocating a reference location that was randomly
determined as follows:

xt+1
i =

{
xrand + r

(
xrand − xt

i
)
+ B ·

(
xrand − xt

i
)
→ i = 1

xrand + r
(
xt

i−1 − xt
i
)
+ B ·

(
xrand − xt

i
)
→ i = 2, . . . , N (6)

xrand = lj + r ·
(
uj − lj

)
, (7)

From the expression, xrand denotes a random location that was indiscriminately located
constrained using the lower and upper limits ui and li, correspondingly.
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3.2.3. Somersault Foraging

Each Manta ray individually swims backward and forward to pivot to upgrade its
position by somersaulting around the better location that was attained in the following:

xt+1
i = xt

i + ψ
(
r2xb − r3xt

i
)
→ i = 1, . . . , N, (8)

where ψ, which is named as the somersault component, defines the range of the somersault
where the Manta ray can swim (ψ = 2), r2 and r3 represent the random values that lie in
between zero and one. Thus, the behaviors of somersault foraging allow for the Manta
ray to freely move in a novel domain amongst the position and symmetrical position that
is based on the better location. As well, the somersault range was proportionate to the
iteration since it decreases as the iteration rises.

3.3. Stage III: GC Classification

Finally, the MRFOTL-GCDC technique has utilized the ENN model for classification
purposes. The ENN technique includes hidden, input, context, and output layers [22].
The major configuration of the ENN method can be comparable to the FFNN, wherein
the connection except context layer is same as the MLP. The context layer obtains inputs
from the outputs of the hidden unit to store the earlier value of the hidden unit. The
output weight, the external input, and the context weight matrixes were denoted as Wi

h,
Wc

h and W0
h , correspondingly. The output and input dimension layers are characterized

by n, i.e., the dimension of the context layer was m and x1(t) = [x1
1(t), x1

2(t), . . . ., x1
n(t)]

T ,
y(t) = [y1(t), y2(t), . . . , yn(t)]

T .
The input unit of the ENN can be defined using the subsequent formula:

ui(l) = ei(l), i = 1, 2, . . . , n (9)

Now, l defines the input and output units at l round. Next, k-th hidden unit in the
network is shown below:

vk(l) =
N
∑

j=1
ω1

kj(l)xc
j (l) +

n
∑

i=1
ω2

ki(l)ui(l)

k = 1, 2, . . . , N
(10)

Here, xc
j (l) defines the signal viz., which are distributed from the k-th context nodes,

ω1
kj(l) describes i-th and j-th weights of the hidden state directed from o-th node. Lastly,

the outcome of hidden unit is fed into the context layer that is given below:

Wk(l) = f0(vk(l)) (11)

Now,

vk(l) =
vk(l)

max{vk(l)}
(12)

The abovementioned formula denotes the normalized value of the hidden unit. The
succeeding layer represents the context layer as follows:

Ck(l) = βC, (l − 1) + Wk(l − 1), k = 1, 2, . . . , N (13)

From the expression, Wk denotes the gain of the self-connected feedback [0, 1]. Lastly,
the output unit in the network was denoted by:

y0(l) =
N

∑
k=1

ω3
ok(l)Wk, (l), 0 = 1, 2, . . . , n (14)

From the expression, ω3
ok defines the weight connected from k-th into o-th layers.
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4. Results and Discussion

In this section, the GC classification results of the MRFOTL-GCDC method were tested
using a dataset that was comprised of a set of endoscopic images. The dataset holds 2377
endoscopy images with three classes, as represented in Table 1. Figure 3 depicts some of
the sample images.

Table 1. Dataset details.

Label Class Count of Images

Class1 Healthy 1208

Class2 Early gastric cancer 532

Class3 Advanced gastric cancer 637

Total No. of Images 2377

Figure 3. Sample images.

The confusion matrices which were obtained by the MRFOTL-GCDC method using
the GC classification process are shown in Figure 4. The results highlighted that the
MRFOTL-GCDC method has properly differentiated the presence of GC.

Table 2 portrays an overall GC classification outcomes of the MRFOTL-GCDC method
using 80% of the TR databases and 20% of the TS databases.

Figure 5 exhibits the brief GC classifier outcomes of the MRFOTL-GCDC method using
80% of the TR database. The results exhibit that the MRFOTL-GCDC method has properly
differentiated the images into three classes. The MRFOTL-GCDC model has attained an
average accuy of 99.26%, a precn of 98.81%, a recal of 98.86%, an Fscore of 98.83%, and an
AUCscore of 99.13%.
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Figure 4. Confusion matrices of MRFOTL-GCDC system (a,b) TR and TS database of 80:20 and
(c,d) TR and TS database of 70:30.

Figure 6 portrays the detailed GC classifier outcomes of the MRFOTL-GCDC method
using 20% of the TS database. The results that were produced by the MRFOTL-GCDC
approach has properly distinguished the images into three classes. The MRFOTL-GCDC
method has obtained an average accuy of 98.88%, a precn of 98.20%, a recal of 98.17%, an
Fscore of 98.17%, and an AUCscore of 98.61%.

Table 3 depicts the overall GC classification outcomes of the MRFOTL-GCDC approach
using 70% of the TR databases and 30% of the TS databases. Figure 7 exhibitions the brief
GC classifier outcomes of the MRFOTL-GCDC method using 70% of the TR database. The
results produced by the MRFOTL-GCDC method have properly distinguished the images
into three classes. The MRFOTL-GCDC technique has achieved an average accuy of 99.20%,
a precn of 98.69%, a recal of 98.53%, an Fscore of 98.61%, and an AUCscore of 98.95%.
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Table 2. Result analysis of MRFOTL-GCDC system at an 80:20 ratio of the TR/TS database.

Labels Accuy Precn recal Fscore AUC Score

Training Phase (80%)

Class-1 99.05 99.06 99.06 99.06 99.05

Class-2 99.37 98.16 99.07 98.61 99.26

Class-3 99.37 99.22 98.45 98.83 99.08

Average 99.26 98.81 98.86 98.83 99.13

Testing Phase (20%)

Class-1 98.53 98.43 98.82 98.62 98.51

Class-2 98.95 96.15 99.01 97.56 98.97

Class-3 99.16 100.00 96.69 98.32 98.35

Average 98.88 98.20 98.17 98.17 98.61

Figure 5. Average analysis of MRFOTL-GCDC system in 80% of the TR database.

Figure 8 displays the complete GC classifier results of the MRFOTL-GCDC approach
using 30% of the TS database. The results that were produced by the MRFOTL-GCDC
approach have properly distinguished the images into three classes. The MRFOTL-GCDC
method has achieved an average accuy of 99.25%, a precn of 98.63%, a recal of 98.56%, an
Fscore of 98.60%, and an AUCscore of 99%.

The training accuracy (TRacc) and validation accuracy (VLacc) that were acquired by
the MRFOTL-GCDC approach in the test dataset are shown in Figure 9. The simulation
values that were produced by the MRFOTL-GCDC method have reached higher values of
TRacc and VLacc. Mainly, the VLacc is greater than the TRacc is.

The training loss (TRloss) and validation loss (VLloss) that were attained by the MRFOTL-
GCDC technique in the test dataset are established in Figure 10. The simulation values
denoted that the MRFOTL-GCDC approach has exhibited minimal values of TRloss and
VLloss. Mostly, the VLloss is lower than the TRloss is.
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Figure 6. Average analysis of MRFOTL-GCDC system using 20% of the TS database.

Table 3. Result analysis of MRFOTL-GCDC system at a 70:30 ratio of TR/TS database.

Labels Accuy Precn recal Fscore AUC Score

Training Phase (70%)

Class-1 99.34 99.17 99.52 99.35 99.34

Class-2 99.22 98.96 97.68 98.31 98.68

Class-3 99.04 97.94 98.39 98.16 98.83

Average 99.20 98.69 98.53 98.61 98.95

Testing Phase (30%)

Class-1 99.44 99.46 99.46 99.46 99.44

Class-2 99.02 97.90 97.22 97.56 98.35

Class-3 99.30 98.53 99.01 98.77 99.21

Average 99.25 98.63 98.56 98.60 99.00

A clear precision-recall review of the MRFOTL-GCDC method using the test database
is shown in Figure 11. The figure shows that the MRFOTL-GCDC approach has resulted in
enhanced values for the precision-recall values in every class.

Table 4 provides detailed GC classification results of the MRFOTL-GCDC model with
recent models. Figure 12 reports comparative results of the MRFOTL-GCDC method in terms
of the accuy. Based on the accuy, the MRFOTL-GCDC model has shown increased the accuy to
99.25%, whereas the SSD, CNN, Mask R-CNN, U-Net-CNN, and cascade CNN models have
reported reduced accuy values of 96.41%, 97.24%, 97.53%, 98.08%, and 96.84% correspondingly.
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Figure 7. Average analysis of MRFOTL-GCDC system using 70% of the TR database.

Figure 8. Average analysis of MRFOTL-GCDC system using 30% of the TS database.

Figure 13 exhibits the comparative results of the MRFOTL-GCDC technique in terms of
the precn, recal , and Fscore. Based on the precn, the MRFOTL-GCDC approach has displayed
an increased precn at 98.63%, whereas the SSD, CNN, Mask R-CNN, U-Net-CNN, and
cascade CNN techniques have reported reduced precn values of 96.16%, 95.38%, 96.58%,
97.54%, and 95.95% correspondingly. Additionally, based on the recal , the MRFOTL-GCDC
model has shown increased recal at, 98.56% whereas the SSD, CNN, Mask R-CNN, U-Net-
CNN, and cascade CNN models have reported reduced recal values of 95.61%, 98%, 98.25%,
96.99%, and 98% correspondingly.
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Figure 9. TRacc and VLacc analysis of MRFOTL-GCDC system.

Figure 10. TRloss and VLloss analysis of MRFOTL-GCDC system.

Table 4. Comparative analysis of MRFOTL-GCDC system with other existing techniques.

Methods Accuy Precn recal Fscore

MRFOTL-GCDC 99.25 98.63 98.56 98.60

SSD 96.41 96.16 95.61 96.26

CNN 97.24 95.38 98.00 97.91

Mask R-CNN 97.53 96.58 98.25 97.67

U-Net-CNN 98.08 97.54 96.99 95.00

Cascade CNN 96.84 95.95 98.00 97.58
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Figure 11. Precision recall analysis of MRFOTL-GCDC system.

Figure 12. Accuy analysis of MRFOTL-GCDC system with other existing approaches.

Finally, based on the Fscore, the MRFOTL-GCDC approach has shown an increased
Fscore of 98.60%, whereas the SSD, CNN, Mask R-CNN, U-Net-CNN, and cascade CNN
models have reported reduced Fscore values of 96.26%, 97.91%, 97.67%, 95%, and 97.58%
correspondingly. These results reported the improvement of the MRFOTL-GCDC model.
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Figure 13. Comparative analysis of MRFOTL-GCDC system with other existing approaches.

5. Conclusions

In this study, an automated GC classification using the MRFOTL-GCDC technique
has been developed for endoscopic images. The presented MRFOTL-GCDC technique
examined the endoscopic images for the identification of GC using DL and metaheuristic al-
gorithms. The presented MRFOTL-GCDC technique encompasses WF based preprocessing,
SqueezeNet feature extraction, MRFO hyperparameter tuning, and ENN classification tech-
niques. The experimental result analysis of the MRFOTL-GCDC technique demonstrates
the promising endoscopic image classification performance with a maximum accuracy of
99.25%. In future, the detection rate of the MRFOTL-GCDC technique can be boosted by
deep instance segmentation and deep ensemble fusion models.
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