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Simple Summary: The aim of this study was to assess the efficacy of radiomics features obtained
by EOB-MRI phase in order to predict clinical outcomes following liver resection in Colorectal
Liver Metastases Patients, and evaluate recurrence, mutational status, pathological characteristic
(mucinous) and surgical resection margin. Ours results confirmed the capacity of radiomics to
identify, as biomarkers, several prognostic features that could affect the treatment choice in patients
with liver metastases, in order to obtain a more personalized approach. These results were confirmed
by external validation dataset. We obtained a good performance considering the single textural
significant metric in the identification of front of tumor growth (expansive versus infiltrative) and
tumor budding (high grade versus low grade or absent), in the recognition of mucinous type and in
the detection of recurrences.

Abstract: The aim of this study was to assess the efficacy of radiomics features obtained by EOB-MRI
phase in order to predict clinical outcomes following liver resection in Colorectal Liver Metastases
Patients, and evaluate recurrence, mutational status, pathological characteristic (mucinous) and
surgical resection margin. This retrospective analysis was approved by the local Ethical Committee
board of National Cancer of Naples, IRCCS “Fondazione Pascale”. Radiological databases were
interrogated from January 2018 to May 2021 in order to select patients with liver metastases with
pathological proof and EOB-MRI study in pre-surgical setting. The cohort of patients included
a training set (51 patients with 61 years of median age and 121 liver metastases) and an external
validation set (30 patients with single lesion with 60 years of median age). For each segmented volume
of interest by 2 expert radiologists, 851 radiomics features were extracted as median values using
PyRadiomics. non-parametric test, intraclass correlation, receiver operating characteristic (ROC)
analysis, linear regression modelling and pattern recognition methods (support vector machine
(SVM), k-nearest neighbors (KNN), artificial neural network (NNET), and decision tree (DT)) were
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considered. The best predictor to discriminate expansive versus infiltrative front of tumor growth
was HLH_glcm_MaximumProbability extraxted on VIBE_FA30 with an accuracy of 84%, a sensitivity
of 83%, and a specificity of 82%. The best predictor to discriminate tumor budding was Inverse
Variance obtained by the original GLCM matrix extraxted on VIBE_FA30 with an accuracy of 89%,
a sensitivity of 96% and a specificity of 65%. The best predictor to differentiate the mucinous type
of tumor was the HHL_glszm_ZoneVariance extraxted on VIBE_FA30 with an accuracy of 85%, a
sensitivity of 46% and a specificity of 95%. The best predictor to identify tumor recurrence was
the LHL_glcm_Correlation extraxted on VIBE_FA30 with an accuracy of 86%, a sensitivity of 52%
and a specificity of 97%. The best linear regression model was obtained in the identification of the
tumor growth front considering the height textural significant metrics by VIBE_FA10 (an accuracy
of 89%; sensitivity of 93% and a specificity of 82%). Considering significant texture metrics tested
with pattern recognition approaches, the best performance for each outcome was reached by a KNN
in the identification of recurrence with the 3 textural significant features extracted by VIBE_FA10
(AUC of 91%, an accuracy of 93%; sensitivity of 99% and a specificity of 77%). Ours results confirmed
the capacity of radiomics to identify as biomarkers, several prognostic features that could affect the
treatment choice in patients with liver metastases, in order to obtain a more personalized approach.

Keywords: Liver metastasis; Magnetic Resonance Imaging; artificial intelligence; radiomics

1. Introduction

Radiomics is a rapidly evolving field of research concerned with the extraction of
quantitative metrics—the so-called radiomics features—within medical images. Radiomic
features capture tissue and lesion characteristics such as heterogeneity and shape and
may, alone or in combination with demographic, histologic, genomic, or proteomic data,
be used for clinical problem solving. In oncology, the assessment of tissue heterogeneity
is of particular interest; genomic analyses have demonstrated that the degree of tumor
heterogeneity is a prognostic determinant of survival and an obstacle to cancer control.
Studies have demonstrated that radiomics features are strongly correlated with hetero-
geneity indices at the cellular level [1–8]. Therefore, that Radiomics could support cancer
detection, diagnosis, evaluation of prognosis and response to treatment, so as could su-
pervise disease status [9–14]. Using standard of care images that are usually obtained in
a clinical setting, Radiomics analysis is a cost-effective and highly feasible implement for
clinical decision support, providing prognostic and/or predictive biomarkers which en-
ables a fast, low-cost, and repeatable tool for longitudinal monitoring [15–20]. Even though
individual features may correlate with genomic data, so-called radiogenomics, or clinical
outcomes, the impact of radiomics is increased when the data are processed using machine
learning techniques. Nowadays, several studies have assessed the role of radiogenomics in
hepatocellular carcinoma, but only a few have examined liver metastases [1–3].

During the work-up of patients with liver metastases, imaging plays an important role,
since it enables one to estimate the number and sites of lesions, to assess the resectability,
and to evaluate the response to treatment and drug toxicities [21–25]. Though computed
tomography (CT) is routinely used for primary staging and disease surveillance, Mag-
netic Resonance imaging (MRI) is a valuable diagnostic technique in oncologic settings
since it allows one to assess morphological and functional data [21–24]. Moreover, sev-
eral liver-specific contrast agents have been introduced to improve lesions detection and
characterization. Gadobenate dimeglumine (Gd-BOPTA) and gadolinium ethoxybenzyl
diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) allow one to obtain data on the lesions
vascularization during the different phases of contrast study and functional data in the
delayed, hepatobiliary phase (EOB-phase).

In this context, the possibility to correlate radiomics parameters obtained by MRI
studies to recurrences, mutational status, pathological characteristic (mucinous and tu-
mor budding), and surgical resection margin offers notable advantages over qualitative
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imaging assessment, allowing a better patient selection for cancer therapy, treatment re-
sponse prediction, and discrimination of favorable subsets of patients from those with poor
prognosis. In the present study, we assessed the efficacy of radiomics features obtained by
EOB-MRI phase to predict clinical outcomes following liver resection in Colorectal Liver
Metastases Patients.

2. Materials and Methods
2.1. Dataset Characteristics

This study aligned with National appropriate guidelines and procedures. The National
Cancer Institute of Naples Ethical Committee board approved this retrospective study,
renouncing the need for informed patient consent given the study nature.

Radiological archive was evaluated from January 2018 to May 2021 in order to choose
patients with: (1) liver metastases with pathological proof; (2) EOB-MRI study in pre-
surgical setting after neoadjuvant chemotherapy; (3) MR images of high quality; (4) a follow-
up CT scan of at least six months after surgery. The exclusion criteria were: (1) discordance
among the imaging diagnosis and the pathologically ones, (2) no EOB-MRI phase studies;
(3) no high-quality MR images.

The cohort of patients included a training set and an external validation set. The
internal training set consisted of 51 patients (33 women and 18 men) with a median age of
61 years (range 35–82 years) and 121 liver metastases. The validation cohort consisted of
30 patients with single lesion (10 women and 20 men) with 60 years of median age (range
40–78 years). The external validation patient dataset was provided by “Careggi Hospital”,
Florence, Italy.

No liver metastases identified by EOB-MRI during the period investigated in this
retrospective study were pathologically confirmed and thus not included in the study.

The patient characteristics are summarized in Table 1.

2.2. MR Imaging Protocol

MR studies were performed with 2 1.5T MR tomographs: a Magnetom Symphony
(Siemens, Erlangen, Germany) and Magnetom Aera (Siemens). The MRI images were
acquired before and after an intravenous (IV) contrast agent (CA) injection.

In this study, a radiomics features extraction was made on volumetric interpolated
breath-hold examination (VIBE) T1-weighted SPAIR with controlled respiration used to
acquire images after IV CA injection with a liver-specific CA (0.1 mL/kg of Gd-EOB-
BPTA—Primovist, Bayer Schering Pharma, Berlin, Germany). The VIBE T1-W sequence
was acquired with 2 different flip angles (10 and 30 degrees). A power injector (Spectris
Solaris® EP MR, MEDRAD Inc., Indianola, IA, USA) was used to administrate the CA at an
infusion rate of 2 mL/s, as descripted in our previous studies [26,27]. Table 2 reports MR
Sequence parameters.

2.3. Image Processing

Regions of interest (ROIs) were manually drawn slice-by-slice by 2 expert radiologists
with 22 and 15 years of abdominal imaging experience, respectively; first separately and
then together and in accordance with each other, annotating all of the slices of the lesions.
The segmentation was performed on arterial phase of VIBE T1-W images for both sequences
acquired using 10 and 30 degrees of flip angle. For these reasons, we performed the analysis
on 2 sequence VIBE_FA10 (VIBE T1-W images with flip angle 10◦) and VIBE_FA30 (VIBE T1-
W images with flip angle 30◦). Manual definition of the ROIs was made using segmentation
tool of 3DSlicer (https://www.slicer.org/; accessed on 21 December 2021).

https://www.slicer.org/
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Table 1. Characteristics of the study population (81 patients).

Patient Description Numbers (%)/Range

Gender
Men 53 (65.4%)

Women 28 (34.6%)

Age 61 years; range: 35–82 years

Primary Cancer Site

Colon 52 (64.2%)

Rectum 29 (35.8%)

Prior Chemotherapy 81 (100%)

Hepatic Metastases Description

Patients with single nodule 52 (64.2%)

Patients with multiple nodules 29 (35.8%)/range: 2–13 metastases

Nodule size (mm) mean size 36.4 mm; range 7–58 mm

Front of Tumor Growth

expansive 30 (37.0%)

infiltrative 51 (63.0%)

Tumor Budding

Absent 12 (14.8%)

Low grade 14 (17.3%)

High grade 55 (67.9%)

Mucinous Carcinoma 25 (30.9%)

Recurrence 19 (23.5%)

RAS Mutation 42 (51.9%)

Table 2. MR Sequence parameters.

Sequence Orientation TR/TE/FA
(ms/ms/deg.)

AT
(min)

Acquisition
Matrix ST/Gap (mm) FS

Trufisp T2-W Coronal 4.30/2.15/80 0.46 512 × 512 4/0 without

HASTE T2-W Axial 1500/90/170 0.36 320 × 320 5/0 without and
with (SPAIR)

HASTE T2w Coronal 1500/92/170 0.38 320 × 320 5/0 without

In-Out phase T1-W Axial 160/2.35/70 0.33 256 × 192 5/0 without

VIBE
T1-W_FA10 Axial 4.80/1.76/10 0.18 320 × 260 3/0 with (SPAIR)

VIBE
T1-W_FA30 Axial 4.80/1.76/30 0.18 320 × 260 3/0 with (SPAIR)

Note: W = Weighted, TR = Repetition time, TE = Echo time, FA = Flip angle, AT = Acquisition time,
SPAIR = Spectral Adiabatic Inversion Recovery, VIBE = Volumetric interpolated breath hold examination,
HASTE = HASTE = Half-Fourier-Acquired Single-shot Turbo spin Echo.

2.4. MRI Post-Processing with Pyradiomics Tool

For each volume of interest, 851 radiomics features were extracted as median values
using open-source PyRadiomics python package [28].

We used wavelet filtering (LLH, LHL, LHH, LLL, HLL, HLH, HHL, HHH high (H) or
low (L) -pass filters along the X and Y axis and a Z-axis) to six different matrices:
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• First Order (FIRST ORDER): describes the individual values of voxels obtained as
a result of ROI cropping. These are generally histogram-based properties (energy,
entropy, kurtosis, skewness);

• Shape based features both 2D and 3D measures;
• Gray Level Co-occurrence Matrix (GLCM): calculates how often the same and similar

pixel values come together in an image and records statistical measurements according
to this matrix. These resulting values numerically characterize the texture of the image;

• Gray Level Run Length Matrix (GLRLM): Defined as the number of homogeneous
consecutive pixels with the same gray tone and quantifies the gray-level studies;

• Gray Level Size Zone Matrix (GLSZM): Properties based on this matrix assign voxel
counts according to the logic of measuring gray-level regions in an image;

• Neighboring Gray Tone Difference Matrix (NGTDM): Digitization of textures obtained
from filtered images and their fractal properties;

• Gray Level Dependence Matrix (GLDM): Number of bound voxels at x distance from
the central voxel;

The extracted features are in compliance with feature definitions as described by
the Imaging Biomarker Standardization Initiative (IBSI) [29] and as reported in (https:
//readthedocs.org/projects/pyradiomics/downloads/; accessed on 21 December 2021).

Median values of radiomics features were considered for each segmented volume
of interest.

A graphical representation of the radiomics process and of the extracted features has
been reported in Figure 1. However, Radiomics involves 3D qualitative and quantitative
high throughput extraction of digital imaging data that cannot be represented as an image.
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Figure 1. A graphical representation of the radiomics process and of the extracted features.

Radiomics analysis was performed blinded to the clinical and pathological data in
pre-surgical setting after neoadjuvant chemotherapy. No registration techniques to reduce
movements artefacts were applied, however, the use of median value of extracted metrics
allows one to reduce the influence of artefacts.

2.5. Statistical Analysis

Statistical analysis includes both univariate and multivariate approaches performed
considering a per-lesion analysis. The statistical analyses were performed using the Statis-
tics and Machine Toolbox of MATLAB R2021b (MathWorks, Natick, MA, USA).

2.6. Univariate Analysis

The assessment of observer variability was performed by calculating the intraclass
correlation coefficient.

A non-parametric Kruskal-Wallis test was performed to identify differences statistically
significant among clinical parameters and radiomics metrics of two groups (front of tumor

https://readthedocs.org/projects/pyradiomics/downloads/
https://readthedocs.org/projects/pyradiomics/downloads/
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growth: expansive versus infiltrative; tumor budding: high grade versus low grade or
absent; mucinous type and presence of recurrence).

Receiver operating characteristic (ROC) analysis was performed using the Youden
index to calculate the optimal cut-off for each metric and then the area under the ROC
curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive
value (NPV) and accuracy.

A p value < 0.05 was considered as significant.

2.7. Multivariate Analysis

A multivariate analysis was performed in order to identify the combinations of vari-
ables which best predict the outcomes: (1) front of tumor growth: expansive versus in-
filtrative; (2) tumor budding: high grade versus low grade or absent; (3) mucinous type;
(4) presence of recurrence.

Given the high number of textural features, a first selection of variables was made
based on the results obtained from the univariate analysis: significant at nonparametric
Kruskal-Wallis test and with an accuracy ≥ 75%. A linear regression modelling was used
to assess the best linear combination of significant textural features for each outcome. The
linear regression model was used to assess the accuracy of linear combination and ROC
analysis with Youden index was used to identify the optimal cut-off value. Considering the
optimal cut-off value, we reported accuracy, sensitivity, specificity, PPV and NPV.

Pattern recognition techniques including support vector machine (SVM), k-nearest
neighbors (KNN), artificial neural network (NNET), and decision tree (DT) were performed
to calculate the diagnostic performance considering all of the features and/or a subset of
features after a feature selection approach [30]. The best model was identified calculating
the highest area under ROC curve and highest accuracy. Each classifier was trained with
a 10-k fold cross validation; therefore, median values of AUC, accuracy, sensitivity, and
specificity were calculated. Moreover, an external validation cohort was used to validate
the findings of the best classifier.

3. Results
3.1. Univariate Analysis Findings

The median value of intraclass correlation coefficients for features was 0.92 (range
0.86–0.96). The size of the lesion did not affect the extracted metrics (p-value > 0.05 at the
Kruskal-Wallis test performed between the 2 groups: lesions < 2 cm and lesions ≥ 2 cm).
In addition, the RAS mutational status did not affect the extracted metrics (p-value > 0.05
at the Kruskal-Wallis test performed between the groups). Therefore, considering homoge-
neous the two groups respect to the extracted radiomics metrics, RAS mutational was not
considered for the following analysis.

There were no differences between the extracted radiomics metrics on VIBE_FA10 and
on VIBE_FA30 (p-value > 0.05 at the Kruskal-Wallis test).

Among the significant features to differentiate the front of tumor growth on VIBE_FA10,
8 textural parameters obtained an accuracy ≥ 75%. Among these 8 features, the best pre-
dictor to discriminate expansive versus infiltrative front of tumor growth was HHL_glcm_
MaximumProbability with an accuracy of 81%, a sensitivity of 92%, a specificity of 62%, a
PPV and a NPV of 80% and 82%, respectively.

Among the significant features to differentiate the front of tumor growth on VIBE_FA30,
15 textural parameters obtained an accuracy ≥ 75%. Among these 15 features, the best pre-
dictor to discriminate expansive versus infiltrative front of tumor growth was HLH_glcm_
MaximumProbability (the same feature of previous case obtained with another wavelet
filter HLH respect to HHL) with an accuracy of 84%, a sensitivity of 83%, a specificity of
82%, a PPV and a NPV of 89% and 74%, respectively. Significant radiomics metrics for each
outcome at univariate analysis are reported in Table 3.
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Table 3. Significant radiomics features for each considered outcome.

Significant Textural
Features

Extracted by

VIBE_FA10 Respect
to the Front of Tumor

Growth

VIBE_FA30 Respect
to the Front of Tumor

Growth

VIBE_FA10 Respect
to the Tumor

Budding

VIBE_FA30 Respect
to the Tumor

Budding

VIBE_FA10 Respect
to the Mucinous

Type

VIBE_FA30 Respect
to the Mucinous

Type

VIBE_FA10 Respect
to Recurrence

VIBE_FA30
Respect to
Recurrence

Wavelet_
HHL_glcm_

MaximumProbability

Wavelet_
HLH_glcm_

MaximumProbability

Wavelet_
HHL_glcm_

MaximumProbability

Original_glcm_
InverseVariance

Wavelet_
HHH_ngtdm_

Busyness

Wavelet_
HHL_glszm_
ZoneVariance

Wavelet_
LLH_glrlm_

ShortRunEmphasis

Wavelet_
LHL_glcm_
Correlation

AUC 0.66 0.68 0.70 0.70 0.65 0.63 0.48 0.74

Sensitivity 0.92 0.83 0.94 0.96 0.42 0.46 0.31 0.52

Specificity 0.62 0.82 0.68 0.65 0.95 0.96 1.00 0.97

PPV 0.80 0.89 0.89 0.89 0.69 0.75 1.00 0.84

NPV 0.82 0.74 0.81 0.83 0.86 0.87 0.84 0.85

Accuracy 0.81 0.84 0.88 0.89 0.84 0.85 0.85 0.86

Cut-off 0.28 0.28 0.28 0.35 1306.26 1,289,504.66 0.84 0.46

Note: GLCM, Gray Level Co-occurrence Matrix; GLSZM, Gray Level Size Zone Matrix; GLRLM, Gray Level Run Length Matrix; GLDM, Gray Level Dependence Matrix; NGTDM,
Neighboring Gray Tone Difference Matrix.
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Among the significant features to differentiate the tumor budding on VIBE_FA10,
8 textural parameters obtained an accuracy ≥ 85%. Among these 8 features, the best
predictor to discriminate tumor budding was again the HHL_glcm_MaximumProbability
with an accuracy of 88%, a sensitivity of 94%, a specificity of 68%, a PPV and a NPV of 89%
and 81%, respectively.

Among the significant features to differentiate the tumor budding on VIBE_FA30,
16 textural parameters obtained an accuracy ≥ 85%. Among these 16 features, the best
predictor to discriminate tumor budding was Inverse Variance obtained by the original
GLCM matrix with an accuracy of 89%, a sensitivity of 96%, a specificity of 65%, a PPV and
a NPV of 89% and 83%, respectively.

Among the significant features to differentiate the mucinous type of tumor on VIBE_FA10,
8 textural parameters obtained an accuracy ≥ 80%. Among these 8 features, the best
predictor to differentiate the mucinous type of tumor was the HHH_ngtdm_Busyness with
an accuracy of 84%, a sensitivity of 65%, a specificity of 42%, a PPV and a NPV of 69% and
86%, respectively.

Among the significant features to differentiate the mucinous type of tumor on VIBE_FA30,
12 textural parameters obtained an accuracy ≥ 80%. Among these 12 features, the best
predictor to differentiate the mucinous type of tumor was the HHL_glszm_ZoneVariance
with an accuracy of 85%, a sensitivity of 46%, a specificity of 95%, a PPV and a NPV of 71%
and 87%, respectively.

Among the significant features to identify tumor recurrence on VIBE_FA10, 3 textural
parameters obtained an accuracy ≥ 80%. Among these 3 features, the best predictor to
identify tumor recurrence was the LLH_glrlm_ShortRunEmphasis with accuracy of 85%, a
sensitivity of 31%, a specificity of 100%, a PPV and a NPV of 100% and 84%, respectively.

Among the significant features to identify tumor recurrence on VIBE_FA30, 8 textural
parameters obtained an accuracy ≥ 80%. Among these 8 features, the best predictor to
identify tumor recurrence was the LHL_glcm_Correlation with an accuracy of 86%, a
sensitivity of 52%, a specificity of 97%, a PPV and a NPV of 84% and 85%, respectively.

In total, 26 features extracted by VIBE_FA10 were resulted significant at univariate
analysis while 48 were resulted significand among those extracted on VIBE_FA30. Figure 2
shows a heat map.

3.2. Multivariate Analysis Findings
3.2.1. Linear Regression Analysis Findings

Linear regression models obtained good results in each considered classification
problem (1. Front of tumor growth: expansive versus infiltrative; 2. tumor budding: high
grade versus low grade or absent; 3. mucinous type; 4. presence of recurrence) with an
accuracy in the range of 72 to 89% Tables 4 and 5, Figures 3 and 4. The best linear regression
model was obtained in the identification of the front of tumor growth considering the height
textural significant metrics by VIBE_FA10 (AUC of 72%, an accuracy of 89%; sensitivity
of 93% and a specificity of 82%). The coefficients of this linear models are reported in
the Table 6.
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Table 4. Linear regression and Pattern recognition analysis with significant features from the
VIBE_FA10.

Linear Regression of Significant
Features AUC Sensitivity Specificity PPV NPV Accuracy Cut-Off

Linear regression of the textural
features extracted from the

VIBE_FA10 with respect to the
front of tumor growth

0.72 0.93 0.82 0.90 0.88 0.89 1.49

Linear regression of the textural
features extracted from the

VIBE_FA10 with respect to the
tumor budding

0.78 0.84 0.84 0.94 0.65 0.84 1.54

Linear regression of the textural
features extracted from the

VIBE_FA10 with respect to the
mucinous type

0.80 0.85 0.82 0.56 0.95 0.83 0.28

Linear regression of the textural
features extracted from the

VIBE_FA10 with respect to the
recurrence presence

0.63 0.52 0.88 0.59 0.84 0.79 3.81

Pattern Recognition Analysis
with Significant Features Dataset AUC Accuracy Sensitivity Specificity Training

Time [sec]
Model Type and

Parameters

KNN

Training set 0.96 0.91 0.84 0.95 8.7

Weighted KNN;
number of

neighbors:10;
distance metric:

Euclidean;
distance weight:
squared inverse

Validation
set 0.97 0.92 1 0.86

Training set 0.89 0.93 0.81 0.97 3.9

Validation
set 0.9 0.93 0.73 1

Training set 0.93 0.89 0.94 0.73 3.2

Validation
set 0.95 0.88 0.91 0.8

Training set 0.91 0.93 0.99 0.77 9.21

Validation
set 0.97 0.94 0.9 0.91

Table 5. Linear regression and Pattern recognition analysis with significant features from the
VIBE_FA30.

Linear Regression of
Significant Features AUC Sensitivity Specificity PPV NPV Accuracy Cut-Off

Linear regression of the textural
features extracted from the

VIBE_FA30 with respect to the
front of tumor growth

0.55 0.88 0.56 0.77 0.74 0.76 8.81

Linear regression of the textural
features extracted from the

VIBE_FA30 with respect to the
tumor budding

0.65 0.96 0.64 0.82 0.91 0.84 0.56

Linear regression of the textural
features extracted from the

VIBE_FA30 with respect to the
mucinous type

0.26 1.00 0.04 0.64 1.00 0.64 −0.17

Linear regression of the textural
features extracted from the

VIBE_FA30 with respect to the
recurrence presence

0.79 0.90 0.66 0.47 0.95 0.72 0.27
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Table 5. Cont.

Pattern Recognition
Analysis with Significant

Features
Dataset AUC Accuracy Sensitivity Specificity Training

time [sec]

Model Type
and

Parameters

KNN

Training set 0.96 0.90 0.91 0.89 13.4

Weighted
KNN; number
of neighbors:10;
distance metric:

Euclidean;
distance
weight:
squared
inverse

Validation
set 0.95 0.80 0.67 1

Training set 0.94 0.93 0.84 0.96 8.3

Validation
set 0.94 0.89 0.89 0.89

Training set 0.93 0.91 0.96 0.73 7.51

Validation
set 0.89 0.88 0.89 0.8

Training set 0.9 0.94 0.98 0.84 8.4

Validation
set 0.85 0.91 0.94 0.8
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Figure 4. ROC curves of linear regression analysis respect to the front of tumor growth (A), the tumor
budding (B), the tumor mucinous type (C), recurrence presence (D) obtained considering significant
features extracted by VIBE_FA30.

Table 6. Linear regression model parameters.

Linear Regression of the Textural Features Extracted by
VIBE_FA10 with Respect to the Front of Tumor Growth Coefficients p Value p Value

Intercept −7.37 0.08

0.000

original_shape_SurfaceVolumeRatio −0.85 0.58

wavelet_LHL_glszm_SmallAreaLowGrayLevelEmphasis 1.50 0.19

wavelet_LLH_glcm_InverseVariance 4.15 0.00

wavelet_HHH_glrlm_ShortRunHighGrayLevelEmphasis 0.14 0.00

wavelet_HHH_glrlm_ShortRunEmphasis 6.25 0.51

wavelet_HHH_glrlm_RunPercentage −6.73 0.57

wavelet_HHH_glrlm_RunLengthNonUniformityNormalized 5.15 0.40

wavelet_HHL_glcm_MaximumProbability 16.11 0.00
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Table 6. Cont.

Linear Regression of the Textural Features
ExtractedbyVIBE_FA10 with Respect to the Tumor Budding Coefficients p value p value

Intercept −17.88 0.00

0.000

wavelet_HLL_gldm_LargeDependenceLowGrayLevelEmphasis 0.11 0.32

wavelet_HLL_glrlm_LongRunLowGrayLevelEmphasis −3.28 0.33

wavelet_HLL_glszm_GrayLevelNonUniformityNormalized −4.28 0.05

wavelet_LLH_glrlm_GrayLevelNonUniformityNormalized 2.15 0.07

wavelet_HLH_glcm_JointEnergy 48.41 0.00

wavelet_HLH_firstorder_10Percentile 0.00 0.96

wavelet_HHH_glcm_MaximumProbability 1.42 0.87

wavelet_HHL_glcm_MaximumProbability 24.94 0.00

Linear Regression of the Textural Features
ExtractedbyVIBE_FA10 with Respect to the Mucinous Type Coefficients p value p value

Intercept 3.31 0.14

0.000

wavelet_LHL_gldm_DependenceNonUniformity 0.00 0.03

wavelet_LHL_ngtdm_Strength −1.20 0.08

wavelet_LHL_ngtdm_Busyness 0.00 0.07

wavelet_LHH_glcm_ClusterTendency 7.50 0.00

wavelet_HLH_gldm_DependenceEntropy −0.03 0.97

wavelet_HLH_firstorder_Mean 0.12 0.59

wavelet_HHH_ngtdm_Busyness 0.00 0.08

wavelet_HHL_gldm_DependenceEntropy −1.44 0.04

Linear Regression of the Textural Features
ExtractedbyVIBE_FA10 with Respect to the Recurrence Presence Coefficients p value p value

Intercept −2.95 0.05

0.030wavelet_LLH_glrlm_ShortRunEmphasis 8.19 0.04

wavelet_LLH_glrlm_RunLengthNonUniformityNormalized −5.25 0.10

wavelet_HHH_ngtdm_Busyness 0.00 0.49

Linear Regression of the Textural Features
ExtractedbyVIBE_FA30 with Respect to the Front of Tumor

Growth
Coefficients p value p value

Intercept −4.868 0.010

0.000

original_glcm_InverseVariance 1.484 0.260

wavelet_HLL_gldm_GrayLevelVariance −4.907 0.206

wavelet_HLL_glcm_InverseVariance 4.257 0.165

wavelet_HLL_glcm_DifferenceVariance −0.967 0.182

wavelet_HLL_glcm_SumEntropy 1.329 0.195

wavelet_HLL_glcm_SumSquares −0.462 0.540

wavelet_HLL_firstorder_RobustMeanAbsoluteDeviation 0.360 0.244
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Table 6. Cont.

Linear Regression of the Textural Features ExtractedbyVIBE_FA30
with Respect to the Front of Tumor Growth Coefficients p value p value

wavelet_HLL_firstorder_MeanAbsoluteDeviation −0.612 0.161

wavelet_HLL_firstorder_RootMeanSquared 0.153 0.273

wavelet_HLL_firstorder_RootMeanSquared 0.823 0.717

wavelet_HLL_firstorder_Variance 0.010 0.162

wavelet_LHH_glrlm_ShortRunLowGrayLevelEmphasis −0.018 0.944

wavelet_HLH_glcm_MaximumProbability 8.613 0.051

wavelet_HLH_glcm_MaximumProbability 0.903 0.817

wavelet_LLL_gldm_SmallDependenceLowGrayLevelEmphasis 24.740 0.440

Linear Regression of the Textural Features ExtractedbyVIBE_FA30
with Respect to the Tumor Budding Coefficients p value p value

Intercept 5.220 0.521

0.000

original_glcm_InverseVariance 2.978 0.008

wavelet_HLL_glcm_JointEnergy −12.594 0.008

wavelet_HLL_glcm_Idm 114.999 0.000

wavelet_HLL_glcm_Id −123.518 0.002

wavelet_HLL_firstorder_Uniformity −18.651 0.011

wavelet_HLL_firstorder_10Percentile −0.005 0.801

wavelet_HLL_glrlm_GrayLevelNonUniformityNormalized 14.712 0.009

wavelet_HLL_glszm_GrayLevelNonUniformityNormalized −0.804 0.458

wavelet_LHL_glcm_Idm −71.494 0.012

wavelet_LHL_glcm_Id 79.815 0.014

wavelet_LHH_firstorder_10Percentile −0.003 0.941

wavelet_LLH_firstorder_Uniformity 10.540 0.002

wavelet_LLH_glrlm_GrayLevelNonUniformityNormalized −12.808 0.002

wavelet_LLH_glszm_GrayLevelNonUniformityNormalized 2.066 0.156

wavelet_HHL_glcm_JointEnergy 1.672 0.853

wavelet_HHL_firstorder_10Percentile 0.202 0.006

Linear Regression of the Textural Features ExtractedbyVIBE_FA30
with Respect to the Mucinous Type Coefficients p value p value

Intercept 13.293 0.018

0.000

original_shape_SurfaceVolumeRatio −2.669 0.000

wavelet_LHH_gldm_DependenceNonUniformity 0.004 0.113

wavelet_LHH_gldm_GrayLevelNonUniformity 0.000 0.710

wavelet_HLH_gldm_DependenceNonUniformity −0.014 0.000

wavelet_HLH_glrlm_GrayLevelNonUniformity 0.005 0.003

wavelet_HHH_gldm_DependenceNonUniformity −0.002 0.473

wavelet_HHH_glszm_ZonePercentage 67.121 0.000

wavelet_HHH_ngtdm_Busyness 0.000 0.000
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Table 6. Cont.

Linear Regression of the Textural Features
ExtractedbyVIBE_FA30 with Respect to the Mucinous Type Coefficients p value p value

wavelet_HHL_gldm_DependenceNonUniformity 0.012 0.000

wavelet_HHL_glrlm_GrayLevelNonUniformity −0.005 0.004

wavelet_HHL_glszm_ZoneVariance 0.000 0.462

wavelet_LLL_glcm_Idmn −12.578 0.025

Linear Regression of the Textural Features
ExtractedbyVIBE_FA30 with Respect to the Recurrence Presence Coefficients p value p value

Intercept −0.018 0.966

0.000

original_glszm_ZonePercentage 0.852 0.540

wavelet_HLL_glcm_Correlation −0.464 0.684

wavelet_LHL_glcm_Correlation 5.324 0.001

wavelet_LHL_glcm_SumEntropy −0.243 0.474

wavelet_LHL_glcm_Imc2 v2.956 0.037

wavelet_LHL_glcm_ClusterTendency −0.014 0.891

wavelet_HLH_glcm_Correlation 2.266 0.341

wavelet_HHL_glrlm_HighGrayLevelRunEmphasis 0.033 0.010

3.2.2. Pattern Recognition Approaches Findings

Considering the significant texture metrics tested with pattern recognition approaches,
the best performance for each outcome (1. Front of tumor growth: expansive versus
infiltrative; 2. tumor budding: high grade versus low grade or absent; 3. mucinous type and
4. presence of recurrence) was reached by a KNN, both considering the features extracted
by VIBE_FA10 and VIBE_FA30. The accuracy was always major to 88% (Tables 4 and 5,
Figures 5 and 6) both on training and validation set and the best results was obtained in the
identification of recurrence with the 3 textural significant features extracted by VIBE_FA10
(AUC of 91%, an accuracy of 93%; sensitivity of 99% and a specificity of 77%).
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Figure 6. ROC curves of KNN respect to the front of tumor growth (A), the tumor budding (B), the
tumor mucinous type (C), recurrence presence (D) obtained considering significant features extracted
by VIBE_FA30.

4. Discussions

Ours results confirmed the capacity of radiomics to identify as biomarkers, several
prognostic features that could affect the treatment choice in patients with liver metastases, in
order to obtain a more personalized approach. In fact, the possibility to correlate radiomics
parameters to RAS status offers notable advantages over qualitative imaging assessment,
allowing one to tailor cancer therapy to the patient, to predict response to treatment, to
distinguish favorable subsets of patients from those with poor prognosis, to select patients
that may benefit of surgical treatment. Literature data underlines the role of several features,
as RAS mutation, front of tumor growth, tumor budding and mucinous type as a strong
prognostic and predictive biomarker in patients subjected to target therapy or surgical
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resection. In this scenario, our results confirmed the possibility of radiomics to allow one to
tailor cancer therapy at the patient, to predict response to treatment, to detect favorable
subsets of patients from those with poor prognosis and to select patients that may benefit
from surgical treatment [5,6].

Our results were confirmed by external validation dataset. We obtained a good
performance considering the single textural significant metric in the identification of front
of tumor growth (expansive versus infiltrative) and tumor budding (high grade versus low
grade or absent), in the recognition of mucinous type and in the detection of recurrences.
The median value of intraclass correlation coefficients for features was 0.92.

With regard to the front of tumor growth on VIBE_FA10, the best performance
was obtained with HHL_glcm_MaximumProbability with an accuracy of 81%; while on
VIBE_FA30, the best performance was with HLH_glcm_MaximumProbability (the same
feature of previous case obtained with another wavelet filter HLH respect to HHL) with
an accuracy of 84%. Among significant features to differentiate the tumor budding on
VIBE_FA10, the best predictot was again the HHL_glcm_MaximumProbability with an
accuracy of 88% while on VIBE_FA30, the best performance was of the Inverse Variance
extracted by the original GLCM matrix with an accuracy of 89%.

Regarding to differentiate the mucinous type of tumor on VIBE_FA10, the best predic-
tor was the HHH_ngtdm_Busyness with an accuracy of 84% while on VIBE_FA30, the best
performance was obtained by the HHL_glszm_ZoneVariance with an accuracy of 85%.

Among the significant features to identify tumor recurrence on VIBE_FA10, the best
performance was obtained by the LLH_glrlm_ShortRunEmphasis with an accuracy of 85%
while on VIBE_FA30, the best predictor was the LHL_glcm_Correlation with an accuracy
of 86%.

Therefore, all of the significant and better predictors for each outcome except that
the Inverse Variance obtained by the original GLCM matrix were Higher-order statistics
features obtained by statistical methods after wavelet transform. However, all of these
metrics capture certain statistical regularities of tumor lesions through images linked to the
heterogeneity of gray levels on the segmented volume of interest.

Considering a linear regression models or neural network classifiers in a multivariate
approach was possible to increase the performance in terms of accuracy, sensitivity, and
specificity. The best linear regression model was obtained in the identification of the front
of tumor growth considering the height textural significant metrics by VIBE_FA10 (AUC of
72%, an accuracy of 89%; sensitivity of 93% and a specificity of 82%) while the best results
with a KNN was obtained in the identification of recurrence with the 3 textural significant
features (AUC of 91%, an accuracy of 93%; sensitivity of 99% and a specificity of 77%).

Research has shown the association between entropy and prognosis [31–40]. Homo-
geneity in the texture of healthy liver tissue is predictive of worse survival. Andersen et al. [32]
demonstrated a link between homogeneity features and overall survival (OS). Rahmim et al. [37]
showed as radiomics data of heterogeneity, obtained by FDG PET study, were prognostica-
tors of lower OS [37]. Research has shown the degree of skewness was inversely correlated
with KRAS status, while the entropy was related to OS [34]. Moreover, the opportunity to
identify the patients for recurrence has been shown [37–41]. Ravanelli et al. [39] correlated
high CT uniformity and low OS and Progression Free Survival (PFS).

Radiomics and radiogenomics are emerging fields with important weaknesses that
need to be taken into account. The main limit is the heterogeneity of software analysis and
the variety of the metrics in different hospitals. Therefore, the segmentation of lesion may
affect results [41].

The present study had several limitations: (1) the small population size considered,
although the analysis was conducted on a homogeneous sample and on all individual
lesions; (2) the retrospective nature of the study, (3) a manual segmentation, that, although
research has supported automatic segmentation to avoid inter-observer variability, in our
opinion, the manual approach is more realistic. Moreover, we did not assess the impact
of the contrast administration and the different phases of contrast study (arterial, portal
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and transitional phase) respect to EOB-phase, data that we are evaluating in a future paper.
However, we evaluated the impact of different flip angle (10 and 30). Additionally, we did
not evaluate the impact of chemotherapy on our data.

5. Conclusions

Ours results confirmed the capacity of radiomics to identify, as biomarkers, several
prognostic features that could affect the treatment choice in patients with liver metastases,
in order to obtain a more personalized approach. These results were confirmed by external
validation dataset. We obtained a good performance considering the single textural signifi-
cant metric in the identification of front of tumor growth (expansive versus infiltrative) and
tumor budding (high grade versus low grade or absent), in the recognition of mucinous
type and in the detection of recurrences.
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