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Chemotherapy Center, Yokohama City University Hospital, Yokohama 232-0024, Japan;
horitano@med.yokohama-cu.ac.jp; Tel.: +81-45-787-2800

Simple Summary: How tumor response and progression-free survival (PFS) reflect the overall
survival (OS) in advanced non-small cell lung cancer (NSCLC) clinical trials with immune checkpoint
inhibitors (ICI) have not been clarified. This study validated the uses of objective response rate and
PFS for NSCLC trials with ICI through an individual-patient level and a trial level.

Abstract: Background: To assess the usefulness of tumor response and progression-free survival
(PFS) as surrogates for overall survival (OS) in non-small cell lung cancer (NSCLC) trials with
immune checkpoint inhibitors (ICI), which have not been confirmed. Methods: Patient- and trial-
level analyses were performed. The Response Evaluation Criteria in Solid Tumors was preferred
for image assessment. For trial-level analysis, surrogacy was assessed using the weighted rank
correlation coefficient (r) following “reciprocal duplication.” This method duplicates all plots as if the
experimental and the reference arms were switched. Monte Carlo simulations were performed for
evaluating this method. Results: A total of 3312 cases were included in the patient-level analysis.
Patients without response (first line (1L): hazard ratio (HR) 1.95, 95% confidence interval (CI) 1.71–2.23;
second or later line (2L-): HR 4.22, 95% CI 3.22–5.53), without disease control (1L: HR 4.34, 95% CI
3.82–4.94; 2L-: HR 3.36, 95% CI 2.96–3.81), or with progression during the first year (1L: HR 3.42,
95% CI 2.60–4.50; 2L-: HR 3.33, 95% CI 2.64–4.20), had a higher risk of death. Systematic searches
identified 38 RCTs including 17,515 patients for the study-level analysis. Odds ratio in the objective
response rate (N = 38 × 2, r = −0.87) and HR in PFS (N = 38 × 2, r = 0.85) showed an excellent
association with HR in overall survival, while this effect was not observed in the disease control rate
(N = 26 × 2, r = −0.03). Conclusions: Objective response rate and PFS are reasonable surrogates for
OS in NSCLC trials with ICI.

Keywords: immune checkpoint inhibitors; response evaluation criteria in solid tumors; progression-
free survival; endpoint determination

1. Introduction

Primary lung cancer is one of the most frequently diagnosed and fatal malignant
neoplasms in the 21st century [1,2]. Most non-small cell lung cancers (NSCLC) are classified
as metastatic or locally advanced at the time of diagnosis. These high-stage incurable cases
and postoperative recurrent cases are usually treated with anticancer agents, which can
be grouped into cytotoxic, molecularly targeted, and immune checkpoint inhibitors (ICI).
Since the second half of the last century, cytotoxic agents have been known to prolong
the overall survival (OS) of patients with advanced NSCLC, [3–5] and the subsequent
development of regimens that use molecularly targeted agents and ICIs have prolonged
OS even further [6].
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OS is the most preferred endpoint in clinical cancer trials [7–9]. OS extension is
directly beneficial to the patient and can be detected without observational bias [8,10,11].
Ironically, recent advances in anticancer drugs have prolonged OS sufficiently that it is
difficult to follow up with patients over enough time for OS to be measured in clinical
studies. Inoperable NSCLC patients with driver mutations or high programmed death
ligand 1 (PD-L1) expression may have median OS spanning years, [12,13] meaning that
trials that use OS as the primary endpoint are becoming less viable [14–16]. The popularity
of surrogate endpoints, such as the objective response rate (ORR), disease control rate
(DCR), and progression-free survival (PFS) has therefore, increased [8].

Several studies have assessed how tumor response and PFS reflect the OS in advanced
NSCLC clinical trials [8,17]. However, such reports have generally stated that tumor
response and PFS are insufficiently correlated with OS at the trial level and therefore, cannot
replace OS in NSCLC RCTs. Furthermore, these studies tended to focus on cytotoxic agents
and how the Response Evaluation Criteria in Solid Tumors (RECIST) based assessment
systems reflect the OS in ICI treatment have not been elucidated. Lymphocytes that are
activated by immunotherapy congregate in the tumor, causing the tumor to enlarge, [18]
accompanied by new metastases on images even when true cancer growth is not occurring.
We are concerned whether the surrogacy of tumor response and PFS to OS in ICI trials
may appear inaccurate because patients who are treated with ICI often experience pseudo-
progression [19]. Despite these concerns, an increasing number of clinical studies using ICI
regimens have employed tumor response and PFS as the primary endpoints.

The purpose of this study was to evaluate whether surrogate endpoints, including
tumor response and PFS, can act as surrogates for OS at the trial- and patient-levels when
ICIs are administered for advanced NSCLC. This is the first systematic review to evaluate
the surrogacy in NSCLC trials with ICI regimen using sufficient trial- and patient-level data.

2. Materials and Methods
2.1. Study Overview

This study consisted of two parts: trial- and patient-level analyses, and was designed in
compliance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses
(PRISMA) Statement and the PRISMA of Individual Participant Data [20]. The protocol
was registered at the University hospital Medical Information Network (UMIN) website
(UMIN000047001) [21].

2.2. Patient-Level Analysis
2.2.1. Data Access

The data were provided by F. Hoffmann-La Roche, Ltd. through the intermediary,
Vivli, a data distribution organization.

2.2.2. Study Selection

We asked Vivli to provide data from all studies in which patients with NSCLC were
treated with ICI. As this was a patient-level analysis, studies were incorporated regardless
of the study phase or randomization.

2.2.3. Patient Selection

Patients with metastatic, locally advanced, or recurrent NSCLC and either squamous
or non-squamous pathology were selected. Specific inclusion or exclusion criteria were
not set for performance status, history of prior systemic chemotherapy, level of PD-L1
expression, status of EGFR-sensitizing mutations, and ALK, ROS1, or RET fusions.

2.3. Treatment

Patients should be treated with ICI. Combination regimes, including dual ICI, ICI
plus chemotherapy, and ICI plus molecularly targeted therapy were accepted along with
single-agent ICI. Only drugs that could be considered anticancer drugs according to the
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guidelines were eligible for this study [3–5]. For example, a study in which macrolide
antimicrobials were incorporated into the treatment regimen was excluded. The presence
or absence of prior anti-cancer therapy was not considered. Consolidation treatment before
progression of the previous systemic treatment was accepted. No cases that underwent
chemoradiotherapy were included. Adjuvant ICI therapy was not allowed.

2.4. Outcomes

RECIST v1.1-based imaging studies were of our particular interest [22]. Confirma-
tion was not required even for a phase II trial and independent central reviews were
also not required. Modified RECIST 1.1 for immune-based therapeutics (iRECIST) was
not considered.

Patients were classified into complete response (CR), partial response (PR), stable
disease (SD), progressive disease (PD), and not evaluable (NE) [22]. ORR was defined by
(CR + PR)/(CR + PR + SD + PD + NE) and DCR was defined by (CR + PR + SD) / (CR +
PR + SD + PD + NE). Then, overall survivals were compared.

Spearman’s rank correlation coefficient (r) was assessed for PFS and OS durations.
Patients who survived for one year were binomially classified into those with and without
progression, preceding OS comparison.

All the analyses focused on either (i) the first-line treatment or (ii) second- or later-
line treatment.

Statistics

Survival duration was described using Kaplan–Meier curves and compared using
the log-rank test and Cox-proportional hazard model. Statistical significance was set to
a p value of 0.05. For the statistical analysis, “cor” command and “survival” package
were used.

2.5. Study-Level Analysis
2.5.1. Study Selection

RCTs of any phase in which patients with metastatic, locally-advanced, or recurrent
NSCLC patients were medically treated, and written in English were included. Conference
abstracts were excluded.

2.5.2. Patient Selection

See patient-level analysis.

2.6. Treatment

See patient-level analysis.

2.7. Study Search

Database searches were performed using Medline, PubMed, Cochrane CENTRAL,
EMBASE, and Web of Science as of 21 February 2022 (Table S1). Review articles were
searched manually (Reference S1).

The title and abstract of potentially eligible articles were screened first, after which the
full text was checked.

2.8. Data Extraction

Data such as author names, study design, and outcomes were extracted in a standard-
ized manner [20].

For trials that randomized patients into three arms, two were selected based on the
following criteria: (i) focusing on comparison to the primary endpoint, particularly the
first gate population for the hierarchical model, (ii) producing a pair of ICI and non-ICI
regimens, (iii) comparisons that were featured in the original article, and (iv) arms with
larger numbers of patients.
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For studies that presented outcomes for plural populations, such as whole and PD-
L1 positive populations, (i) the population used for the primary endpoint and (ii) the
population with a larger number of patients were selected.

RECIST version 1.1 was the preferred method for response evaluation [22]; however,
similar algorithms, including modified RECIST and the WHO criteria in tumor response,
were accepted.

Where survival outcomes were available at several time points, data related to the
protocol-specified primary endpoint were selected.

2.9. Outcome

The correlations with the hazard ratio (HR) of OS (HRos) were assessed for odds ratio
(OR) of ORR (ORorr), OR of DCR (ORdcr), and HR of PFS (HRpfs).

Subgroup analysis focusing on first-line treatment and second- or later-line treatment
was conducted.

2.10. Assessment of Risk of Bias

The Cochrane risk of bias tool was used to evaluate the quality of the trials [23].

2.11. Statistics

The weighted Spearman’s rank correlation coefficient (r) was used to assess the sur-
rogacy [8], with the results interpreted as no (|r| < 0.2), weak (0.2 < |r| < 0.4), moderate
(0.4 < |r| < 0.6), strong (0.6 < |r| < 0.8), or excellent (0.8 < |r|) correlation. The weight of
each study was given by 1/(standard error of log HRos)ˆ2. The weighted correlation was
estimated using the “corr” command in the “boot” package of software R [24]. GraphPad
Prism ver 9.2.0 (GraphPad Software, San Diego CA, USA) was used to draw figures.

Examining the weighted correlation between true and surrogate endpoints is a stan-
dard approach used in the assessment of the surrogacy [8]; however, we noticed that this
does not work well for ICI trials because most show favorable outcomes in the experi-
mental arm. To address this, data from available studies were “reciprocally duplicated”
before the surrogacy assessment [25]. A Monte Carlo simulation was used to evaluate the r
using reciprocally duplicated data as an approximation of the r obtained by random arm
determination [26].

3. Results
3.1. Patient-Level Analysis
3.1.1. Patient Characteristics

Data from 3312 independent patients in three phase II and four phase III studies with
ICI-containing regimens were analyzed (Table S2) [27–33]. This pooled cohort included
2003 (60.5%) patients with first-line treatment and 1309 (39.5%) with second- or later-line
treatment (Table 1).

3.1.2. Patient-Level Surrogacy

Compared to patients with response (CR + PR), those without response (SD + PD + NE)
had deteriorated OS in the first-line (HR 1.95, 95% CI 1.71–2.23, p < 0.001, Figure 1A) and
second- or later-line (HR 4.22, 95% CI 3.22–5.53, p < 0.001, Figure 1B) settings. Lack of
disease control (PD + NE) was associated with a high risk of death in the first-line (HR 4.34,
95% CI 3.82–4.94, p < 0.001, Figure 1C) and second- or later-line (HR 3.36, 95% CI 2.96–3.81,
p < 0.001, Figure 1D) settings.
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Table 1. Patient characteristics for independent patient data analysis.

1st Line 2nd or Later Line

N 2003 1309

Age (year) 64 (58–70) 63 (57–70)

Sex

Men 1328 (66.3%) 803 (61.3%)

Women 675 (33.7%) 506 (38.7%)

Race

Asian 199 (9.9%) 199 (15.2%)

Black or African American 36 (1.8%) 24 (1.8%)

White 1693 (84.5%) 1027 (78.5%)

Other/unknown 75 (3.7%) 59 (4.5%)

Pathology

Squamous 677 (33.8%) 364 (27.8%)

Non-squamous 1309 (65.4%) 945 (72.2%)

Unknown 17 (0.8%) 0 (0.0%)

Stage

IA 60 (3.0%) 39 (3.0%)

IB 44 (2.2%) 56 (4.3%)

IIA 46 (2.3%) 49 (3.7%)

IIB 48 (2.4%) 75 (5.7%)

IIIA 134 (6.7%) 193 (14.7%)

IIIB 96 (4.8%) 159 (12.1%)

IV (not specified for A/B) 1489 (74.3%) 55 (4.2%)

IVA 27 (1.3%) 310 (23.7%)

IVB 24 (1.2%) 346 (26.4%)

Unknown 35 (1.7%) 27 (2.1%)

TD-L1 (IC)

0–0.9 917 (45.8%) 326 (24.9%)

1–4.9 645 (32.2%) 315 (24.1%)

5–9.9 212 (10.6%) 207 (15.8%)

10–49.9 191 (9.5%) 321 (24.5%)

50–100 38 (1.9%) 131 (10.0%)

Unknown 0 (0.0%) 9 (0.7%)

PD-LI (TC)

0–0.9 1229 (61.4%) 550 (42.0%)

1–4.9 205 (10.2%) 292 (22.3%)

5–9.9 73 (3.6%) 61 (4.7%)

10–49.9 241 (12.0%) 181 (13.8%)

50–100 255 (12.7%) 218 (16.7%)

Unknown 0 (0.0%) 7 (0.5%)

Smoking history

Never 290 (14.5%) 239 (18.3%)

Previous 1224 (61.1%) 901 (68.8%)

Current 489 (24.4%) 169 (12.9%)
Brackets indicate percentage or interquartile range.
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Figure 1. Kaplan–Meier estimates of overall survival based on response evaluation after two cycles
and based on 1-year progression-free survival. Responded, complete response, and partial response;
controlled, complete response, partial response, and disease control. HR, hazard ratio; brackets, 95%
confidence interval.

PFS and OS had high or moderate rank correlation among patients who died during
follow-up after the first-line (r = 0.71, p < 0.001) and second- or later-line (r = 0.59, p < 0.001)
treatment (Figure S1). Patients who survived but experienced disease progression over a
12-month period showed a higher risk of death from any cause in the first-line (n = 1066,
HR 3.42, 95% CI 2.60–4.50, p < 0.001, Figure 1E) and second- or later-line (n = 658, HR 3.33,
95% CI 2.62–4.20, p < 0.001, Figure 1F) settings.

3.2. Study-Level Analysis
3.2.1. Study Selection

Out of 823 articles that were identified through the database and manual searches,
37 research papers were selected to represent 38 RCTs, including 31 phase III trials, with
17,515 patients eligible (Figure S2, Reference S2). According to the inclusion criteria, five
and nine studies with squamous and non-squamous histology, respectively, were included,
while the other 23 studies permitted any NSCLC histology. Detailed characteristics of the
studies are summarized in Table 2.
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Table 2. Characteristics of trials used in the study-level analysis.

Country Phase Patho Stage PD-L1 Status Driver PS Line Imaging
Evaluation Treatment ROB

H/U/L

Antonia (2017)
PACIFIC USA III NSCLC IIIa, IIIb Any ANY 0–1 After CCR RECIST

ICR
Dur (10 mg/kg) q2w
No active treatment 0/0/6

Barlesi (2018)
JAVELIN Lung 200

South
Korea III NSCLC IIIb, IV, Rec TC > 1% EGFR(-), ALK(-) 0–1 2–4 RECIST

ICR
Avel (10 mg/kg) q2w
Dtx (75 mg/m2) q3w 1/0/5

Borghaei (2015)
CheckMate057 USA III NSQ IIIb, IV Any Any 0–1 2–3 RECIST Niv (3 mg/kg) q2w

Dtx (75 mg/m2) q3w 2/0/4

Boyer (2021)
KEYNOTE-598 Australia III NSCLC IV TC > 50% EGFR(-), ALK(-) 0–1 1 RECIST,

ICR
Pemb (200 mg) q3w + Ipi (1 mg/kg) q6w

Pemb (200 mg) q3w 0/0/6

Brahmer (2015)
CheckMate017 USA III SQ IIIb, IV Any Any 0–1 2 RECIST, Niv (3 mg/kg) q2w

Dtx (75 mg/m2) q3w 2/0/4

Carbone (2017)
CheckMate026 USA III NSCLC IV, Rec TC > 5% EGFR(-), ALK(-) 0–1 1 RECIST,

ICR
Niv (3 mg/kg) q2w
Platinum doublet 1/0/5

Fehrenbacher (2016)
POPLAR USA II NSCLC Adv, Met Any Any 0–1 2–3 RECIST Atz (1200 mg) q3w

Dtx (75 mg/m2) q3w 2/0/4

Gandhi (2018)
KEYNOTE-189 USA III NSQ Met Any EGFR(-), ALK(-) 0–1 1 RECIST,

ICR

Pemb (200 mg) + Platinum + Pemt (500
mg/m2) q3w

Platinum + Pemt (500 mg/m2) q3w
1/0/5

Gettinger (2021)
Lung-MAP S1400I USA III SQ IV Any Any 0–1 (Z) 2- RECIST Niv (3 mg/kg) q2w + Ipi (1 mg/kg) q6w

Niv (3 mg/kg) q2w 2/0/4

Govindan (2017)
Study 104 USA III SQ IV, Rec Any Any 0–1 1 mWHO

Ipi (10 mg/kg) + Cbdca (AUC 6) + Ptx
(175 mg/m2) q3w

Cbdca (AUC 6) + Ptx (175 mg/m2) q3w
0/0/6

Hellmann (2019)
CheckMate227 USA III NSCLC IV, Rec TC >1% EGFR(-), ALK(-) 0–1 1 RECIST

ICR
Niv (3 mg/kg) q2w + Ipi (1 mg/kg) q6w

Platinum doublet 1/0/5

Hensing (2021)
Alliance 09 USA II NSCLC IV Any EGFR(-), ALK(-) 0–1 no previous ICI RECIST,

ICR

Cbdca doublet q3w x4 followed by Pemb
(200 mg) q3w x4

Pemb (200 mg) q3w x4 followed by Cbdca
doublet q3w x4

1/0/5

Herbst (2016)
KEYNOTE-010 USA II/III NSCLC Adv TC >1% Any 0–1 2- RECIST,

ICR
Pemb (10 mg/kg) q3w
Dtx (75 mg/m2) q3w 1/0/5

Herbst (2020)
IMpower110 USA III NSCLC IV IC>10% or

TC>50% EGFR(-), ALK(-) 0–1 1 RECIST Atz (1200 mg) q3w
Dtx (75 mg/m2) q3w 1/0/5

Jotte (2020)
IMpower131 USA III SQ IV Any Any 0–1 1 RECIST

Atz (1200 mg) + Cbdca (AUC 6) + nPtx
(100 mg/m2) q3w

Cbdca (AUC 6) + nPtx (100 mg/m2) q3w
1/0/5
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Table 2. Cont.

Country Phase Patho Stage PD-L1 Status Driver PS Line Imaging
Evaluation Treatment ROB

H/U/L

Jung (2022)
NCT03656094

South
Korea II NSCLC Adv Any EGFR(-), ALK(-) 0–1 2–3 RECIST

Pemb (200 mg) q3w + Single-agent
Chemotherpay

Single-agent Chemotherpay
0/0/6

Langer (2016)
KEYNOTE-021 USA II NSQ III, IV Any EGFR(-), ALK(-) 0–1 1 RECIST

Pemb (200 mg) + Cbdca (AUC 5) + Pemt
(500 mg/m2) q3w

Cbdca (AUC 5) + Pemt (500 mg/m2) q3w
2/0/4

Leighl (2021)
CCTG BR34 Canada II NSCLC IVa, IVb Any EGFR(-), ALK(-) 0–1 1 RECIST

Durv (1500 mg) + Trem (75 mg) +
Platinum doublet q3w

Durv (1500 mg) + Trem (75 mg)
2/0/4

Lynch (2012)
NCT00527735 Netherlands II NSCLC IIIb, IV Any EGFR(-), ALK(-) 0–1 1 mWHO, ICR

Ipi (10 mg/kg) + Cbdca (AUC 6) + Ptx
(175 mg/m2) q3w

Cbdca (AUC 6) + Ptx (175 mg/m2) q3w
0/0/6

Mok (2019)
KEYNOTE-042 HK III NSCLC LocAdv, Met TC>1% EGFR(-), ALK(-) 0–1 1 RECIST,

ICR
Pemb (200 mg) q3w

Cbdca doublet 1/0/5

Nishio (2021)
IMpower132 Japan III NSQ IV Any Any 0–1 1 RECIST

Atz (1200 mg) + Platinum + Pemt (500
mg/m2) q3w

Platinum + Pemt (500 mg/m2) q3w
2/0/4

Paz-Ares (2018)
KEYNOTE-407 Spain III SQ IV TC >50% Any 0–1 1 RECIST,

ICR

Pemb (200 mg) +Cbdca (AUC 6) + (Ptx
(200 mg/m2) or nPtx (100 mg/m2)) q3w
Cbdca (AUC 6) + (Ptx (200 mg/m2) or

nPtx (100 mg/m2)) q3w

0/0/6

Paz-Ares (2021)
CheckMate9LA Spain III NSCLC IV, Rec Any EGFR(-), ALK(-) 0–1 1 RECIST,

ICR

Niv (360 mg) q3w + Ipi (1 mg/kg) q6w +
Platinum doublet q3w
Platinum doublet q3w

1/0/5

Planchard (2020)
ARCTIC-A France III NSCLC IIIb, IV TC >25% EGFR(-), ALK(-) 0–1 3- RECIST Durv (10 mg/kg) q2w

Gem and Vin or Erl 2/0/4

Planchard (2020)
ARCTIC-B France III NSCLC IIIb, IV TC <25% EGFR(-), ALK(-) 0–1 3- RECIST Durv (20 mg/kg) + Trem (1 mg/kg) q4w

Gem and Vin or Erl 2/0/4

Reck (2016)
KEYNOTE-024 USA III NSCLC IV TC>50% EGFR(-), ALK(-) 0–1 1 RECIST,

ICR
Pemb (200 mg) q3w
Platinum doublet 1/0/5

Rittmeyer (2017)
OAK USA III NSCLC IIIb-IV IC>1% or

TC>1% Any 0–1 2–3 RECIST Atz (1200 mg)
Dtx (75 mg/m2) q3w 2/0/4

Rizvi (2020)
MYSTIC USA III NSCLC IV TC>25% EGFR(-), ALK(-) 0–1 1 RECIST,

ICR
Durv (20 mg/kg) q4w

Platinum doublet 1/0/5

Sezer (2021)
EMPOWER-Lung 1 Turkey III NSCLC IIIb, IIIc, IV TC >50% EGFR(-), ALK(-),

ROS1(-) 0–1 1 RECIST,
ICR

Cemi (350 mg) q3w
Platinum doublet 1/0/5
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Table 2. Cont.

Country Phase Patho Stage PD-L1 Status Driver PS Line Imaging
Evaluation Treatment ROB

H/U/L

Socinski (2018)
IMpower150 Germany III NSQ IV, Rec Any EGFR(-), ALK(-) 0–1 1 RECIST,

ICR

Atz (1200 mg) + Bev (15 mg/kg) + Cbdca
(AUC 6) + Ptx (200 mg/m2)

Bev (15 mg/kg) + Cbdca (AUC 6) + Ptx
(200 mg/m2)

1/0/5

Sugawara (2021)
ONO-4538-

52/TASUKI-52
Japan III NSQ IIIb, IV Any EGFR(-), ALK(-),

ROS1(-) 0–1 1 RECIST,
ICR

Niv (360 mg) + Cbdca (AUC 6) + Ptx (200
mg/m2) + Bev (15 mg/kg)

Cbdca (AUC 6) + Ptx (200 mg/m2) + Bev
(15 mg/kg)

0/0/6

West (2019)
IMpower130 Italy III NSQ IV Any EGFR(-), ALK(-) 0–1 1 RECIST,

ICR

Atz (1200 mg) q3w + Cbdca (AUC 6) q3w
+ nPtx (100 mg/m2) q1w

Cbdca (AUC 6) q3w + nPtx
(100 mg/m2) q1w

1/0/5

Wu (2019)
CheckMate078 China III NSCLC IIIb, IV Any EGFR(-), ALK(-) 0–1 2 RECIST Niv (3 mg/kg) q2w

Dtx (75 mg/m2) q3w 2/0/4

Yang (2020)
ORIENT-11 China III NSQ IIIb, IIIc, IV Any EGFR(-), ALK(-) 0–1 1 RECIST

Sint (200 mg) + Platinum +Pemt (500
mg/m2) q3w

Platinum + Pemt (500 mg/m2) q3w
0/0/6

ZhouC (2021)
ORIENT-12 China III SQ IIIb, IIIc, IV Any EGFR(-), ALK(-) 0–1 1 RECIST,

ICR

Sint (200 mg) + Platinum +Gem (1000
mg/m2, d 1, 8) q3w

Platinum +Gem (1000 mg/m2, d 1, 8) q3w
0/0/6

ZhouC (2022)
GEMSTONE-302 China III NSCLC IV Any EGFR(-), ALK(-),

ROS1(-), RET(-) 0–1 1 RECIST,
ICR

Suge (1200 mg) + Cbdca doublet q3w
Cbdca doublet q3w 0/0/6

ZhouQ (2022)
GEMSTONE-301 China III NSCLC III Any EGFR(-), ALK(-),

ROS1(-) 0–1 After CCR RECIST,
ICR

Suge (1200 mg)
No active treatment 0/0/6

ZhouC (2021)
CameL China III NSQ IIIb, IV Any EGFR(-), ALK(-) 0–1 1 RECIST,

ICR

Camr (200 mg) + Cbdca (AUC 5) + Pemt
(500 mg/m2) q3w

Cbdca (AUC 5) + Pemt (500 mg/m2) q3w
1/0/5

Patho, pathology; NSCLC, non-small cell lung cancer; SQ, squamous cell carcinoma; NSQ, non-squamous cell carcinoma. Rec, recurrent; Adv, advanced; Met, metastasis; LocAdv, locally
advanced. PD-L1, programmed death ligand 1; TC, tumor cells; IC, tumor-infiltrating immune cells; >1%, 1% or higher; >5%, 5% or higher; >10%, 10% or higher; >50%, 50% or higher.
PS, performance status (if not specified, Eastern Cooperative Oncology Group PS); Z, Zubrod. After CCR, consolidation therapy after combined chemoradiotherapy. RECIST, Response
Evaluation Criteria in Solid Tumors version 1.1; ICR, independent central review. Niv, nivolumab; Pemb, pembrolizumab; Sint, sintilimab; Cemi, cemiplimab; Camr, camrelizumab;
Avel, avelumab; ATZ, atezolizumab; Durv, durvalumab; Suge, sugemalimab; Ipi, ipilimumab; Trem, tremelimumab. Dtx, docetaxel; Pemt, pemetrexed; Cbdca, carboplatin; nPtx,
nab-paclitaxel; Ptx, paclitaxel; AUC, area under curve; Gem, gemcitabine; Vin, vinorelbine; Erl, erlotinib; Bev, bevacizumab. q3w, every 3 weeks. ROB, Cochrane risk of bias; H/U/L,
high/unclear/low risk of bias.
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3.2.2. Study-Level Surrogacy and Traditional Arm Definition

The reference and experimental arms were determined as described in the original
studies (Table 2). ORorr, ORpfs, HRpfs, and HRos were extracted or calculated accordingly.
Most articles defined the ICI regimen as the experimental arm and the non-ICI regimen as
the reference arm (Table 2). The majority of the studies demonstrated HRos and HRpfs of
< 1 and ORorr of > 1 (Figure 2A–C). This is because ICI regimens almost always improve
patient outcomes compared with non-ICI regimens.
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ORorr (N = 38, r = −0.67), ORdcr (N = 26, r = −0.37), and HRpfs (N = 38, r = 0.55)
were found to be meaningfully correlated with HRos (Figure 2A–C).
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3.2.3. The Rationale of Reciprocal Duplication

We suspected that the correlations between ORorr and HRos, and between HRpfs
and HRos were underestimated because the plots were scattered in limited areas showing
favorable outcomes, e.g., right lower quadrant in the ORorr plot and left lower quadrant in
the HRpfs plot (Figure 2A,C). If the reference and experimental arms had been determined
randomly, half of the OR and HR values would have been reciprocals of the original value
(Figure 2D–F). In this scenario, substantially improved correlations for ORorr and HRpfs
with HRos would have been observed (Figure 2D–F). We therefore duplicated all plots with
reciprocal HR and OR values (Figure 2G–I), and found that the graphs and the r obtained
using random arm determination (Figure 2D–F) were markedly similar to those produced
following reciprocal duplication (Figure 2G–I).

We hypothesized that the coefficient based on random arm selection (Figure 2D–F)
is approximate to the correlation coefficient obtained following reciprocal duplication
(Figure 2G–I). If so, the coefficient after reciprocal duplication (Figure 2G–I) is the better
statistic because it is not affected by random error. The Monte Carlo simulations confirmed
that the average coefficient obtained by repeated random arm determination converged to
the coefficient obtained by reciprocal duplication when a sufficiently large number of trial
data were available (Figures S3 and S4).

3.2.4. Study-Level Surrogacy following Reciprocal Duplication

After reciprocal duplication, both ORorr (N = 38 × 2, r = −0.87) and HRpfs (N = 38 × 2,
r = 0.85) had an excellent r with HRos (Figure 2G,I), whereas ORdcr did not correlate with
HRos (N = 26 × 2, r = −0.03, Figure 2H).

Subgroup analysis focused on the first-line treatment and second- or later-line treat-
ment also confirmed the surrogacy (Figure 3).
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4. Discussion

Our analysis investigated how response evaluation and PFS were associated with OS
at both the study and individual levels in NSCLC trials. We confirmed that tumor response
and disease control after two cycles of treatment and 12-month PFS were key determinants
of OS at the individual-patient level. On the other hand, study-level analysis confirmed
that ORR and PFS are excellently correlated with OS, while DCR is not. Although post-
treatment crossover has traditionally been thought to affect PFS, PFS was revealed as an
excellent OS surrogate at the trial-level. ORR and DCR are simultaneously available as
early phase outcomes; however, no advantage was obtained from using DCR. In fact, 12
(32%) out of the 38 studies in our study-level analysis did not present DCR data even
though DCR is one of the classical RECIST outcomes. Despite the lack of a systematic
review, researchers may have empirically noticed that DCR is not a reasonable study-level
outcome for ICI trials. Because several novel ICIs are developed year by year and a large
number of new ICI regimens for NSCLC have been evaluated in trials, [3–5] there is a
pressing demand to validate the surrogacy of commonly used early-phase endpoints. A few
reviews have systematically examined how treatment response and PFS work in non-ICI
NSCLC trials. In 2015, Blumenthal et al. analyzed 14 NSCLC trials that were submitted
to the US Food and Drug Administration; however, they could not establish associations
between ORR and OS or between PFS and OS at the trial level [17]. Our research, which
included 44 studies, showed that both ORorr (r = 0.570) and HRpfs (r = 0.496) have only
moderate weighted rank correlation coefficients, suggesting ORR and PFS could not replace
OS.8 Although some published studies have evaluated the surrogacy in ICI trials, few
studies have confirmed surrogate end points for OS in NSCLC studies [34]. Ritchie et al.
corrected phase two trials of ICI for advanced solid cancers and concluded that ORR is
poorly associated with OS, with 6-month PFS recommended as an end point [35]. Another
study-level analysis investigating solid cancers and anti-PD-1/PD-L1 medications by Nie
et al. in 2019 concluded that no RECIST criteria-based endpoints could be a valid surrogate
for OS [36]. A recent systematic review by Kok in 2021 revealed the insufficient surrogacy of
ORR for OS in two-arm comparisons with any cancer [37]. In short, no previous systematic
reviews have proved ORR and PFS as acceptable study-level OS surrogates in RCTs for
NSCLC with ICI treatment. Our data demonstrate that ORR and PFS could replace OS and
may be useful primary endpoints in ICI-based NSCLC trials. We believe that these data
will encourage researchers to design new clinical trials in the future. Previous studies may
have presented different conclusions because of the inclusion of solid tumors other than
NSCLC, the evaluation of simple correlation (Figure 2), and the smaller number of trials.

The correlation between a proxy and a true endpoint is often selected to investigate
study-level surrogacy [8,17,34,35,37]. This approach has a marked drawback in that the
choice of reference and experimental arms has a large impact on the correlation coefficient
(Figure 2A–F). Following the conventional rule, many studies have termed the ICI regimen
the experimental arm. However, patients who are treated with the ICI regimen have better
outcomes, which means that scatter plots produced using this method tend to show clusters
covering small areas (Figure 2A–C). When the distribution width of the values is narrow,
the correlation coefficient representing surrogacy worsens.8 This issue has also potentially
existed in evaluations of the surrogacies for use with cytotoxic anticancer drugs. However,
this issue was not apparent until ICI became widely used because roughly half of studies
had worse clinical outcomes in the experimental arm [8,17]. Additional plotting at the
point-symmetric position of the original plot frees the correlation coefficient from random
errors that result from the experimental arm selection (Figures 2G–I and S4).

The effect of cancer immunotherapy may be delayed or obscured because the treatment
effect is mediated by immune function, unlike cytotoxic chemotherapy or molecularly
targeted therapy. In addition, transient tumor growth after treatment, so-called pseudo-
progression, may mimic disease progression. Pseudo-progression is an enlarged tumor
nodule or a newly appeared lesion after ICI therapy. This is not actual pathological
disease progression, but a seeming progression due to aggregated immune-related cells
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and lymphocytes. Thus, there is concern that the effect of ICI may be underestimated
when ORR, DCR, or PFS are set as the primary endpoints [18]. Recently, immune-related
response criteria [38] and immune-related RECIST were developed to respond to these
issues [25]. Nonetheless, as we have shown in this study, RECIST-based ORR after two
cycles and 12-month PFS are both excellent indicators of OS (Figure 2G,I).

Surrogacy for response evaluation and PFS in ICI trials is a major concern for any solid
malignancy because the ICI regimen is widely used for various cancers. A limitation of
this study is that no data on cancers other than NSCLS were provided, although a similar
analysis would be expected. Regardless, the review authors could not identify the reason
for this irrelevance between DCR and OR at the study-level analysis. The other limitation
is that DCR and the efficacy of immunotherapy are closely dependent on initial staging
and concomitant therapies; however, our study could not evaluate this issue [39].

5. Conclusions

In conclusion, this systematic review evaluates surrogacy in NSCLC trials with ICI
regimen using sufficient trial- and patient-level data. Tumor response and PFS were
appropriate predictors of OS at the patient-level. Monte Carlo simulation showed that
reciprocal duplication is a reasonable strategy to apply before surrogacy evaluation at the
study level. After reciprocal duplication, ORorr and HRpfs showed an excellent correlation
with HRos although this relationship was not observed for ORdcr. ORR and PFS are
reasonable surrogates for OS in NSCLC trials with ICI.
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