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Simple Summary: Pulmonary nodules are considered a sign of bronchogenic carcinoma, detecting
them early will reduce their progression and can save lives. Lung cancer is the second most common
type of cancer in both men and women. This manuscript discusses the current applications of
artificial intelligence (AI) in lung segmentation as well as pulmonary nodule segmentation and
classification using computed tomography (CT) scans, published in the last two decades, in addition
to the limitations and future prospects in the field of AI.

Abstract: Pulmonary nodules are the precursors of bronchogenic carcinoma, its early detection
facilitates early treatment which save a lot of lives. Unfortunately, pulmonary nodule detection and
classification are liable to subjective variations with high rate of missing small cancerous lesions
which opens the way for implementation of artificial intelligence (AI) and computer aided diagnosis
(CAD) systems. The field of deep learning and neural networks is expanding every day with new
models designed to overcome diagnostic problems and provide more applicable and simply used
models. We aim in this review to briefly discuss the current applications of AI in lung segmentation,
pulmonary nodule detection and classification.

Keywords: pulmonary nodule; artificial intelligence; deep learning; neural networks

1. Introduction

Lung cancer screening is a very important issue as the disease is the second most
common type of cancer in both males and females. Lung cancer is responsible for 25%
of all cancer cases in USA [1]. It is obvious that early detection was associated with a
higher 5-year survival rate. Risk factors for developing lung cancer include all types of
smoking (even electronic cigarettes and passive smoking) [2–4], family history either of
single or multiple relatives especially those who developed cancer at young age [5], chronic
obstructive lung disease [6], and human papilloma virus [7]. Recently, the United States
Preventive Services Task Force recommended annual screening for lung cancer with low
dose computed tomography (LDCT) for asymptomatic individuals aged 55 to 80 years who
have a 30-pack year smoking history and currently smoke or have quit smoking within the
past 15 years. Patients who have stopped smoking for 15 years, have a co-existing health
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problem limiting life expectancy, or are not candidates for surgical resection are excluded
from annual screening. The algorithm of screening includes the number, the density, and
size of solid, part solid or non-solid component of the nodules and according to these
parameters, a follow-up schedule was designed [8,9]. Artificial intelligence was invented to
enhance the computational abilities of computers and teach them to think, solve problems,
and perform tasks in the same way as human beings. Recently, medical image analysis
and diseases prediction and detection are among the most exciting applications of artificial
intelligence. Using artificial intelligence techniques, computer aided diagnosis (CAD)
systems have been developed and used in the analysis of medical imaging and have proved
to be very helpful tools. AI techniques could be used to create a proper learning model to
be used in clinical practice for lung cancer screening. The learning model should consist
of four main steps; lung segmentation, followed by nodule segmentation/detection, then
feature analysis, and the exclusion of false positive nodules (see Figure 1). Classification
of detected pulmonary nodules into benign and malignant is based upon a preset of
characteristic features including shape analysis, estimation of growth rate, and appearance
analysis [10–12]. In this review, we will briefly discuss the current applications of AI in
lung segmentation and pulmonary nodule detection and classification. This study reviews
recent CT-based studies as well as studies published in the last two decades.

Figure 1. A Typical CAD System for Lung Cancer Diagnosis.

2. Lung Segmentation

The first step in almost every CAD system dealing with lung disease is the segmenta-
tion. In this step, a preferred structure is delineated from its surrounding prior to analysis.
Lung segmentation is very challenging due to different existing structures with near-similar
densities such as the bronchi, bronchioles, pulmonary artery, and vein branches. Lung seg-
mentation techniques can be categorized into four main categories based on: (1) Hounsfield
unit (HU) threshold, (2) deformable boundaries, (3) shape models, (4) region/edge-based
models, in addition to machine learning (ML) based methods and hybrid techniques which
utilize a combination of methods to overcome the drawbacks of using single method
(Figure 2). Details of the different categories are given below.

Hounsfield unit (HU) thresholding: Normal lung parenchyma displays low HU
and appears hypodense in thoracic CT scan images in contrast to other structures such
as heart, blood vessels or bronchial walls. Researchers tried to determine a threshold
of HU to define lung parenchyma using different methods. Hu et al. [13] proposed a
3-step technique to perform lung segmentation. Their method started with extracting lung
parenchyma utilizing a proper grey scale threshold. Then, separation of right and left
lungs was performed using dynamic program. Lastly, a series of morphological operations
were used to refine the pulmonary margins. This method was further used in the works
of Ukil and Reinhardt [14], as well as Van Rikxoort [15]. Amato et al. [16,17] used grey
scale thresholding once to extract the thorax from surrounding structures, and another
time for extracting the lung from the rest of thoracic structures. A rolling ball algorithm is
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applied to lung periphery aiming not to miss any juxta-pleural nodule and exclude partial
volume pixels. Pu et al. [18] designed an adaptive border marching (ABM) algorithm to
reach the same purpose through refining lung margins. Gao et al. [19] proposed a 4-step
method to separate the pulmonary vessels, and airways from lung parenchyma as well
as separating right and left lungs based on a grey scale threshold. Other researchers used
more sophisticated methods to define threshold used for lung extraction such as histogram
analysis [20], and 3D fuzzy adaptive thresholding [21]. Limitations of lung segmentation
using thresholding method are mainly related to its reliance on image resolution and type of
scanners used (i.e., GE, Philips. . . ). Another important issue is that there might be an overlap
between densities of different lung structures making differentiation based on HU difficult.

Figure 2. Main Categories of Lung Segmentation.

Deformable boundary models: The second method used for lung segmentation is
deformable boundary models including snakes, active contours, and level sets. These
models start with an initial point then follow the shape of the desired structure influenced
by internal and external forces. Itai et al. [22] utilized a 2D parametric deformable model
to extract lung from computed tomography (CT) image using lung borders as an external
guiding force. Silveria et al. [23,24] presented a technique that uses active contour and
Level sets. They begin with a thresholding technique, then edge detection is initiated using
a robust geometric active contour model around the lung. It divides into two and continues
by multiple strokes which are categorized into valid and invalid according to confidence
degrees. The major limitation of deformable boundary models is the high sensitivity of the
selection of the initial point, in addition to inhomogeneity of lung structure that may lead
to unsuccessful adaptation of lung boundaries [25].

Shape-based models: In this method, the stored data in the CAD system is used
to improve the accuracy of lung segmentation. It utilizes either a statistical shape or
lung appearance model. Unlike previously discussed methods, this approach of lung
segmentation is more effective in dealing with lungs with moderate to severe pathology and
with variations in lung anatomy as it gets benefit from trained models [26]. Sun et al. [27]
proposed a 2-step lung segmentation technique that used a robust active shape model
(RASM) matching method to segment the outline of the lungs guided by rib cage detection
method, followed by using an optimal surface finding approach that was created by
Li et al. [28] to fit the initial segmentation result to the lung. The right and left lungs
were segmented separately. Sofka et al. [29] designed a multistage learning model that
used predefined anatomical data to initiate a statistical shape model. Hau et al. [30]
developed a graph-based search algorithm via cost function that takes into consideration
the intensity, gradient, boundary smoothness, and rib anatomical information. Other
researchers proposed a user interface framework [31] or Bayesian classification refined by
Markov Gibbs Random Field (MGRF) method [32–34]. Similar approach was introduced
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by Chung et al. [35] who developed a Bayesian approach based on the Chan Vese (CV)
model [36], where the data obtained from previous or upper frame image was used to
predict lung image. False positive juxta-pleural nodule candidates were excluded via
concave points detection and circle/ellipse Hough transform. Modification of lung contour
by adding the final nodule candidates to the area of the CV model was the final step. More
recently, Sun et al. [37] presented a new active shape model (ASM) algorithm to detect the
outlier marker points by distance method aiming to get better assessment of lung periphery
and juxta-pleural lung nodules. They also used a robust principal component analysis
(RPCA) of low rank theory to remove noise from images in order to construct ASM. Despite
the many advantages of shape model over other lung segmentation methods, its main
limitation depends on the accurateness of the used stored data [25].

Region-based method: The main idea of region-based segmentation is that neighbor-
ing pixels in a certain region will have similar values [38]. An example of this method is the
region growing method. If one pixel showed similar criteria to a predefined set then it is
included in that region [38–42]. Other examples include watershed segmentation [43], ran-
dom walks segmentation [44], graph cuts segmentation [45], and fuzzy connectedness [46] .
This method of segmentation is suitable for homogenous structures such as lungs with no
or mild pathology, airway and pathologic lesions with homogeneous density [25].

Machine learning-based methods: This method uses learning models composed of
predefined measurable characteristics (called features) to identify normal and abnormal
lung regions as well as different anatomical structures and finally construct the proper
lung segmentation. Small image patches are labelled either as normal, abnormal, or
neighboring soft tissue. The most common pathological patches used in clinical practice
include consolidation, ground glass opacities, and fibrosis. A supervised training process
uses data systems to extract features from each pixel/voxel and further classify them to
predict lung field boundaries and reach final segmentation. A proper lung segmentation
should include identification of both normal and pathological lung regions in the same
process, and this is performed via examining each voxel in the CT image [47–51]. Multiple
sophisticated algorithms were developed to reach this task, for example, Mansoor et al. [52]
designed an ML algorithm that identifies a large spectrum of pulmonary pathologic lesions
combined with region-based and neighboring anatomy guided correction segmentation.
Obviously, this method is computationally expensive, but its remarkably high accuracy
along with development of parallel computing and efficient well-processed workstations
make this method feasible in clinical practice. One of the limitations of this method is that it
uses small image patches which makes it impossible to predict structural information such
as global shape of the lung. It is impossible to get feature data sets that can fit anatomical
and physiologic lung variations in different subjects. Lastly, pixel by pixel assessment was
the reason that this method had the least efficiency as compared to the other four major
classes of lung segmentation [51,53–56].

Hybrid approaches of lung segmentation: No single lung segmentation method
could fit with anatomical and pathological variants alone, this encouraged the development
of combined approaches. As in the works of Mansoor et al. [52] and Hau et al. [30].

In summary, the literature reviews of lung segmentation system using these four
different categories are presented in Table 1.
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Table 1. Literature reviews of lung segmentation system using Hounsfield unit (HU) threshold,
deformable boundaries, shape models, region/edge-based models, or machine learning (ML) based
methods.

Study Method # Subjects System Evaluation

Amato
et al. [16,17]

1. Grey scale thresholding
2. Rolling ball algorithm. 17 CT patients. The area under the ROC curve (AUC) of

the system was 93%.

Hu et al. [13]
1. Grey scale thresholding.
2. Dynamic programming.
3. Morphological operations.

eight normal CT
patients.

The average intrasubject change was
2.75% ± 2.29%.

Itai et al. [22] 1. Grey scale thresholding.
2. Active contour model. 9 CT Patients. Qualitative evaluation only.

Silveria
et al. [23,24]

1. Grey scale thresholding.
2. Geometric active contour.
3. Level sets.
4. Expectation-maximization (EM) algorithm.

Stack of chest CT
slices. Qualitative evaluation only.

Gao et al. [19]

1. Grey scale thresholding.
2. Anisotropic diffusion.
3. 3D region growing.
4. Dynamic programming.
5. Rolling ball algorithm.

eight CT scans. The average overlap coefficient of the
system was 99.46%.

Pu et al. [18] 1. Grey scale thresholding.
2. Geometric border marching. 20 CT patients.

Average over-segmentation and under-
segmentation ratio were 0.43% and
1.63%, respectively.

Korfiatis
et al. [57]

1. k-means clustering
2. Support vector machine (SVM) 22 CT patients. The mean overlap coefficient of the sys-

tem was higher than 89%.

Wang
et al. [58]

1. Gray scale thresholding.
2. 3D gray-level co-occurrence matrix (GLCM)
[59,60].

76 CT patients. The mean overlap coefficient of the sys-
tem was 96.7%.

Van Rikxoort
et al. [15]

1. Region growing.
2. Grey scale thresholding.
3. Dynamic programming.
4. 3D hole filling.
5. Morphological closing.

100 CT Patients. The accuracy of the system was 77%.

Wei et al. [20]

1. Histogram analysis and
connected-component labeling.
2. Wavelet transform.
3. Otsu’s algorithm.

nine CT patients. The accuracy range of the system was
76.7–94.8%.

Ye et al. [21]

1. 3D fuzzy adaptive thresholding.
2. Expectation–maximization (EM) algorithm.
3. Antigeometric diffusion.
4. Volumetric shape index map.
5. Gaussian filter.
6. Dot map.
7. Weighted support vector machine (SVM)
classification.

108 CT patients. The average detection rate of the system
was 90.2%.

Sun et al. [27]
1. Active shape model matching method.
2. Rib cage detection method.
3. Surface finding approach.

60 CT patients.

The Dice similarity coefficient (DSC) and
mean absolute surface distance of the
system were 97.5% ± 0.6% and 0.84 ±
0.23, respectively.

Sofka et al. [29] 1. Shape model.
2. Boundary detection. 260 CT patients.

The errors in segmenting left and right
lung were 1.98 ± 0.62 and 1.92 ± 0.73,
respectively.
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Table 1. Cont.

Study Method # Subjects System Evaluation

Hua et al. [30] Graph-based search algorithm. 19 pathological
lung CT patients.

The sensitivity, specificity, and Haus-
dorff distance of the system were
98.6% ± 1.1%, 99.5% ± 0.3%, and 13.3 ±
4.7, respectively.

Nakagomi
et al. [61] Min-cut graph algorithm. 97 CT patients

The sensitivity and Jaccard index of
the system were 91.2% ± 13.3%, and
97.7% ± 1.1%, respectively.

Mansoor
et al. [52]

1. Fuzzy connectedness segmentation
algorithm.
2. Texture-based random forest classification.
3. Region-based and neighboring anatomy
guided correction segmentation.

more than 400 CT
patients.

The DSC, Hausdorff distance, sensitiv-
ity, and specificity of the system were
95.95% ± 0.34%, 19.65 ± 12.84, 96.84% ±
1.63%, and 92.97% ± 0.68%, respectively.

Yan et al. [62] Convolution neural network (CNN). 861 CT COVID-19
patients.

The system achieved DSC of 98.7% and
72.6% , sensitivity of 98.6% and 75.1%,
and specificity of 99% and 72.6% for
normal and COVID-19-infected lung, re-
spectively.

Fan et al. [63]
1. COVID-19-infected lung segmentation
convolution neural network (Inf-Net).
2. Semi-supervised Inf-Net (Semi-Inf-Net).

100 CT images.

The DSC (sensitivity, specificity) of Inf-
Net and Semi-Inf-Net were 68.2% (69.2%,
94.3%) and 73.9% (72.5%, 96%), respec-
tively.

Oulefki
et al. [64] Multi-level entropy-based threshold approach. 297 CT COVID-19

patients.

The DSC, sensitivity, specificity, and pre-
cision of the system were 71.4%, 73.3%,
99.4%, and 73.9%, respectively.

Sharafeldeen
et al. [65]

1. Linear combination of Gaussian.
2. Expectation-maximization (EM) algorithm.
3. Modified k-means clustering approach.
4. 3D MGRF-based morphological constraints.

32 CT COVID-19
patients.

The Overlap coefficient, DSC, absolute
lung volume difference (ALVD), and
95th-percentile bidirectional Hausdorff
distance (BHD) were 91.76% ± 3.29%,
95.67% ± 1.83%, 2.93 ± 2.39, and 4.86 ±
5.01, respectively.

Zhao et al. [66]
1. Grey scale thresholding.
2. 3D V-Net.
3. Deformation module.

112 CT patients.

DSC, sensitivity, specificity, and mean
surface distance error of the system
were 97.96%, 98.4%, 99.54%, and 0.0318,
respectively.

Sousa
et al. [67]

Hybrid deep learning model, consisted of
U-Net [68] and ResNet-34 [69] architectures.

385 CT patients,
collected from
five different
datasets.

The mean DSC of the system was higher
than 93%, and the average Hausdorff
distance was less than 5.2.

Kim et al. [70] Otsu’s algorithm. 447 CT patients.

Sensitivity, specificity, accuracy, AUC,
and F1-score of the system were 96.2%,
97.5%, 97%, 96.8%, and 96.1%, respec-
tively.

3. Pulmonary Nodule Detection and Segmentation

Lung cancer screening programs rely mainly on early detection of pulmonary nodules
utilizing LDCT [71–77]. LDCT is capable of providing imaging of the thoracic region of
high contrast, temporal, and spatial resolution in a very short acquisition time (single
breath hold). However, detection of lung nodules is not as simple as it looks, as pulmonary
nodules usually appear as a white spherical structure that could mimic a nearby small
blood vessel or a collapsed bronchiole. In addition, the inter-reader variations in detection
and the characterization of pulmonary nodules are merely subjective issues [10,78,79]. This
opens the way for artificial intelligence and deep learning to overcome human errors and
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provide more effective procedures. The process of lung nodule detection passes into two
stages; first detection of the pulmonary nodule candidates, second exclusion of the false
positive nodules (FPN) and keeping only the true positive nodules (TPN). In other words,
detection followed by classification [10,78,79].

Computer-aided diagnosis (CAD) systems: A large public database was generated
to provide data that can be used to assess the performance of CAD detection and diagnostic
systems and help further development. It is called the Lung Image Database Consortium
and Image Database Resource Initiative (LIDC-IDRI). The creation of this database required
great efforts as CAD was not used in annotation of images included [80]. Other databases
such as data derived from the Dutch-Belgian NELSON lung cancer screening trial and
LUNA16, LIDC, DSB2017, NLST, TianChi, and ELCAP datasets were utilized by most
of the current research works dealing with CAD and deep learning (DL) [81]. The first
step in the process of nodule detection is to unsharp the CT images by changing the
image threshold which improves discrimination of pulmonary nodules from the rest of
the surrounding lung parenchyma. A series of 3D cylindrical and spherical filters and
template matching were used to detect small lung nodules [82–89]. However, the geometry
of the candidate nodules doesn’t always fit into these spherical, cylindrical, or circular
assumptions as it may be spiculated by its nature or due to attachment to nearby pleural
surface or blood vessel [90]. Other studies proposed methods to detect lung nodules using
k-means clustering technique [91–93] with further utilization of rule-based classifiers and
linear discriminate analysis (LDA) to eliminate normal lung structures and reduce FPN.
One study tried to solve the problem of eliminating an overlapping or contacting blood
vessel by choosing a proper region of interest (ROI) in a 3-step model [94]. On the other
hand, Oda et al. [95] and Siata et al. [96] used 3D algorithms; 3D filter by orientation
map of gradient vectors and 3D distance transformation to overcome the same problem.
Brown et al. [97] used prior patient images to create a specific model, so that any change in
size and morphology of pulmonary nodules could be detected in follow up images easily.
Messay et al. [98] used a fully automated CAD system that utilizes intensity thresholding
and morphological operations to detect pulmonary nodules with a sensitivity of 82.66%
with 3 FPN/scan. A set of 245 features was computed for each segmented lung nodule
and Fisher Linear Discriminant (FLD) classifier was utilized. Similarly, Setio et al. [99]
designed a CAD system to detect pulmonary nodules larger than 10 mm. They also used
a multi-stage process of thresholding and morphological operations, then the extracted
nodules were segmented and a set of 24 features was computed, finally the nodules were
classified via a radial based vector supporting machine (VSM). A recent study aimed to
solve the problem of using uncertain class data through the application of a CAD system
based upon semi-supervised extreme learning machines (SS-ELM). This was done by using
both certain class feature sets with labels, and unlabeled feature sets for training [100].

Deep learning: Deep learning is an advanced type of machine learning that uses
complicated algorithms to model high level features and recognize characteristics. It is
composed of statistical models that predict results depending on previous training on anno-
tated or un-labelled datasets [101]. The algorithm could predict the presence of pulmonary
nodule or predict its nature whether benign or malignant [102]. Convolutional neural
network (CNN) is one of the most commonly used DL algorithms in the clinical practice.
It was originally implemented in LeNet, which was designed by Yann LeCun et al. [103].
Since then, it gained more popularity and outperformed the existing state of the art texture
analysis and support vector machine(SVM) methods. CNN model can build itself from
the beginning even when dealing with new un-labelled features without the need for
predefined set of features or complex human led pipes, in contrast to tissue radiomics or
feature analysis. Another advantage of CNN over other methods is that all its components
reach ultimate level at the same time, while in the case of tissue radiomics for instance,
there is no guarantee that all components will fulfill high level. Additionally, it requires
limited human supervision [10,104,105]. In the last decade, several research works emerged
with different CNN algorithms and models designed for pulmonary nodule detection.
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Two studies showed exceptionally high accuracy (99–96.6%), sensitivity (97.5–96.9) and
specificity (97.5–96.3). They proposed algorithms that either combined 2D and 3D artificial
neural networks with intensity based statistical features [106] or used CAD system for dif-
ferent dimensions of angular histograms of surface normals (AHSN) features [107]. Other
researchers used 2D and 3D subsets of features [108], local shape analysis and data-driven
local contextual feature learning [109], geometric and intensity statistical features [110],
or deep neural networks (DNN) [111]. Bergtholdt et al. [112] found that using support
vector machine classifier improved the accuracy, sensitivity, and specificity of pulmonary
nodule detection. One study [113] used deep believe network (DBN) to detect large nodules
(>30 mm) with high accuracy of about 90%. Jakobs et al. [114] compared the performance
of two commercial and one academic state of the art CAD systems and found that the
updated commercial CAD system (Herakles) had the highest sensitivity reaching 82% with
3.1 FPN/scan. They found that about one third of the missed nodules were subsolid. They
recommended the addition of a CAD scheme designed for subsolid nodules to improve
the sensitivity of nodule detection. Another recent study reviewed several research works
and found high sensitivity of DL algorithms when utilizing LUNA 16 dataset (in the
range of 94.4–97%) with an average of 4 FPN/scan and LIDC-IDRI dataset (in the range of
80.06–94.1%) [115].

Pulmonary nodule segmentation: Nodule size is a strong predictor of neoplastic
nature along with its progressive increase on follow up [116]. One large study demon-
strated that risk of developing cancer in nodule less than 100 mm3 equals those with no
nodules [117]. Nodule size was better assessed through volumetry rather than diameter as
2D measurements were found to be unreliable and showed wide inter and intra-observer
variations [118]. Automated 3D measurement of pulmonary nodules provides better as-
sessment of its morphology and growth rate [119]. Accurate nodule volumetry requires
good nodule segmentation. Manual segmentation of lung nodules is time consuming and
is far less accurate in comparison to deep learning semiautomated methods [120]. Most
of the available algorithms concerned with pulmonary nodule detection rely on growing
edge method where a predefined threshold acts as a seed that connects all nearby voxels
of higher density [121]. As mentioned before, solid pulmonary nodules display higher
density than surrounding lung parenchyma promoting easy discrimination by growing
edge method, but difficulties occur when a vessel contacts or passes beside a pulmonary
nodule or when it approximates the pleura [121,122]. The detection of ground glass nod-
ules with indistinct margins is very problematic in manual segmentation. Tao et al., and
Zhou et al., proposed novel methods via a multi-level statically based method [123] and a
classifier by boosting k-nearest neighbor (kNN), whose distance measure is the Euclidean
distance between the nonparametric density estimates of two regions [124]. Another more
recent study segmented subsolid nodule through voxel classification that automatically
eliminate blood vessels [125]. Other studies described more complex approaches to seg-
ment of pulmonary nodules of different densities and those with either vascular or pleural
attachment via analysis of the core of the nodule [79,126,127]. Table 2 presents a summary
of the state-of-the-art pulmonary nodule detection and segmentation systems.
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Table 2. Literature review of pulmonary nodule detection and segmentation systems.

Study Method # Subjects System Evaluation

Brown
et al. [97]

1. Priori model.
2. Region growing.
3. Mathematical morphology.

31 CT patients. The accuracy of the system was 86%.

Oda
et al. [95]

1. 3D filter by orientation map of gradient
vectors.
2. 3D distance transformation.

33 CT patients. The accuracy of the system was 59%.

Chang
et al. [82]

1. Cylinder filter.
2. Spherical filter.
3. Sphericity test.

eight CT patients. The detection rate of the system
was 90%.

Way
et al. [78]

1. k-means clustering.
2. 3D active contour model 96 CT patients. Qualitative evaluation only.

Kuhnigk
et al. [121]

Automatic morphological and partial volume
analysis based method.

Low-dose data from 8
clinical metastasis
patients.

Results of proposed method outper-
formed conventional methods both
systematic and absolute errors were
substantially reduced. Method could
successfully account for slice thickness
and variations of kernel reconstruction
compared to conventional methods.

Zhou
et al. [124]

1. Detection: boosted KNN with Euclidean
distance measure between the
non-parametric density estimates of
two regions.
2. Segmentation: analysis of 3-D texture
likelihood map of nodule region.

10 ground Glass Opacity
nodules.

All 10 nodules detected with only
1 false positive nodule.

Dehmeshki
et al. [122]

Adaptive sphericity oriented contrast region
growing on the fuzzy connectivity map of
the object of interest.

1. Database 1: 608
pulmonary nodules from
343 scans,
2. Database 2: 207
pulmonary nodules from
80 CT scans.

Visual inspection found that 84%of
the segmented nodules were correct,
while the other 16% nodules required
other segmentation solutions.

Tao
et al. [123]

A multi-level statistical learning-based
approach for segmentation and detection of
ground glass nodule.

Database : 1100
subvolumes (100
contains ground glass
nodule) acquired from
200 subjects.

Classification accuracy: 92.28% (over-
all), and 89.87% (ground glass nodule).

Messay
et al. [98]

1. Thresholding.
2. Morphological operations.
3. Fisher Linear Discriminant (FLD) classifier.

84 CT patients. The sensitivity of the system was
82.66%.

Kubota
et al. [126] Region Growing.

1. LIDC 1: 23 nodule,
2. LIDC 2: 82 nodule,
3. A dataset of 820
nodules with manual
diameter measurements.

1. LIDC 1: 0.69± 0.18 average overlap,
2. LIDC 2: 0.59± 0.19 average overlap.

Liu
et al. [128]

1. Selective enhancement filter [129].
2. Hidden conditional random field
(HCRF) [130].

24 CT patients. The sensitivity of the system was
89.3% with 1.2 false positive/scan.

Choi
et al. [107]

1. Dot enhancement filter.
2. Angular histograms of surface normals
(AHSN).
3. Iterative wall elimination method.
4. Support vector machine (SVM) classifier.

84 CT patients. The sensitivity of the system was
97.5% with 6.76 false positive/scan.
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Table 2. Cont.

Study Method # Subjects System Evaluation

Alilou
et al. [108]

1. Thresholding.
2. Morphological opening.
3. 3D region growing.

60 CT patients. The sensitivity of the system was 80%
with 3.9 false positive/scan.

Bai
et al. [109]

1. Local shape analysis.
2. Data-driven local contextual feature
learning .
3. Principal component analysis (PCA).

99 CT patients The number of false positive were re-
duced by more than 80%.

Setio
et al. [99]

1. Thresholding.
2. Morphological operations.
3. Vector supporting machine (VSM)
classifier.

888 CT patients.
The sensitivity of the system was
94.1% and 98.3% with an average of 1
and 4 false positive/scan, respectively.

Bai
et al. [109]

1. Local shape analysis.
2. Data-driven local contextual feature
learning .
3. Principal component analysis (PCA).

99 CT patients The number of false positive were re-
duced by more than 80%.

Setio
et al. [99]

1. Thresholding.
2. Morphological operations.
3. Vector supporting machine (VSM)
classifier.

888 CT patients.
The sensitivity of the system was
94.1% and 98.3% with an average of 1
and 4 false positive/scan, respectively.

Akram
et al. [106]

1. Artificial neural network (ANN).
2. Geometric and intensity-based features. 84 CT patients.

The accuracy and sensitivity of the sys-
tem were 96.68% and 96.95%, respec-
tively.

Golan
et al. [111] Deep convolutional neural network (CNN). 1018 CT patients The sensitivity of the system was

78.9% with 20 false positive/scan.

Bergtholdt
et al. [112]

1. Geometric features.
2. Grayscale features.
3. Location features.
4. Support vector machine (SVM) classifier.

1018 CT patients. The sensitivity of the system was
85.9% with 2.5 false positive/scan.

Sudipta
Mukhopad-
hyay [127]

Thresholding approach based on internal
texture (solid/part-solid and non-solid), and
external attachment (juxta-plural and
juxta-vascular).

891 nodules from
(LIDC/IDRI).

Average segmentation accuracy: 99% ± 1
(for soild/part-solid), 98% ± 2 (for
non-solid).

El-Regaily
et al. [110]

1. Canny edge detector.
2. Thresholding.
3. Region growing.
4. Rule-based classifier.

400 CT patients.

The accuracy, sensitivity, and speci-
ficity of the system were 70.53%,
77.77%, and 69.5%, respectively with
an average of 4.1 false positive/scan.

Zhang
et al. [113] Deep believe network (DBN). 1018 CT patients. The accuracy of system was 90%.

Wang
et al. [100]

Semi-supervised extreme learning machines
(SS-ELM) 1018 CT patients. The accuracy of the system was 96.1%.

Zhao
et al. [131]

1. 3D U-Net [132].
2. Generative adversarial network
(GAN) [133].

800 CT scans. Qualitative evaluation only.

Charbonnier
et al. [125]

Subsolid nodule segmentation using voxel
classification that eliminated blood vessels.

170 subsolid nodules
from the Multicentric
Italian Lung Disease
trial.

92.4% of segmented vessels, and 80.6%
of segmented solid core were accepted
observers.

Luo
et al. [134]

3D sphere center-points matching detection
network (SCPM-Net). 888 CT scans. The sensitivity of the system was

89.2%.



Cancers 2022, 14, 1840 11 of 24

Table 2. Cont.

Study Method # Subjects System Evaluation

Yin
et al. [135]

Squeeze and attention, and dense atrous
spatial pyramid pooling U-Net (SD-U-Net). 2236 CT slices.

The Dice similarity coefficient (DSC),
sensitivity, specificity, and accuracy
of the system were 86.96%, 89.88%,
99.32%, and 99.06%, respectively.

Bianconi
et al. [120]

1. 12 conventional semi-automated methods
(Active contours (MorphACWE,
MprphGAC), cluserting (K-means, SlIC),
graph-based (Felzenszwalb), region-growing
(flood fill), thresholding (Kapur, Kittler, Otsu,
MultiOtsu,others (MSER, Watershed)) , and
2. 12 deep learning semi-automated methods
(12 CNNS designed using 4 standard
segmentation models (FPN, LinkNet,
PSPNet, U-Net) and 3 well-known encoders
(InceptionV3, MobileNet, ResNet34)).

1. Dataset 1: 383 images
from a cohort of 111
patients.
2. Dataset 2: 259 images
from a cohort of 100.

Semi-automated deep learning meth-
ods outperformed the conventional
methods. DSCs of the deep learn-
ing based methods recorded 0.853 and
0.763 for dataset 1, and dataset 2
respectively. Conventional methods
recorded DSCs of 0.761 and 0.704.

4. Nodule Classification

One of the major limitations of using CAD systems in the detection of lung nodule
is the high false positive rate which hinders the accuracy and lowers its efficacy as a
screening framework that could be used on a large scale population. False positive nodules
are associated with extra costs and hazards as they lead to unnecessary biopsies, more
prolonged follow up imaging, and extra worry by patients and their families. So, accurate
classification of detected pulmonary nodule is of utmost importance to overcome these
problems. After nodule detection and segmentation, comes nodule classification. TPNs
are classified by two large architectures: either radiomics feature-based scheme or deep
learning models [136–139] (Figure 3). The feature radiomic scheme uses different sets of
features, that could be morphological/shape (spherical disproportion, circularity . . . etc.),
texture features, gray scale/histogram features (average, standard deviation, skewness. . . ),
gradient features (average, standard deviation, kurtosis. . . ), and spatial features (location
of the nodule) [140,141]. The extracted data from image voxels are then gathered and
transformed into numeric form called feature radiomics [142]. A group of numeric features
(radiomics) represent what is called feature vector. Then, a classifier (which is a machine
learning model) differentiates feature vectors according to training algorithms and labelled
data [143]. Famous classifiers include support vector machine, and random forest [144].
The advantage of radiomics model is that it could build models of high performance out
of limited datasets, yet it requires manual tumor segmentation and hand-crafted feature
extraction [145–147].

On the other hand, classifiers are used to build end to end convolutional neural
networks, fully connected neural network, or deep neural network to reach final nodule
classification through semantic feature analysis [12,147–151]. As mentioned earlier, ML and
neural networks do not require segmentation or hand-crafted feature extraction [152,153].
DNN could assess difficult cases which does not fit in the predefined feature characteristics,
yet still with satisfactory results. Deep layers such as ResNet and DenseNet are usually
used to train the DNN model [69,136,154,155].
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Figure 3. Main Categories of Lung Nodule Classification.

The process of nodule classification requires analysis of data obtained from 3D images.
However, most of the available models either use 2D data to build a 3D CNN model [156] or
a multi-view 2D CNN model [157–159]. Uthoff et al. [156] developed a ML pipeline using
k-medoids clustering and information theory to pick efficient predictor sets for different
amounts of parenchyma. Their method had high sensitivity of 100% and specificity of 96%.
On the other hand, Shen et al. [157] used a multiscale 2-layered CNN to diagnose lung
cancer in CT chest images, reaching an accuracy of 84.86%, while Jung et al. [160] used a
3D deep convolutional neural network (DCNN) with shortcut and dense connections to
classify lung nodules. These connections allow gradients to pass directly and quickly, thus
overcome gradient vanishing problems. In addition to acquiring three dimensional features
instead of two. Their method had higher competition performance metric (CPM) of about
0.9 as compared to other state of the art methods. Chen et al. [160] used a neural network
ensemble (NNE) to evaluate lung nodules and differentiate between probably malignant,
uncertain, and probably benign nodules with an accuracy of 78.7%. Another study using
texture features and artificial neural networks found that feed forward back propagation
showed more accurate nodule classification as compared to feed forward neural networks
and that skewness was the most accurate parameter [161]. Kumar et al. [149] proposed
another type of neural network for lung nodule classification called stacked autoencoder
(SAE) with an accuracy of 75.01%. Wilms et al. [78] presented a model-based 4D segmenta-
tion of lungs with large tumors in 4D CT data sets in which a 4D statistical shape model is
fitted to the 4D image sequence respecting inter and intra-patient variation. Ardila et al.,
proposed a DL model that extracts data from patient’s prior and current CT images to
predict the risk of development of bronchogenic carcinoma [162]. This model had high
accuracy when applied on lung cancer screening trial cases and on independent validation
group. They compared their results with a group of 6 radiologists. Interestingly, their
model was comparable to radiologists in the evaluation of prior and recent CT images,
but it outperformed the radiologists when evaluating recent CT image only. Li et al. [163]
evaluated the diagnostic performance of a CAD commercial software program called Infer-
Read CT Lung Research (ICLR) which was based on 3D CNN. They found that ICLR had
high accuracy in risk prediction of bronchogenic carcinoma unlike benign or metastatic
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lesions. One recent research [164] utilized a 2-level classification of pulmonary nodules
into benign and malignant with further subdivision of malignant nodules into serious and
mild malignant nodules using CNN with transfer learning, they attained high accuracy
similar to other published research.

Other studies were more concerned in correlating between pulmonary nodules mor-
phological features and finger print of genetic mutations of pathological types of lung
cancer (radio-genomics). This is particularly important in the assessment of success of gene
inhibiting therapy [164–168].

Regarding the diagnostic performance, a bunch of studies proved that deep leaning
is superior to ML models, owing to self-learning capabilities of the later [78,149,161–175].
Song et al. [176] compared three types of neural networks; convolutional neural network,
deep neural network, and stacked autoencoder (SAE). They found that CNN had the
highest accuracy (84.15%), while another more recent study showed high accuracy (AUC
of 0.99) using CNN based DL systematic approach called NoduleX [177]. Table 3 presents
a summary of state-of-the-art pulmonary nodules classifications.

Table 3. Literature review of pulmonary nodule classification systems.

Study Method # Subjects System Evaluation

Dehmeshki
et al. [148] Shape-based region growing.

3D lung CT data where
nodules are attached to
blood vessels or lung wall.

Qualitative evaluation only.

Lee
et al. [169]

Commercial CAD system
(IQQA-Chest, EDDA Technology,
Princeton Junction, NJ, USA).

200 chest radiographs (100
normal, 100 with malignant
solitary nodules.

Sensitivity of 87%, false positive rate of 0.19.

Kuruvilla
et al. [161]

Feed forward and feed forward
back propagation neural networks. 155 patients from LIDC Classification accuracy of 93.3%.

Yamamoto
et al. [165] Random forest. 172 patients with NSCLC. Sensitivity of 83.3% , specificity of 77.9%, ac-

curacy of 78.8% in independent testing.

Orozco
et al. [147]

1. Wavelet feature descriptor,
2. SVM.

45 CT scans from ELCAP
and LIDC.

Total preciseness in classifying cancerous
from non-cancerous nodules was 82%; sen-
sitivity of 90.90%, and specificity of 73.91%.

Kumar
et al. [149] Deep Features using autoencoder. 4323 nodules from

NCI-LIDC dataset.

75.01% overall accuracy, 83.35% sensitivity,
and false positive of 0.39/patient (10-fold
cross validation).

Hua
et al. [175]

1. A deep belief network (DBN),
2. CNN. LIDC Sensitivity (DBN: 73.4%, CNN: 73.3%), Speci-

ficity (DBN: 82.2%, CNN: 78.7%).

Kang
et al. [171] 3D multi-view CNN (MV-CNN). LIDC-IDRI

Error rate of 4.59% for binary classification
(benign and malignant) and 7.70% for ternary
classification(benign, primary malignant and
metastatic malignant).

Ciompi
et al. [173]

Multi-stream multi-scale
convolutional networks.

1. Italian MILD screening
trial,
2. Danish DLCST screening
trial.

Best accuracy of 79.5%.

Song
et al. [176]

1. CNN,
2. Deep neural network (DNN),
3. Stacked autoencoder (SAE).

LIDC-IDRI Accuracy of 84.15%, sensitivity of 83.96%, and
specificity of 84.32%.

Tajbakhsh
et al. [138]

1. Massive training artificial neural
networks (MTANN),
2. CNN.

LDCT acquired from
31 patients.

AUC = 0.8806 (95% confidence interval (CI):
0.8389˘0.9223).
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Table 3. Cont.

Study Method # Subjects System Evaluation

Li et al. [145] Support vector machine (SVM). 248 GGNs.

Accuracy of classifying GGNs into atypical
adenomatous hyperplasia (AAH), adenocar-
cinoma in situ (AIS), minimally invasive ade-
nocarcinoma (MIA), and invasive adenocarci-
noma (IA) was 70.9%. Accuracy of classifica-
tion between AIS and MIA nodules is 73.1%,
and between indolent versus invasive lesions
is 88.1%.

Huang et
al. [154]

Dense convolutional network
(DenseNet).

1. CIFAR,
2. SVHN,
3. ImageNet.

Error rates for CIFAR (C10: 5.19%, C10+:
3.46%, C100: 19.64%, C100+: 17.18%), SVHN
(1.59%), ImageNet (error rates with single-
crop (10-crop) are: top-1 (25.02 (23.61), 23.80
(22.08), 22.58 (21.46), 22.33 (20.85)), top-5 (7.71
(6.66), 6.85 (5.92), 6.34 (5.54), 6.15 (5.30))).

Nibali
et al. [158] ResNet LIDC/IDRI

Sensitivity of 91.07%, specificity of 88.64%,
precision of 89.35%, AUC of 0.9459, and accu-
racy of 89.90%.

Liu
et al. [159] Multi-view multi-scale CNNs LIDC-IDRI and ELCAP Classification rate as 92.1%.

Zhao
et al. [152]

A deep learning system based on
3D CNNs and multitask learning

651 nodules with labels of
AAH, AIS, MIA, IA.

Classification accuracy using 3 class weighted
average F1 score is: 63.3% compared to radi-
ologists who achieved 55.6%, 56.6%, 54.3%,
and 51.0%.

Li et al. [150] Multivariable linear predictor
model built on semantic features.

100 patients from
NLST-LDCT.

AUC at baseline screening: 0.74, at first fol-
lowup: 0.88, and at second followup: 0.96.

Lyu
et al. [172] Multi-level CNN (ML-CNN). LIDC, IDRI (1018 cases from

1010 patients) Accuracy: 84.81%.

Shaffie
et al. [174]

1. Seventh-order Markov Gibbs
random field (MGRF)
model [178–180],
2. Geometric features,
3. Deep autoencoder classifier.

727 nodules from
467 patients (LIDC). Classification accuracy of 91.20%.

Causey
et al. [177] Deep learning CNN. LIDC-IDRI Accuracy of malignancy classification with

AUC of approximately of 0.99.

Uthoff
et al. [156]

k-medoids clustering and
information theory.

Training: (74 malignant, 289
benign), Validation (50
malignant, 50 benign).

AUC = 0.965, 100% sensitivity and 96% speci-
ficity.

Ardila
et al. [162] A deep learning CNN.

6716 National Lung Cancer
Screening Trial cases,
independent clinical
validation set of 1139 cases.

AUC = 94.4%.

Liu
et al. [151]

1. Multivariate logistic regression
analysis,
2. Least absolute shrinkage and
selection operator (LASSO).

Benign and malignant
nodules from 875 patients.

Training: AUC = 0.836; 95% CI: 0.793–0.879)
and validation (AUC = 0.809; 95% CI:
0.745–0.872).

Gong
et al. [136]

A deep learning–based artificial
intelligence system for classifying
ground-glass nodule(GGN) into
invasive adenocarcinoma (IA) or
non-invasive IA.

828 GGNs of 644 patients
(209 are IA and 619 non-IA,
including 409
adenocarcinomas in situ
and 210 minimally invasive
adenocarcinomas).

AUC = 0.92 ± 0.03.
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Table 3. Cont.

Study Method # Subjects System Evaluation

Sim
et al. [137]

Radiologists assisted by deep
learning–based CNN.

600 lung cancer–containing
chest radiographs and 200
normal chest radiographs.

Average sensitivity improved from 65.1% to
70.3%, and number of false positives per ra-
diograph declined from 0.2 to 0.18.

Wang
et al. [153]

A two-stage deep learning strategy:
prior-feature learning followed by
adaptive-boost deep learning.

1357 nodules (765
noninvasive (AAH and AIS)
and 592 invasive nodules
(MIA and IA)).

Classification accuracy of 73.4% ± 1.4 com-
pared to specialists who achieved 69.1%,
69.3%, and 67.9%. AUC= 81.3% ± 2.2.

Xia
et al. [155]

1. Recurrent residual CNN based
on U-Net,
2. Information fusion method.

373 GGNs from 323
patients. AUC= 0.90 ± 0.03, accuracy: 80.3%.

Li et al. [163]
CLR software based on 3D CNN
with DenseNet architecture as a
backbone.

486 consecutive resected
lung lesions(320
adenocarcinomas, 40 other
malignancies, 55 metastases,
and 71 benign lesions).

Classification accuracy for adenocarcinomas,
other malignancies, metastases, and benign
lesions was 93.4%, 95.0%, 50.9%, and 40.8%,
respectively.

Hu
et al. [139]

1. 3D U-NET,
2. Deep neural network.

513 GGNs (100 benign,
413 malignant).

Accuracy of 75.6%, F1 score of 84.6%,
weighted average F1 score of 70.3%, and
Matthews correlation coefficient of 43.6%.

Farahat
et al. [181]

1. Three MGRF energies, extracted
from three different grades of
COVID-19 patients,
2. Artificial neural network.

76 CT COVID-19 patients. 100% accuracy, and 100% Cohen kappa.

5. Limitations and Future Prospects

The scale of dataset used in CNN model is a crucial factor in the determination of
whether it is a good model for training or not [182]. Collecting a large number annotated
images could be a year-long process or even impossible owing to nature of medical imaging.
To overcome this problem, large public datasets were introduced. Another solution is to
artificially generate datasets that are similar to those used in the training of CNN. One
example is the generative adversarial network (GAN) [133]. Another suggested solution
is to implement transfer learning. Transfer model and LeNet5 were suggested to deal
with conditions where large datasets are not available. Transfer-learning simply uses pre-
existing data from source task to analyze data obtained from target task, which is useful in
situations where target task has few datasets [183]. Recent study used CNN and LeNet5
to classify pulmonary nodules into benign or malignant with further sub-classification
of various types of malignancies [184]. A limitation that comes along with data sharing
and data transfer is the legal aspects of patient’s privacy. Another limitation is the lack of
uniform terms between radiologists (for example when to describe a nodule as subsolid or
non-solid) or between pathologists (minimally invasive carcinoma or carcinoma in situ),
which in turn leads to non-uniform labelling of data which may affect the trained model.
Of course, the solution for this problem will be the creation of a data-reporting system to
unify medical terms like what happened in BI-RADS and LI-RADS. In the clinical practice,
radiologists usually get benefit from clinical data to direct differential diagnosis and reach
proper decision. However most of the available algorithms depend only on features derived
from the images with little or no consideration to clinical data such as age, presence or
absence of risk factors (smoking). Algorithms that combine clinical and imaging data are
the solution to such limitation [185]. Finally, many algorithms and models are proposed
but they lack generalizability and are used mainly in research works.
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6. Conclusions

AI and its multiple arms including CAD, ML and DL are used to design complex algo-
rithms to detect and further characterize pulmonary nodules in order to predict malignancy
risk. Along the last decade, large number of radiomic features and artificial networks were
proposed, each had its own advantages and drawbacks, till now no specific method gained
popular acceptance to be applied on a general population.
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Abbreviations
The following abbreviations are used in this manuscript:

HU Hounsfield Unit
ABM Adaptive Border Marching
A-CNN Amalgamated Convolutional Neural Network
ASM Active Shape Model
CAD Computer-Aided Diagnosis
CADe Computer-Aided Detection System
CADx Computer-Aided Diagnosis System
DL Deep Learning
CNN Convolutional Neural Network
MV-CNN Multi-view CNN
ML-CNN Multi-level CNN
AHSN Angular Histograms of Surface Normals
CPM Competition Performance Metrics
CT Computed Tomography
CV Chan Vese
DBN Deep Belief Network
DCNN Deep Convolutional Neural Network
DNN Deep Neural Network
ELM Extreme Learning Machines
FLD Fisher Linear Discriminant
FPN False Positive Nodule
GAN Generative Adversarial Network
GGO Ground Glass Opacity
GGN Ground Glass Nodule
ICLR InferRead CT Lung Research
KB Knowledge Bank
k-NN K-nearest Neighbor
LDA Linear Discriminate Analysis
LDCT Low Dose Computed Tomography
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LIDC-IDRI Lung Image Database Consortium and Image Database Resource Initiative
MGRF Markov Gibbs Random Field
ML Machine Learning
MPP Multi Player Perception
NNE Neural Network Ensemble
PNN Probabilistic Neural Network
RASM Robust Active Shape Model
ROI Region of Interest
RPCA Robust Principal Component Analysis
SAE Stacked Autoencoder
SS-ELM Semi-Supervised Extreme Learning Machines
SVM Support Vector Machine
TPN True Positive Nodule
AUC Area Under the Curve
IA Invasive Adenocarcinoma
MTANN Massive training artificial neural networks
NCI National Cancer Institute
SVHN Street View House Numbers Dataset
LASSO Least Absolute Shrinkage and Selection Operator
AAH Atyoical Adenomatous Hyperplasia
MIA minimally invasive adenocarcinoma
AIS Adenocarcinoma in Situ
GLCM Gray-Level Co-occurrence Matrix
EM Expectation–maximization method
DSC Dice Similarity Coefficient
Inf-Net COVID-19-infected lung segmentation convolution neural network
Semi-Inf-Net semi-supervised Inf-Net
ALVD absolute lung volume difference
BHD bidirectional Hausdorff distance
HCRF Hidden conditional random field
SCPM-Net sphere center-points matching detection network
SD-U-Net Squeeze and attention, and dense atrous spatial pyramid pooling U-Net
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