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Simple Summary: Colorectal cancer (CRC) is a highly prevalent form of cancer, and represents a
serious, global, health threat. Available therapeutic approaches have failed to provide control over
the increasing prevalence and incidence of CRC. In this context, CRC prevention may provide a
fruitful strategy. Edible plants have the potential to alter numerous molecular pathways, which may
fight against the pathogenesis of CRC, and the gut microbiota could represent this link between
dietary factors and CRC incidence. Spices and their active principles are reported to alter the balance
of gut microbial species by increasing eubiotic and decreasing dysbiotic strains. The present study
is designed to highlight the cancer prevention potential of spices while focusing mainly on gut
microbial modulation. Although several spices and their active components have shown CRC-
preventing properties via gut microbial modulation, the literature is still very limited, and expanding
the literature going forward is essential before any conclusion can be drawn.

Abstract: Colorectal cancer (CRC) is the second most frequent cause of cancer-related mortality
among all types of malignancies. Sedentary lifestyles, obesity, smoking, red and processed meat,
low-fiber diets, inflammatory bowel disease, and gut dysbiosis are the most important risk factors
associated with CRC pathogenesis. Alterations in gut microbiota are positively correlated with
colorectal carcinogenesis, as these can dysregulate the immune response, alter the gut’s metabolic
profile, modify the molecular processes in colonocytes, and initiate mutagenesis. Changes in the daily
diet, and the addition of plant-based nutraceuticals, have the ability to modulate the composition
and functionality of the gut microbiota, maintaining gut homeostasis and regulating host immune
and inflammatory responses. Spices are one of the fundamental components of the human diet that
are used for their bioactive properties (i.e., antimicrobial, antioxidant, and anti-inflammatory effects)
and these exert beneficial effects on health, improving digestion and showing anti-inflammatory,
immunomodulatory, and glucose- and cholesterol-lowering activities, as well as possessing properties
that affect cognition and mood. The anti-inflammatory and immunomodulatory properties of spices
could be useful in the prevention of various types of cancers that affect the digestive system. This
review is designed to summarize the reciprocal interactions between dietary spices and the gut
microbiota, and highlight the impact of dietary spices and their bioactive compounds on colorectal
carcinogenesis by targeting the gut microbiota.
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1. Introduction

Colorectal cancer (CRC) is the most prevalent form of carcinoma, and represents a
leading component of the global health burden. Advancements in treatment methods,
colonoscopy, and avoidance of risk factors, such as smoking and red meat consumption,
have contributed to a decline in CRC cases over the last three decades in the United
States [1,2]. However, similar declines have only been observed in developed countries [3].
Despite innovative strategies of treatment and diagnosis, CRC remains the third most
common cancer and the second leading cause of mortality across the globe. In the year 2018
alone, 1.8 million new CRC cases were recorded including 881,000 deaths [4]. CRC cases
may rise to 2.5 million by the year 2035 [3]. The modifiable risk factors for CRC include
obesity [5], cigarette smoking [6], heavy alcohol use [7], poor diet [8], and a sedentary
lifestyle [9]. The genetic contribution towards CRC is in the range of 12–35% as demon-
strated in twin and family studies [10,11]. While 60–65% of cases arise sporadically without
any family history of CRC [12]. This sizeable sporadic contribution to the instigation of
CRC shows the significance of environmental factors, which play a large role in causing
CRC [13]. Among environmental factors, infectious agents are responsible for 15 percent
of all cancers [14]. Colorectal carcinogenesis is a process involving years of development,
possibly taking decades. In such scenarios, early life risk factors and lifestyle modification
are pertinent contributors [15]. The current rise of CRC in the young adult population in
the US is alarming [2], and this supports the concept that early life risk factors provide a
major impact on CRC carcinogenesis [16].

The human microflora counts around thirty trillion bacteria without considering
fungi and viruses. The microbiota is not only altered by the environment but also by
the relationship between the host and the symbiotic organisms [17]. The total number
of microbial cells is 10 times greater than that of human somatic cells [18–22] and these
include over 1000 different species of bacteria populating our gut. Most of these belong
to the Firmicutes and Bacteroides phyla and are linked to the protection of the host, as they
can produce metabolites and bioproducts promoting a protective effect against different
pathologies. The dietary compounds and vitamins produced by these bacteria are consid-
ered protective elements against the infiltration of gut pathogens and the development of
pathologies [23–25]. The impairment of the microbiota could lead to dysbiosis, and several
studies sustain this link between tumorigenesis and microbiome diversity, thanks to the
combination of next-generation sequencing and computational analysis [26–31]. A well-
regulated microbiome is essential for maintaining the homeostasis of the metabolism and
immune response, in fact, several clinical studies underline how the immunotherapeutic
response could be influenced by the gut microbiome, suggesting that treatments could be
enhanced or depressed according to the gut microbiota status [31–34].

Another important role of the microbiome is the recognition of the conserved re-
gions of Gram-negative pathogenic bacteria after the production of immunoglobin G
antibodies [35,36]. However, the composition and the alteration of the microbiota are also
related to different host life stages and diets [37–41]. It is calculated that 20% of all cancers
are related to dysbiosis, and with this perspective, probiotics could be used as therapeutic
agents to re-establish the normal microbial environment, enhancing the immune response
to counteract tumor growth. Literature data have shown that gut microbiota may provide
the missing link between dietary factors and CRC incidence [42]. Some dietary compo-
nents, such as saturated fats, processed carbohydrates, red meat, and ultra-processed
food can affect the gut microbiota and lead to inflammation [43], and inflammation is a
known factor for 20–30% of CRC cases and is acknowledged as the principal driver of
tumorigenesis [44–46].

While chemotherapy and radiotherapy are the key approaches employed for the treat-
ment of patients with cancer, both are associated with serious adverse events that may
outweigh their therapeutic benefits in certain cases. Drug resistance is another concern that
is very common for anticancer therapies and may result in failure of the treatment [47].
Nature has provided a range of preventive and therapeutic agents with the potential
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to fight against the most devastating chronic disorders including cancer [48,49]. Edible
plants containing phytochemicals are known to alter numerous molecular pathways that
may impact anticancer effects (i.e., oxidative stress, inflammatory cascade, apoptosis, epi-
genetic regulation, p53 signaling pathway, nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB) pathway, mitogen-activated protein kinases (MAPKs), protea-
some pathway, insulin-like growth factor-I mediated signal transduction pathway, matrix
metalloproteinases (MMPs), vascular endothelial growth factor, Hippo signaling pathway,
phosphoinositide 3-kinase–protein kinase B–mammalian target of a rapamycin signaling
pathway (PI3K/Akt/mTOR), cyclooxygenase-2, and the Janus kinase–signal transducer
and activator of transcription signaling pathway) [50–57].

Some spices such as turmeric, black cumin, ginger, ginseng, garlic, saffron, and
black pepper, are potential sources of cancer prevention owing to their natural bioactive
compounds (curcumin, thymoquinone, piperine, and capsaicin) [58–60]. About 80% of the
world population is currently relying on phytomedicine for their primary healthcare [61],
in fact, these natural products are commonly considered a safer alternative for patients,
if compared to systematic chemotherapeutic drugs although their scientific validity and
efficacy are currently under analysis [62,63]. These spices and herbs have been used for
thousands of years in small amounts thanks to their beneficial effects. In particular, curcuma,
ginger, garlic, clove, chili pepper, saffron, and flaxseed seem to inhibit CRC growth thanks to
their chemotherapeutic roles [58,64–66]. CRC development is sustained by cancer stem cells
(CSC), which are self-renewal and pluripotent stem cells able to promote carcinogenesis and
the formation of heterogeneous tumors [67]. Increasing evidence sustains the link between
microbiota alterations and mature tumor formation. In particular, their metabolome [68]
can promote pro or anti-carcinogenic actions. The preservation of the CSC is essential
and mediated by several phytochemicals such as curcumin, quercetin, lycopene, cinnamic
acid, resveratrol, sibilin, and epigallocatechin-3-gallate [EGCG] [69]. The main pathways
involved in the regulation of the CSC phenotype are Hedgehog, Notch, and Wnt/β-
catenin [70], which are modulated thanks to the colonic microbiota transformation of
phytochemicals. At the same time, these substances can modify the microbiota population.
Thus, the diet can change the colonic bacteria and vice versa in a triangular rapport where
is involved CRC formation.

The previous similar reviews [71,72] focused their attention on the molecular ba-
sis of CRC linking the antioxidant/anti-inflammatory activities of these spices or other
diet-derived phytochemicals and CRC pathogenesis. In some cases, recent articles also
considered the relationship between the dietary compounds and the gut microbiota-derived
metabolites without considering that these two aspects are essential for CRC prevention.
In fact, year after year, it is clear how new discoveries on CRC lead to the hypothesis that
the anti-inflammatory and antioxidant activities of herbs and spices, normally consumed
in the diet, are not the only mechanism of action that intervenes in CRC prevention. The
role of microbiota, in fact, seems to be crucial in the modulation of the microbiome and
control of the CSC population. The aim of this review is to focus on spice-derived bioactive
compounds influencing gut microbiota strains, with special reference to CRC prevention.

2. Gut Dysbiosis and Carcinogenesis

The maintenance of healthy gut microbiota during an individual’s lifespan, and any
potential loss of diversity, is strictly connected with their diet. The progression of a disease
could also involve the long-term depletion of specific groups of bacteria, which could
be induced by lifestyle changes and other societal factors [37,38]. Healthy conditions are
completely different from those of patients affected by dysbiosis. In the first case, the
immune system can easily recognize pathogenic microbes, promoting their consequent
elimination [73], most gut bacteria are non-pathogenic, and they offer an important de-
fense role in inhibiting colonization by pathogens. The immune cells (i.e., dendritic cells,
macrophages, and phagocytes) are involved in the gut microbiome and are essential for
the recognition of pathogenic bacteria [74]. Healthy individuals could suffer either mild
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or severe issues if bacteria translocate across the epithelial mucosa. Kupffer cells may be
involved, after the production of endotoxins and viable or dead bacteria. However, in
the case of dysbiosis, the commensal bacteria may also spread into extra-intestinal sites
and tissues. Obviously, this event can promote septic shocks, sepsis, organ failure, and
death [75] over short-term periods. The dysregulation of the microbiota is associated with
various pathologies, and this could be also induced using antibiotics which are known to
reduce microbiotal diversity. The state of the art sustains that diabetes types 1 and 2, obesity,
arthritis, Crohn’s disease, arthritis, and celiac disease are linked with the deregulation of
the microbiotal metabolism and inflammation, which promotes the incidence of these
pathologies [75–80].

Obviously, the microbiota is strongly involved in the absorption and metabolization
of nutrients, thanks to the expression of a great number of genes, which are not expressed
in our own organism. The impairment and the downregulation of these processes can
promote inflammation, which may also lead to cancer in the longer-term [81,82]. The
increased incidence and prevalence of cancer over recent decades are mainly due to a
higher exposure to cancer-causing molecules, but also to high-fat diets, which promote
dysbiosis and the inflammation process [78]. The microbial alteration could be one of
the main factors, which contribute to carcinogenesis [83], in fact, different studies have
supported the importance of the relationship between carcinogenesis and lifestyle. The
inflammation process remains a driving force in the progression of cancer, promoting
its development through the production of inflammatory cytokines [84], with microbial
dysbiosis leading to increased concentrations of interleukin (IL)-1, 6, 10, and tumor necrosis
factor alpha (TNF-α). The production of IL-10 is essential for the body’s elimination of
cancer, in fact it is considered the most effective anti-inflammatory cytokine involved in
tumorigenesis [85–87]. Wnt signaling is involved with NF-kB and MAPKs, which together
can lead to an increase in oxidative stress and inhibition of apoptosis [88,89]. Animal
and human studies have shown that bacteria such as Fusobacteria, Alistipes, Porphyromon-
adaceae, Coriobacteridae, Staphylococcaceae, Akkermansia species and Methanobacteriales are
predominantly increased in CRC, while Lactobacillus, Bifidobacterium, Faecalibacterium species,
Treponema, Roseburia, and Ruminococcus are known to reduce [90].

The production of toxins can also influence the tumorigenesis process, with Helicobacter
pylori, Escherichia coli, and Shigella flexneri, for example, inducing double-strand DNA cuts
causing apoptosis or alteration of the cell cycle [91]. Starting from E. coli, colibactin and
cytolethal distengin toxins induce genomic instability, promoting breaks in the host’s DNA
and tumorigenesis [89]. S. Flexneri instead produces cysteine proteases, such as virulence
gene A and the inisitol phosphate phosphatase D, with the final response, in this case,
being necrosis, with the development of cancer and cell death due to the degradation of the
p53 gene and host damage [92]. Fusobacterium nucleatum disrupts the junction of β-catenin
through the effector adhesin A (FadA); moreover, it is responsible for the production of
virulence factor (Fap2) but in this case, it is through the mediation of blocks of natural killer
cells (NK cells) through the binding of the NK inhibitory receptor [92–94]. Bacteroides fragilis
produces a toxin responsible for DNA damage after the production of reactive oxygen
species and hydrogen peroxide [95], the same is the case for Enterococcus fecalis, which is
responsible for the production of extracellular superoxide, able to trigger mutations in host
DNA [55]. Finally, Lactobacillus casei is responsible for the production of the ferrichrome
siderophore, which activates c-Jun N-terminal kinase (JNK) signaling and consequent
apoptosis [96].

3. Gut Microbial Alteration, Chemotherapy, and Cancer Prevention

Our gut contains trillions of microorganisms interacting with the host, and it is impor-
tant to underline their essential role in bodily function. Digestion, secretion of metabolites,
and the intervention of the immune system as cited above, are strictly related to the micro-
biota. Bacteria-free mouse models underline how dysbiosis is related to immunoglobulin
A, lymphadenitis, and the absence of mucus [97,98]. Cancers very often become resistant
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to the drugs most used for their treatment [99,100], and unfortunately in 90% of cases,
this phenomenon is responsible for the patient’s death [101–103]. Obviously, this problem
requires attention and time to promote the development of new treatments, and the gut
microbiota in particular may also influence the efficacy of antitumor therapies [104].

The negative impact of the absence of a microbiota is becoming clearer year after year,
with different studies on mice treated with antibiotics underlining the efficacy of chemother-
apy and immunotherapy [105]. Moreover, it is possible that the efficacy of chemotherapy
treatments may be heightened under normal conditions, promoting the destruction of
cancer through the intervention of T-lymphocytes and myeloid cells. The antibiotic treat-
ments applied in certain mice studies [106] can impair the presence of bacteria and the
production of cytokines, however further clinical studies are required to confirm these
preliminary findings. The combination of metabolomics and metagenomics underlines the
importance of the gut-brain axis [107], which regulates the composition of the gut flora
through the production of neuro-hormones and hormones. The case of cyclophosphamide
is particularly interesting, a chemotherapeutic drug able to promote the T-cell immune
response in the presence of commensal microbiota, which translocates from the spleen to
the lymph nodes promoting their anticancer effect [94,108]. It appears that Bifidobacterium
can enhance dendritic cells, promoting the activation of T CD8-positive cells and enhancing
the efficiency of anti-programmed death ligand (PDL-1) therapy [109]. The five-year sur-
vival rate was found to have increased by 80% for 1000 sarcoma patients treated with killed
microorganism activate (Serratia and Streptococcus) [110]. The T lymphocytes associated
with antigen 4 (CTLA-4) seem to have anticancer effects, promoting the production of
CTLA-4 inhibitors. In the absence of CTLA-4, germ-free mice registered a positive response
against cancer following an exposure to Bacteroides [111] underlying the anticancer effects
of these molecules.

Only a few studies to date appear to sustain the relationship between cancer prevention
and the microbiota. The production of short-chain fatty acids (SCFAs) by microbiota (i.e.,
Propionibacteria such as P. freudenreichii) [112–114] has an anti-cancer effect [115], inhibiting
the deacetylases of cancer cells. Indeed, a lower concentration of butyrate is registered in
cancer patients. The production of SCFAs stimulates the production of IL-18, promoting the
healing process in mucosal tissues [116]. Probiotic administration also exhibits interesting
effects, as it seems to trigger the immune response with an antitumor effect. Gram-negative
bacteria activate TLR4 and T-cells, with Salmonella enterica, for example, appearing to
be very effective against cervical cancer [117]. Finally, L. casei stimulates apoptosis in
cancer cells thanks to ferricrome production, through the activation of the JNK signaling
pathway [89].

4. Spice-Derived Phytochemicals and CRC Prevention by Modulating Gut Bacteria for
In Vivo Studies

Predominantly used as flavoring, coloring, and aromatic agents in beverages and foods,
spices are gaining attention for their potential health benefits. The nutritional, antioxidant,
anti-inflammatory, antimicrobial, and other medicinal uses of spices have paramount
importance [118]. Numerous health benefits of these food adjuncts have been recognized
by pioneering experimental studies involving both in vitro and in vivo studies over the
past few decades, including their antioxidant and anti-inflammatory potential, digestive
stimulant effects, hypolipidemic actions, anti-lithogenic properties, antidiabetic influence,
antimutagenic, and anticarcinogenic potentials [119]. Studies have shown that spices and
their bioactive compounds may inhibit or even activate pathways related to cell division,
proliferation, and detoxification, in addition to immunomodulatory and anti-inflammatory
effects [120]. The chemopreventive properties of spice-derived phytochemicals are mainly
attributed to the regulation of B-cell leukemia/lymphoma 2 protein, K-ras, MMP pathways,
apoptotic pathway, and caspase activation [71]. Considering the scope of the current review,
a link between gut microbial modulation by spices and the prevention of CRC pathogenesis
has been comprehensively discussed in the sections below. Table 1 summarizes these
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studies, highlighting the effects of spice-derived phytochemicals on gut microbiota and
their ultimate effect on intestinal health. Figures 1 and 2 illustrate the modulation of gut
microbes with spices as part of CRC prevention.

Table 1. Summary of anti-colon cancer effects of spice phytocompounds/phytocomplex by modula-
tion of gut microbiota in in vivo studies.

Spice-Derived
Compounds

In vivo Study
Model Dose Treatment

Duration
Effect on Gut

Microbiota Comments References

Curcumin Mice/Human 100 mg/kg 15 days

↑Lactobacilli and
Bifidobacterium;
↓Enterococci,

Enterobacteria,
Prevotellaceae, and

Coriobacterales

May produce
immune

modulation and
anti-tumor effects

in the colon

[121]

Curcumin Mice NA
(meta-analysis) NA

↑Bacteroides,
Rikenellaceae, Alistipes,

and Bacteroidaceae;
↓Prevotella and
Prevotellaceae

Prevotella has
been observed as
higher in patients

with CRC

[122]

Curcumin Pilot study

1000 mg of
curcumin + 1.25

mg black
pepper

8 weeks

↓Ruminococus and
Blautia;

↑Clostridium and
Enterobacter

Ruminococus
species have been

observed as
higher in patients

with CRC

[123]

Curcumin
nanoparticles Mice 0.2 w/w 7 days

↑number of
butyrate-producing

bacteria and feal
butyrate levels;

↓NF-kB activation in
colonic epithelial

cells

Increased SCFA
production may

reduce
inflammatory
processes and

intestinal mucosa
and promote

antitumor effects

[124]

Curcumin Mice 8 mg/kg/day–
162 mg/kg/day 20 days ↓Coriobacterales;

↑Lactobacillales

Decreased
oxidative and
inflammatory
stresses, and

hyper-immune
activation

[125]

Curcumin Mice
20 mg/kg,

100 mg/kg, and
200 mg/kg

10 days

↓Enterobacteria and
Enterococci;

↑Lactobacilli and
Bifidobacteria

Suppressed pro-
inflammatory
processes and
promoted anti-
inflammatory

effects

[126]

Ginger Mice 500 mg/kg
daily 7 days

↓Lactobacillus
murinus,

Lachnospiraceae
bacterium, and

Ruminiclostridium
specie KB18

Reduced the
expression of
mRNA of IL-6

and iNOS

[127]
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Table 1. Cont.

Spice-Derived
Compounds

In vivo Study
Model Dose Treatment

Duration
Effect on Gut

Microbiota Comments References

Ginger Mice 50 mg/kg 4 weeks

Altered the
abundance of

Helicobacter and
Peptococcaceae species

Ameliorated
weight loss, colon

shortening,
inflammatory

processes,
intestinal barrier
dysfunction, and

gut dysbiosis

[128]

Daikenchuto,
Japanese

traditional
herbal medicine

(processed
ginger, ginseng,
and Chinese or

Japanese
pepper)

Human colonic
microbiota 0.5% wt 48 h ↑Bifidobacterium

adolescentis

Bifidogenic
effects may have
beneficial effects

on colon

[129]

Ginger polysac-
charides Mice 200 mg/Kg 1,3,5,7 and

9-day dose

Balancing Firmi-
cutes/Bacteroidetes

ratio;
↑Lactobacillus and
Verrucomicrobiota;
↓Proteobacteria and

Bacteroides

Reduced the level
of colonic pro-
inflammatory

mediators
(TNF-α, IL-6,
IL-1β, IL-17A,

and IFN-γ),
restored gut

barrier function,
and restrained

apoptosis

[130]

Ginger juice Healthy
volunteers 500 mg/Kg/day 7 days

↓Ruminococcus_1 and
Ruminococcus_2 and
Prevotella/Bacteroides

ratio;
↑Proteobacteria,

Faecalibacterium, and
Firmi-

cutes/Bacteroidetes
ratio

Promoted anti-
inflammatory

effects in
intestinal mucosa

[131]

Garlic polysac-
charides Mice NA (systematic

review) NA

↑Bacteroidetes and
Actinobacteria;

↓Firmicutes/Bacteroidetes
ratio

Inhibited the
expression of
inflammatory

mediators
(TNF-α, IL-1β,

and IL-6);
Increased colon

length and
decrease in the
disease activity
and histological
score of colitis

[132]
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Table 1. Cont.

Spice-Derived
Compounds

In vivo Study
Model Dose Treatment

Duration
Effect on Gut

Microbiota Comments References

Propyl-propane
thiosulfonate Mice

0.01, 0.05, 0.1,
0.5, 1, and

10 mg/kg day
5 days

↑Firmicutes/Bacteroidetes
ratio;

↓Actinobacteria

Improved
intestinal

epithelial barrier
integrity and
reduced the

expression of pro-
inflammatory

mediators
(TNF-α, IL-1β,
IL-8, IL-17, and

iNOS)

[133]

Clove oil Quails 0.75 and 1.5
mL/Kg 42 days ↓Eescherechia coli, and

Salmonella species

Improved body
weight, activities

of antioxidant
enzymes, lipid

profile, and
intestinal

bacterial diversity

[134]

Capsaicin Healthy adults 10 mg/day 6 weeks

↑Firmicutes/Bacteriodes
ratio and

Faecalibacterium
abundance

Decreased
inflammatory

processes and risk
factors for CRC

[135]

Crocin-I Mice 20 mg/kg and
40 mg/kg 3 weeks ↓Firmicutes;

↑Bacteroidetes

Increased
α-diversity of

microbes in the
cecal contents

[136]

Crocetin Mice 10 mg/kg 1 week

↑Mediterraneibacter
and Akkermansia;
↓Dubosiella,

Muribaculaceae,
Paramuribaculum,

Allobaculum,
Parasutterella,
Duncaniella,
Stoquefichus,

Coriobacteriaceae
UCG-002, and

Candidatus.

Promoted
inflammation

with disturbed
intestinal

homeostasis

[137]

Saffron
Amnion of the

Gallus gallus
eggs

1% CFWE, 2%
CFWE, 5%
CFWE, 10%

CFWE.

Incubation
until 21

days

↓Lactobacillus and
Clostridium

Disrupted cecal
microbiome and

brush border
membrane

functionality

[138]

Flaxseed Mice 10% FS diet 1 week
↓Akkermansia
muciniphila;

↑Prevotella species

Decreased
susceptibility to
gut-associated

diseases
including

inflammatory
pathologies and

cancer

[139]
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Table 1. Cont.

Spice-Derived
Compounds

In vivo Study
Model Dose Treatment

Duration
Effect on Gut

Microbiota Comments References

Flaxseed
oligosaccha-

rides
Mice

50 mg/kg day,
100 mg/kg day,
and 200 mg/kg

day

14 days ↓Clostridiales

Increased colon
length, improved
colonic histology,

decreased
oxidative stress
markers (malon-
dialdehyde and

myeloperoxi-
dase), suppressed

pro-
inflammatory

cytokines (TNF-α,
IL-1β, and IL-6),
and increased

anti-
inflammatory

cytokine (IL-10);
Increased

propionic and
butyric acids

[140]

Flaxseed oil Pigs
Flaxseed oil

(FO, purity ≥
98%)

3 weeks

↓Spirochaetes;
↑Actinobacteria,

Bifidobacterium and
Blautia

Decreased
intestinal

expression of
MyD88, NF-κB,

TNF-α, and IL-10
genes

[141]

Flaxseed Mice 12 weeks

↑Prevotella,
Ruminococcus,

Clostridiales, and
Paraprevotella

Increased
butyrate

concentration;
Ameliorated the

adherent-
invasive E. coli

induced intestinal
inflammation

[142]

Colorectal cancer, CRC; short chain fatty acids, SCFAs; nuclear factor kappa-light-chain-enhancer of activated
B cells, NF-kB; tumor necrosis factor alpha, TNF-α; interleukin-6, IL-6; interleukin-1β, IL-1β; interleukin-17A,
IL-17A; interferon-γ, IFN-γ; inducible nitric oxide synthase, iNOS.
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Figure 1. Illustration of gut microbial modulation with curcumin, ginger, garlic, and clove regards 

to CRC prevention. 
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CRC prevention.
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Figure 2. Illustration of gut microbial modulation with chili pepper, saffron, and flaxseed regards 

to CRC prevention. 

Figure 2. Illustration of gut microbial modulation with chili pepper, saffron, and flaxseed regards to
CRC prevention.
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4.1. Turmeric-Derived Compounds

Curcumin, derived from the roots of the plant known as Curcuma longa L., is a nat-
ural product that has been extensively studied for the prevention and treatment of can-
cer [143,144]. Curcumin exerts its anticancer action via various mechanisms, e.g., by
inducing apoptosis, thereby inhibiting cell proliferation of cancerous cells, activating cas-
pase, and inducing the expression of anti-oncogenes such as p53 [145,146]. Interruptions
in mucosal barrier function play a significant role in CRC. The persistent inflammation
of, and oxidative stress within, intestinal epithelial cells are the most evident causes of
colorectal carcinogenesis. Dysfunctions in the mucosal barrier further synergize with this
vicious progression of carcinogenesis [147]. The circulating lipopolysaccharide (LPS), due
to dysfunction in the gut microbiota, may be a possible cause for the development of
chronic inflammatory disorders. The translocation of LPS into systemic circulation occurs
due to a dysfunction in the intestinal barrier [148]. The western style diet has been reported
to increase intestinal permeability and may be responsible for intestinal barrier dysfunc-
tion [149]. Many studies have demonstrated that pretreatment with curcumin attenuates
LPS-induced inflammatory cytokines by modulating the p38 MAPK pathway. Curcumin
exerts this action most likely on intestinal epithelial cells, thereby reducing intestinal barrier
dysfunction [150,151].

The higher concentration of curcumin in the gastrointestinal tract after oral administra-
tion suggests that it may regulate the gut microbiota, resulting in various pharmacological
actions despite its low systemic bioavailability [121,152]. The present data suggest that
curcumin is metabolized by the gut microbiota into different metabolites through diverse
pathways, including demethoxylation, hydroxylation, and demethylation. Moreover, these
metabolites have been found to be more active compared to the parent molecule curcumin.
The higher concentration of curcumin in the gastrointestinal tract after oral administration
shows its preferential impact on gut microbiota composition. On the other hand, the pro-
cessing of the parent molecule transforms it into its bioactive metabolites, resulting in its
various therapeutic and pharmacological actions [153].

As evidenced in many studies, curcumin shows a direct influence on gut microbiota
by increasing the ratio of beneficial bacteria compared to pathological ones [154–156]. An
in vivo study has shown a significant effect of curcumin on numerous bacterial families in
the gut including Prevotellaceae, Rikenellaceae, and Bacteroidaceae [155]. Curcumin adminis-
tration considerably alters the ratios of beneficial and pathogenic intestinal microflora by
enhancing the number and diversity of Lactobacilli and Bifidobacterium, and decreasing the
bacterial load of Enterococci, Enterobacteria, Prevotellaceae, and Coriobacterales, thus explaining
its immune modulation and anti-tumor effects in the colon [121]. Curcumin administration
to mice significantly increased the number of Bacteroides, Rikenellaceae, Alistipes, and Bac-
teroidaceae while decreasing the number of Prevotella and Prevotellaceae [122]. The number
of Prevotella has been observed to be higher in patients with CRC, compared to cancer-free
patients [157].

In patients with CRC, increased levels of Ruminococus species of bacteria have been
noticed in the gut microbiota [158,159]. Interestingly, a pilot study elucidated that curcumin,
when used as a dietary supplement, reduced Ruminococus and Blautia bacterial species,
and increased the population of Clostridium and Enterobacter in gut microbiota [123]. The
suppressive activity of curcumin on gut microbiotal species shows its anticancer potential in
preventing CRC. Through modulating gut microbiota, the administration of nanoparticles
of curcumin in mice has demonstrated increased numbers of butyrate-producing bacteria,
increased fecal butyrate levels, and suppressed NF-kB activation, in colonic epithelial
cells. Moreover, it also downregulated the expression of mucosal mRNA in inflammatory
mediators [124].

Supplementation of rats with curcumin showed improvements in fecal microbes
(reduced Coriobacterales and increased Lactobacillales), resulting in the regulation of the
host immune system, which in turn lowered oxidative and inflammatory stresses, and
hyper-immune activation, which may lower the incidence of inflammatory gastrointestinal
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disorders such as inflammatory bowel disease (IBD) [125]. Literature also reported the
eradication of H. pylori production with curcumin treatment and its attachment to the
human gastric adenocarcinoma cell lines die to its anti-adhesion properties [160–162].
Treatment of animals (infected with Toxoplasma gondii) with curcumin not only reduced
the number of pro-inflammatory Enterobacteria and Enterococci, but also increased the
abundance of anti-inflammatory Lactobacilli and Bifidobacteria [126]. Oral supplementation
of curcumin alleviated acute inflammation of the small intestine by downregulating the Th1-
type immune response and preventing bacterial translocation by maintaining the intestinal-
barrier function [149]. It inhibited mRNA expression on the mucosa on inflammatory
mediators and activated NF-kB in colon epithelial cells accompanied by enhanced butyrate-
producing bacteria and fecal butyrate levels.

4.2. Ginger-Derived Compounds

Ginger rhizome (Zingiber officinale Roscoe) belonging to the plant family Zingiberaceae,
is extensively used as a hot dietary spice in foods and drinks because of its distinctive
flavor [163]. Ginger rhizome has a rich chemistry, containing phenolic compounds, ter-
penes, polysaccharides, organic acids, and raw fibers [164]. The volatile oil components
of ginger include sesquiterpenes, zingerberene, curcumene, farnesene, and 40 different
monoterpenoid hydrocarbons [165] while the main non-volatile active compounds of gin-
ger include geingerols, shogoals, paradols and zingerone [166,167]. The active constituents
[6]-shogaol and [6]-gingerol have shown anti-proliferative activity against various forms of
gastrointestinal cancer [167].

As evidenced by numerous studies, ginger extract has a protective activity against
ulcerative colitis, a chronic IBD of unknown pathology [168–170]. Recently Guo et al. [127]
identified the mechanism by which ginger ameliorates dextran sulfate sodium (DSS) in-
duced ulcerative colitis. They found that oral administration of ginger extract modulates
the gut microbiota, where it reduces the population of pathogenic bacteria such as Lacto-
bacillus murinus, Lachnospiraceae bacterium 615, and Ruminiclostridium_sp. KB18. Moreover,
the ginger extract also reduces the expression level of mRNA of inflammatory cytokines,
such as IL-6 and inducible nitric oxide synthase. These studies show that ginger most likely
modulates the gut microbiota to reduce inflammation, consequently preventing CRC.

An in vivo study demonstrated a decrease in susceptibility to DSS-induced colitis in
mice with ginger extract (containing 16-compounds including thymine, 6-dehydrogingerdione,
10-gingerol, 6-gingerdiol 5-O-β-D-glucopyranoside, O-tert-butyl-dimethylsilyl curcumin,
diacetoxy-6-gingerdiol, 6-shogaol, and 6-paradol) following antibiotic exposure in early
life [128]. Supplementation to mice with ginger extract for 4-weeks ameliorated weight loss,
colon shortening, inflammatory cascade, intestinal barrier dysfunction, and gut dysbiosis.
It increased the bacterial diversity and altered the abundance of Helicobacter and Peptococ-
caceae species, modulating gut microbial structure and composition adversely affected by
antibiotic exposure. A Japanese traditional herbal medicine (Daikenchuto), containing pro-
cessed ginger, ginseng, and Chinese or Japanese pepper, significantly promoted the growth
of Bifidobacterium adolescentis, but not that of E. coli and Fusobacterium nucleatum, in human
fecal samples, suggesting an in vitro bifidogenic effect that may contribute to the beneficial
effects on colon [129]. Ginger polysaccharides relieved DSS-induced ulcerative colitis in
mice via gut microbial modulation, maintaining intestinal barrier integrity [130]. Ginger
polysaccharides reduced the level of colonic pro-inflammatory mediators such as TNF-α,
IL-6, IL-1β, IL-17A, and interferon (IFN)-γ. In addition, ginger polysaccharides restored
gut barrier function, restrained apoptosis, and modulated gut microbiota (by balancing
Firmicutes/Bacteroidetes ratio, increasing Lactobacillus and Verrucomicrobiota, and decreasing
Proteobacteria and Bacteroides). An intervention with ginger juice in healthy adults decreased
the relative abundance of pro-inflammatory Ruminococcus_1 and Ruminococcus_2 and Pre-
votella to Bacteroides ratio, with an increase in Proteobacteria, Faecalibacterium, and Firmicutes
to Bacteroidetes ratio [131].
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4.3. Garlic-Derived Compounds

Garlic (Allium sativum L.), belonging to the plant family Liliaceae, is a widespread
dietary spice consumed around the globe [171,172]. Garlic consists of various bioactive
compounds such as saponins, phenolic compounds, organosulfur compounds, and polysac-
charides [173]. The presence of bioactive organosulfur compounds in garlic raises the
possibility of anticancer activity [174–177]. Garlic has a paradoxical effect on the gut micro-
biota, however, whole garlic supplementation has revealed that it increases the α-diversity
of the gut microbiota and as a result ameliorated high-fat diet-induced dyslipidemia [178].
Similarly, the GarGIC Trial results showed that the administration of Kyolic aged garlic
extract lowered blood pressure in hypertensive patients by reducing arterial stiffness,
inflammation and improving the gut microbiotal profile [179]. The anticancer action of
garlic has been explored by its interaction with multiple pathways in carcinogenesis. More
experimental and clinical trials are necessary to identify the role of garlic in cancer and
particularly in CRC via gut microbiota modulation.

A. sativum polysaccharides (200 or 400 mg/kg/day) demonstrated anti-inflammatory
activities via modulation of gut microbiota in an experimental model of DSS-induced coli-
tis [132]. Garlic polysaccharides increased body weight and colon length with a decrease in
disease activity and histological scores of colitic mice as well as inhibiting the expression of
inflammatory mediators i.e., TNF-α, IL-1β, and IL-6. Moreover, they improved the compo-
sition of intestinal microbiota and increased the production of SCFAs. The key intestinal
microbial strains associated with the inflammatory intestinal conditions identified were
Muribaculaceae, Lachnospiraceae NK4A136 group, Lachnospiraceae, Helicobacter, Mucispiril-
lum, Ruminococcus 1, and Ruminiclostridium 5. Propyl-propane thiosulfonate (one of the
biologically active compounds present in A. sativum) modulated immune responses, con-
tributing to anti-inflammatory effects in experimental colitis [133]. The immunomodulatory
effects of propyl-propane thiosulfonate were supported by reducing the in vitro production
of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and downstream regulation of
MAPK-signaling pathways (p44/42 ERK and p38), and in vivo by improving the intestinal
epithelial barrier integrity, reducing the expression of pro-inflammatory mediators (TNF-α,
IL-1β, IL-8, IL-17, and iNOS), and restoration of gut microbial alteration induced by DSS
exposure (increased Firmicutes/Bacteroidetes ratio and decreased Actinobacteria). On the
contrary, another study showed alteration of gut microbiota with diallyl disulfide and
induction of fatty liver in the same fashion as caused by a high-fat diet [180].

4.4. Clove-Derived Compounds

Clove (Syzygium aromaticum (L.) Merr. and L.M.Perry) belongs to the Myrtaceae plant
family, and is one of the oldest and most valuable dietary spices [181]. The major bioac-
tive constituents of clove oil are eugenol (70–90%) eugenyl acetate, β-caryophyllene, and
various sesquiterpenes [182]. Other phytochemicals from clove include bicornin, eugen-
itin, myricetin, gallic acid, methyl salicylate, methyl amayl ketone, vanillin, ellagic acid,
kaempferol, stigmasterol, oleanolic acid, β-caryophyllene and crategolic acid [183]. Con-
sidering the broad phytochemistry and biological activities of clove, it has the therapeutic
potential to prevent various types of cancers and other diseases [184].

Regarding the effect of clove against CRC, an active fraction of clove extract has
demonstrated an anti-proliferative effect against CRC (HCT-116) cells. The active fraction
of clove extract induced apoptosis in HCT-116 cell lines, autophagy and inhibited the
phosphorylation of the PI3K/Akt/mTOR signaling pathway [185]. In another study, ethyl
acetate extract of cloves demonstrated antitumor activity both in in vivo and in vitro models.
The clove extract shows dose-dependent induction of apoptosis and has downregulated
cell cycle proteins. The authors suggested that clove extract has the potential to be used as
a therapeutic herb for treating CRC [186]. Similarly, eugenol has anti-inflammatory effects
as observed in mice with DSS-induced colitis, where eugenol treatment has ameliorated
the colonic inflammation and oxidative stress in the DSS group [187].
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An intake of S. aromaticum oil 1.5 mL/kg in the diet administered to quails led to an
improvement in body weight, activities of antioxidant enzymes, lipid profile, and intestinal
bacterial diversity [134]. The coliforms, E. coli, and Salmonella species were found to be
lowered in the ileal contents of quails supplemented with S. aromaticum oil, suggesting a
reduction in intestinal pathogens, aiming to promote a healthy intestinal status.

4.5. Chili Pepper-Derived Compounds

Chili pepper belongs to the Capsicum genus, a member of the family Solanaceae.
The use of chilies as complementary and alternative medicine in developing countries is
rapidly increasing. Alkaloids are the most active compounds present in Capsicum, known
as capsaicinoids, such as capsaicin, dihydrocapsaicin, nordihydrocapsaicin, norcapsaicin,
nornordihydrocapsaicin, homocapsaicin and homodihydrocapsaicin [188]. To date, no
clinical investigation has confirmed the effects of capsaicin in human colon cancer, and few
studies are focused on the relationship between capsaicin consumption and microbiota
alterations [189].

A recent study on 512,000 adults revealed that consumption of spices is associated
with a lower risk of GI cancer after 5 years of consumption, however, capsaicin also
seems to have a negative effect on human health, even if most studies underline that only
high doses seem to be harmful. An inverse association was found between spicy food
consumption and CRC risk for those who never/rarely consumed and consumed monthly,
1–2 days/week, 3–5 days/week, and 6–7 days/week [190]. This could be related to an
increase in butyrogenic bacteria and a decrease in LPS-producing bacteria. Another study
found that consumption of 5 mg/d or 10 mg/day capsaicin on a regular basis increased
Firmicutes/Bacteriodes and Faecalibacterium abundance. This event leads to an increase in
glucagon-like peptide 1 and gastric inhibitory polypeptide with a decrease in ghrelin [135].
Diferuloylmethane is another interesting compound, which can influence the progress
of CRC by changing the gut microbiome. Different studies registered lower intestinal
inflammation through a reduction in NF-kB in colonic epithelial cells. Another positive
effect is the growth of T cells in CD4+ Foxp3+ DSS colitis models and the reduction of
Blautia and Ruminococcus species, which are responsible for CRC progress [191].

4.6. Saffron-Derived Compounds

Saffron (Crocus sativus, L) belongs to the plant family Iridaceae, and has been used as
a food additive for centuries [192,193]. The phytochemistry of saffron reveals more than
150 compounds, principally comprising flavonoids, apocarotenoids (picrocrocin, crocin,
and crocetin), safranal, terpenes, aromatic hydrocarbons, alkaloids, and amino acids [194].
Saffron and its bioactive constituents have the potential to prevent and treat various types
of cancer, as evidenced by multiple studies [195]. Crocin significantly prevented DSS and
azoxymethane-induced colitis by reducing the level of mRNA expression, inflammatory
cytokines, and NF-κB, in colorectal mucosa [196]. Similarly, in another in vivo study, crocin
synergized the anti-proliferative action of 5-flurouracil via Wnt/PI3K pathway in CRC
mice, associated with colitis [197].

In a recent study, saffron extract was administered to CRC cells for anti-proliferation
and anti-motility progression by targeting MET transcriptional regulator (MACC1) expres-
sion [198]. This accumulating evidence shows the therapeutic potential of saffron in the
prevention of CRC via gut microbiota modulation. Crocin-I ameliorated the disruption of
gut dysbiosis in mice induced by chronic corticosterone administration. High-throughput
sequencing of 16s rRNA demonstrated that crocin-I could mitigate gut dysbiosis through
significant decreases in the abundance of Firmicutes and an increase of Bacteroidetes, and a
significant increase in the α-diversity of the microbes in the cecal contents [136]. An herbal
formula containing C. sativus, Edgeworthia gardneri (Wall.) Meisn., and Sibiraea angustata
modulated gut microbiota with the regulation of gut-liver axis in Zucker diabetic fatty
rats [199]. The formula modulated the dysbiosis of gut microbiota and maintained intestinal
epithelial homeostasis, resulting in the reduction of serum levels of LPS, TNF-α, and IL-6.
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Some pieces of recently published literature have also reported the negative ef-
fects of saffron and crocetin on gastrointestinal diseases such as colitis. While inves-
tigating the effects of crocetin on the regulation of intestinal barrier function and in-
testinal microbiota composition in mice, Feng et al. [137] observed prolonged recov-
ery of colitis due to the promotion of inflammation with disturbed intestinal home-
ostasis under crocetin (10 mg/kg/day for 21-days) with an altered composition of gut
microflora and its metabolic products compared to the DSS group. The 16s rDNA se-
quencing analysis of the feces samples showed a higher abundance of Mediterraneibac-
ter and Akkermansia, and a lower abundance of Dubosiella, Muribaculaceae, Paramuribacu-
lum, Allobaculum, Parasutterella, Duncaniella, Stoquefichus, Coriobacteriaceae UCG-002, and
Candidatus. In addition, crocetin intake also reduced the levels of bile acids including
7-ketodeoxycholic acid, 12-ketodeoxycholic acid, 3-sulfodeoxycholic acid, chenodeoxy-
cholate, 6-ethylchenodeoxycholic acid, glycochenodeoxycholate-7-sulfate, sulfolithocholic
acid, and glycocholate in the colon. Another study showed disruption of the cecal micro-
biome and brush border membrane functionality with C. sativus flower water extract [138].
The C. sativus extract (1%, 2%, 5%, and 10%) was administered in the amnion of the Gallus
gallus eggs and was allowed to be consumed by the developing embryo over the next few
days. The hatchlings were euthanized, and blood, duodenum, and cecum were harvested
for assessment, which showed a significant increase in Mucin 2 gene expression and Paneth
cell number proportional to the increase in extract concentration, accompanied by a dose-
dependent reduction of Lactobacillus and Clostridium suggesting an alteration of bacterial
populations.

4.7. Flaxseed-Derived Compounds

Flaxseed (Linum usitatissimum L.) belonging to the Linaceae, is one of the richest
dietary sources of omega-3 fatty acids. Other compounds identified in flaxseed include
dietary fibers, lignans, and phenolics [200]. Flaxseed is already being extensively used in
animal studies to treat cancers of different origins. Numerous studies have demonstrated
the prevention of colon carcinogenesis in preclinical studies due to the consumption of
flaxseed. Flaxseed possesses immunomodulatory effects, possibly due to prebiotic effects. It
maintains the integrity of the intestinal epithelial barrier, inhibiting inflammatory responses
and promoting the proliferation of beneficial phyla that may help in preventing CRC devel-
opment and pathogenesis [201]. Dietary flaxseed supplementation in healthy C57Bl/6 male
mice exhibited an alteration in fecal microbial community structure (i.e., a 30-fold decrease
in Akkermansia muciniphila abundance and a 20-fold increase in Prevotella species) along
with a significant increase in fecal branched-chain fatty acids, thus decreasing susceptibility
to gut-associated diseases including inflammatory pathologies and cancer [139].

Flaxseed polysaccharides may reach the colon intact (without being degraded) where
changes in carbohydrate contents, reducing sugars, and culture pH suggest that these
polysaccharides may be broken down and used by gut microbiota. Zhou et al. [202] ob-
served a modulation of the structure and composition of gut microbiota with flaxseed
polysaccharides through the alteration of the Firmicutes/Bacteroidetes ratio, and enhanced
relative abundances of Phascolarctobacterium, Prevotella, Megamonas, and Clostridium, which
can degrade polysaccharides. Moreover, the fermentation of flaxseed polysaccharides
increased the concentration of SCFAs, particularly propionate and butyrate. Flaxseed
oligosaccharides alleviated DSS-induced colitis via the modulation of gut microbiota and
repairing of the intestinal barrier in mice [140]. Flaxseed oligosaccharides (200 mg/kg/day)
resulted in the improvement of colonic histology, downregulation of oxidative stress mark-
ers (malondialdehyde and myeloperoxidase), and suppressed pro-inflammatory cytokines
(TNF-α, IL-1β, and IL-6) while increasing the levels of an anti-inflammatory cytokine (IL-
10). The 16S rDNA gene high-throughput sequencing indicated an increase in gut microbial
diversity and inhibition of the proliferation of inflammatory-related bacteria (Clostridiales).
An increase in propionic and butyric acids was also observed in mice treated with flaxseed
oligosaccharides.
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Flaxseed oil supplementation in pigs with intrauterine growth retardation improved
intestinal function and immunity (downregulated intestinal expression of MyD88, NF-κB,
TNF-α, and IL-10 genes) associated with altered colonic microflora, by decreasing the
abundance of Spirochaetes and increasing phylum Actinobacteria, and genera Bifidobacterium
and Blautia [141]. Treatment of CEABAC10 transgenic mice (with Crohn’s disease) with
dietary extruded flaxseed for 12 weeks ameliorated the adherent-invasive E. coli-induced
intestinal inflammation [142]. Analysis of mucosa-associated microbiota showed a higher
abundance of Prevotella, Ruminococcus, Clostridiales, and Paraprevotella, in addition to higher
butyrate concentration in mice treated with flaxseed. Conversely, ground flaxseeds (rich in
omega-3 fatty acids, lignans, and fibers) exacerbated Citrobacter rodentium-induced colitis in
C57BL/6 mice despite the higher levels of omega-3 fatty acids and cecal SCFAs [203].

5. Conclusions

The available literature data suggest that spices and their phytochemicals could be
one of the dietary factors that may prevent the risk of CRC development by affecting
tumor behavior and targeting numerous molecular mechanisms. Many processes (i.e.,
oxidative stress, inflammatory cascade, apoptosis, and proliferation) can be influenced by
one or more spice-derived phytochemicals. Studies on gut microbial modulation by spice-
derived phytochemicals in CRC are still very limited, as spice-derived phytochemicals have
been studied in this regard. Thus, the exploration of other spice-derived phytochemicals
is essential to provide further insights into the interesting relationship between spice-
derived phytochemicals and gut microbiota in CRC. Certain spice-derived phytochemicals
have been found to exacerbate gut dysbiosis and intestinal inflammation, such as diallyl
disulfide, saffron, crocetin, and ground flaxseeds. So, further confirmation is required on
whether this phenomenon will affect the CRC-preventing activity of other spices such as
garlic and flaxseed. Additionally, the data reviewed from the literature has mainly been
based on preclinical studies, thus robust clinical trials are needed to determine who will
benefit from an adequate intake of spice-derived phytochemicals, and what interactions
(both positive and negative) may exist among spices with other dietary components or
medications (that an individual with CRC may regularly consume). Moreover, the testing
of phytochemicals, both in cell cultures and animal studies, at much higher doses than
would be regularly ingested, represents pharmacological therapeutic intervention rather
than a dietary preventive approach, and thus spice-derived phytochemicals must be tested
within the range of dietary doses to assess the actual potential of dietary spices to prevent
CRC via gut microbial modulation.
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Abbreviations

CRC colorectal cancer
CSC cancer stem cells
CTLA-4 T lymphocytes associated with antigen 4
DSS dextran sulfate sodium
IBD inflammatory bowel disease
IL-1 interleukin-1
JNK pathway c-Jun N-terminal kinase pathway
LPS Lipopolysaccharide
MAPKs mitogen activated protein kinases
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MMPs matrix metalloproteinases
NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells
NK cells natural killer cells
SCFAs short chain fatty acids
TNF-α tumor necrosis factor alpha
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