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Simple Summary: Cell-to-cell communication between the immune system and tumors is of the
utmost importance; it influences the development of tumors, their growth, and how they respond to
treatments. In this article, we provide an overview of why understanding the interactions between
immune and tumor cells is so significant for developing anti-cancer therapeutics, particularly cancer
immunotherapy. We delve into the methods and tools used to decipher these interactions and
discuss the potential impact on the future of cancer treatment. Moreover, we emphasize the power of
unraveling these interactions in advancing cancer immunotherapy. We also explore the challenges
that can be tackled by gaining insights into these interactions.

Abstract: The tumor and tumor microenvironment (TME) consist of a complex network of cells,
including malignant, immune, fibroblast, and vascular cells, which communicate with each other.
Disruptions in cell–cell communication within the TME, caused by a multitude of extrinsic and
intrinsic factors, can contribute to tumorigenesis, hinder the host immune system, and enable
tumor evasion. Understanding and addressing intercellular miscommunications in the TME are
vital for combating these processes. The effectiveness of immunotherapy and the heterogeneous
response observed among patients can be attributed to the intricate cellular communication between
immune cells and cancer cells. To unravel these interactions, various experimental, statistical, and
computational techniques have been developed. These include ligand–receptor analysis, intercellular
proximity labeling approaches, and imaging-based methods, which provide insights into the distorted
cell–cell interactions within the TME. By characterizing these interactions, we can enhance the design
of cancer immunotherapy strategies. In this review, we present recent advancements in the field of
mapping intercellular communication, with a particular focus on immune–tumor cellular interactions.
By modeling these interactions, we can identify critical factors and develop strategies to improve
immunotherapy response and overcome treatment resistance.

Keywords: immunotherapy; cell–cell interaction; intercellular labeling; intercellular imaging;
bioinformatics; cancer

1. Introduction

Intercellular interactions play crucial roles in organism function and development.
Cells can interact with each other either directly (in physical proximity) or indirectly
(paracrine signaling). These interactions are the basic building blocks of physiological
communication and are essential for tissue formation, immune response, homeostasis, and
regeneration. In direct cellular communications, contact between cell surfaces can occur via
gap junctions, cell adhesion, tunnel nanotubes, and ligand receptor signaling. When cells
interact indirectly, cellular information is shared through signaling from extracellular vesi-
cles, cytokines, chemokines, growth factors, metabolites, and exosomes. These intercellular
interacting mechanisms contribute to tissue development and physiological functions [1].
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A healthy immune system can precisely identify and eliminate precancerous cells,
and it eliminates them before they cause any harm, by a process referred to as tumor im-
mune surveillance. Numerous extrinsic and intrinsic factors impair immune–precancerous
cell interactions, contributing to tumorigenesis. Once developed, tumor cells evade and
disrupt the host immune system, leading to an immune-suppressive tumor microenvi-
ronment (TME). The TME is a complex ecosystem comprising tumor cells, immune cells,
fibroblasts, extracellular matrices, and signaling molecules. The interaction between the
immune cells and cancer cells within the TME evolves and can result in either pro- or anti-
tumorigeneses [2]. Restoring the immune function and the network of healthy cell–cell com-
munication within the TME has become a significant component of cancer immunotherapy.

Cancer immunotherapy began in the 1980s with an interferon-α2 inhibitor as the first
immunotherapeutic agent approved by the FDA in 1986 [3]. Since then, numerous other
immunotherapies have been discovered, including immune checkpoint inhibitors, oncolytic
viruses, bispecific T cell engagers, cytokine therapies, and adoptive cell therapies. The
central concept of immunotherapy is to restore or reactivate the host anti-tumor immune
system [3]. As promising as these immunotherapies are, clinical response varies signifi-
cantly from patient to patient, primarily because of distinct patterns of immunosuppressive
TMEs and different patterns of disruption in cell–cell interactions. About 30–40% of patients
respond to immunotherapy, with fewer achieving a durable response [4]. Variability in
the TME primarily relates to the different degrees of tumor-infiltrated lymphocytes (TILs)
and their functions. Some patients have “hot” tumors, where the tumors have higher TILs,
and these patients usually respond well to immunotherapy [5]. On the other hand, some
patients have “cold” tumors with poor or almost no TILs, and these tumors often develop
resistance to immunotherapy [5]. Elucidating the mechanism of resistance and characteriz-
ing the distorted patterns of intercellular interactions between tumor and immune cells
within TMEs has become critical for more potent immunotherapies.

Studies over the years have showcased the cell types present in the TMEs associated
with positive and negative outcomes of immunotherapy. High CD8+ T cell abundance
is often associated with favorable overall survival, whereas increased regulatory T cells
are associated with poor overall survival [6,7]. However, a recent pan-cancer analysis
showed that high CD8+ abundance is not always associated with a better prognosis, as the
spatial cellular assemblies are also crucial [8], which means that different immune cells will
have various prognostic factors depending on the location and type of cancer. In addition
to PD-L1 expression and tumor mutation burdens, there are still no robust prognostic
biomarkers across cancers.

Methods that can characterize the deformed intercellular interactions and identify
the cell (sub-) populations that are involved in the interactions are extremely critical
for prognosis. Identifying which cell population at which cellular state is associated
with positive or negative outcomes in immunotherapy is extremely valuable to patient
stratification, prognostic biomarkers, and resistance mechanisms. This review aims to
explore the diverse manifestations of cell–cell interactions in the context of cancer, providing
an overview of quantitative approaches to assess these interactions. Moreover, it seeks to
investigate the potential of leveraging the influence of cell–cell interactions to enhance the
efficacy of cancer immunotherapies.

2. Cell–Cell Interactions during Tumorigenesis

The immune system consists of two compartments: innate cells (such as macrophages,
neutrophils, dendritic cells, and natural killer cells) and adaptive cells (B cells and T cells).
Innate cells rapidly respond to foreign pathogens, presenting antigens to adaptive cells to
initiate specific immunological responses. In the context of cancer, antigen-presenting cells
detect tumor antigens and present them to naïve lymphocytes. This communication primes
and activates lymphocytes, which then migrate to the tumor site. The activated T cells
recognize and eliminate tumor cells. The innate and adaptive immune cells collaborate in
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a process called cancer immunoediting to eliminate tumors. However, if this process is
unsuccessful or suppressed, the tumor microenvironment forms.

The progression of the TME towards malignancy can be understood within the frame-
work of cancer immunoediting. Cancer immunoediting refers to the dynamic interplay
between the host immune system and the tumor cells, whereby immune mechanisms either
restrain or promote tumor development. This process can be divided into three distinct
phases: elimination, equilibrium, and escape [9].

During the elimination phase, innate and adaptive immune responses collaborate to
recognize and eliminate malignant cells. The innate immune system, including dendritic
cells and antigen-presenting cells, primes and activates T cells by presenting tumor antigens.
These activated T cells are then mobilized to directly interact with cancer cells, leading
to their destruction [9]. However, tumors can evade elimination by exploiting immune
checkpoints, such as PD-1/PD-L1 and CTLA-4, which act as brakes on T cell activity. When
T cells engage with cancer cells bearing PD-L1 or CTLA-4, inhibitory signals are transmitted,
causing T cell exhaustion and inactivation [9].

Tumors that successfully evade elimination enter the equilibrium phase, during which
they remain dormant but develop resistance mechanisms against immune surveillance [9].
This resistance is mediated by immunosuppressive cell types, including tumor-associated
macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), cancer-associated fi-
broblasts (CAFs), and regulatory T cells (Tregs) [10]. These cells actively communicate
with other components of the TME, dampening T cell activation, modulating effector cell
function, and promoting tumor progression. Of special significance, CAFs and TAMs
play pivotal roles in carcinogenesis and the maturation of TMEs [10]. CAFs can promote
tumor growth, angiogenesis, the invasion of tumor cells into surrounding tissues, and the
modulation of the tumor response to immunotherapy [11–13]. They also secrete various
signaling molecules and cytokines that can modulate immune responses and create an
environment favorable for tumor growth. The equilibrium phase sets the stage for the
subsequent escape phase, characterized by clinically detectable tumor growth and the need
for therapeutic intervention [9,10].

Effective immunotherapy can revert tumors to the elimination phase, where the sup-
pressive mechanisms are counteracted, leading to the elimination of the tumor [9]. However,
a partial response to immunotherapy may shift the tumor back into the equilibrium phase,
enabling the emergence of resistant clones and eventually leading to the escape phase,
signifying acquired resistance to immunotherapy [9]. In cases where immunotherapy fails
to induce a response, the tumor demonstrates innate resistance to treatment [9].

Understanding the intricate dynamics of cancer immunoediting and intercellular
interactions between tumor and immune cells is crucial for the development of effective
therapeutic approaches aimed at restoring immune control over tumors and achieving
durable clinical responses.

3. Cell–Cell Interactions Are the Pharmacological Basis of Immunotherapy

Almost all types of immunotherapies involve direct cell–cell interactions for anti-
tumor effect. One of the key cell–cell interactions during immunotherapy is the interaction
between T cells and tumor cells. T cells can recognize and target tumor cells through
the recognition of specific antigens presented by the tumor cells. However, tumors can
evade T cell recognition by downregulating antigen presentation or by producing immune-
suppressive molecules. Cell–cell interactions are the pharmacological basis of immunother-
apy (Figure 1). The most successful immunotherapy—immune checkpoint inhibitors—have
been approved for over 19 types of cancer treatment [14]. Blocking the immune checkpoint,
CTLA-4 or PD-1/PD-L1, can restore the function of TILs for cytotoxic effects, which entail
direct physical and functional contact between TILs and tumor cells. TILs, once engaged
with target cells, can secrete perforin and granzyme B for cytotoxic effects [15].
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surface of cancer cells. The Fc receptor expressed by the effector immune cell binds the Fc 
portion of the antibody attached to the cancer cells. Upon binding, the immune cell se-
cretes proteins and enzymes, inducing cancer cell lysis. Many IgG-based targeted thera-
pies, such as rituximab and trastuzumab, can trigger antibody-dependent cellular cyto-
toxicity (ADCC) through interactions between Fc and Fcγ receptors expressed on effector 
cells, initiating direct cell–cell interactions and cytotoxicity [16].  
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Figure 1. Cell–Cell interactions are the pharmacological basis of immunotherapy. The primary
pharmacological mechanism of immunotherapy entails the activation or engagement of diverse
immune cell populations to identify and eradicate cancer cells. This crucial process heavily relies
on the dynamic interplay between immune cells and cancer cells within the TME. Within the TME,
immune cells, including T cells, natural killer (NK) cells, dendritic cells (DCs), and macrophages,
establish various types of interactions with cancer cells. These interactions encompass intricate
molecular signaling pathways, direct cell-to-cell contact, and the exchange of soluble factors. The
ultimate objective of immunotherapeutic approaches is to either alleviate immune suppressive
interactions within the TME or activate immune effector functions, thereby unleashing the anti-cancer
pharmacological effects of immunotherapy.

Another mechanism in which immune cells can have a cytotoxic effect on cancer
cells is the process of antibody-dependent cellular cytotoxicity (ADCC) [15,16]. In ADCC,
tumor-specific monoclonal antibodies (mAbs) recognize tumor-selective antigens on the
surface of cancer cells. The Fc receptor expressed by the effector immune cell binds the Fc
portion of the antibody attached to the cancer cells. Upon binding, the immune cell secretes
proteins and enzymes, inducing cancer cell lysis. Many IgG-based targeted therapies,
such as rituximab and trastuzumab, can trigger antibody-dependent cellular cytotoxicity
(ADCC) through interactions between Fc and Fcγ receptors expressed on effector cells,
initiating direct cell–cell interactions and cytotoxicity [16].

Another therapeutic approach that utilizes antibodies is bispecific T cell engagers
(BiTEs) [17]. BiTEs are characterized by having two different antigen-binding sites in a
single molecule, with one site binding to T cell receptors to activate cytotoxic T lymphocytes,
and the other site binding to tumor-specific antigens (TSAs). The engagement between
cytotoxic T lymphocytes and tumor cells triggered by BiTEs leads to the elimination of
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the tumor cells. Examples of BiTEs include CD3 and 4-1BB, which activate cytotoxic T
lymphocytes, and target tumor-associated antigens (TAA), such as CD19 and CD20. BiTEs
redirect cytotoxic T lymphocytes to specifically recognize and engage tumor cells, initiating
cell–cell contact, known as the immunological synapse, and inducing cytotoxicity [17,18].

Chimeric antigen receptor (CAR) cell therapies represent a novel immunotherapeutic
approach that signifies a significant advancement in personalized cancer treatment [19].
This approach involves genetically modifying T cells or natural killer (NK) cells to express
synthetic receptors (CARs) that can bind to tumor antigens [19]. This genetic modification
enables the redirected T or NK cells to specifically recognize cancer cells and initiate
immune responses against them.

Oncolytic virus therapy holds promise as an immunotherapy approach that involves T
cell activation and cell–cell interactions. This therapy utilizes either genetically engineered
or naturally occurring viruses that can selectively replicate within cancer cells and kill
them while sparing non-cancerous cells [20,21]. Upon administration, the oncolytic virus
activates the immune system, leading to the recruitment of natural killer (NK) cells and
CD8+ T cells to the tumor site. This process results in the reduction in regulatory T cells
(Tregs) and facilitates an effective immune response against the cancer cells [20,21].

In summary, intercellular interactions between effector cells (such as cytotoxic T
lymphocytes and NK cells) and tumor cells have emerged as crucial steps for the efficacy of
immunotherapies. Therapeutic approaches such as BiTEs, CAR cell therapies, and oncolytic
virus therapies exploit these interactions to enhance the immune response against cancer
cells, and they hold promise for the improvement of cancer treatment outcomes.

4. Experimental and Modeling Systems for Studying Cell–Cell Interactions

The intricate interplay between immune cells and structural components within the
TME significantly influences patient outcomes, therapeutic response, and disease progres-
sion [22]. While existing data shed light on the communicative relationships between
immune cells and tumor cells within the TME, there remains a substantial knowledge gap
with regard to the intra-patient and intra-cancer types of communication. Consequently,
the TME and its diverse cellular components have emerged as an enticing landscape for
the research aiming to discover novel therapeutic strategies and optimize patient manage-
ment [22].

To investigate and elucidate the intricate cellular interactions within the TME, nu-
merous methodologies and systems have been developed (Figure 2). These approaches
encompass in vitro and in vivo models, employing molecular analysis techniques, proxim-
ity labeling methods, and bioinformatic approaches [22,23]. Understanding the composition
of distinct cell types within different TMEs and patient contexts is pivotal for advancing
therapeutic interventions and identifying prognostic biomarkers. In this section, we delve
into various experimental techniques and modeling systems for the comprehensive study of
cell–cell interactions, encompassing experimental modeling systems, microscopy/imaging,
proximity labeling, and bioinformatic approaches.

The study of cell–cell interactions employs various in vitro experimental systems,
including two-dimensional (2D) cell culture and three-dimensional (3D) methods such as
spheroids and organoids, as well as tissue samples (Table 1). Traditional 2D culture using
primary cells and cell lines has long been considered a gold standard in cell culture due
to its cost-effectiveness, long-term culture viability, low maintenance requirements, and
user-friendly nature [24]. However, 2D culture falls short in mimicking the natural tissue
structure, and it lacks biologically relevant cell–environment interactions when investigat-
ing complex environments like TME or normal tissue structures. To address this limitation,
3D cell culture techniques have revolutionized in vitro methodologies by providing more
physiologically relevant options [24]. Organoids and spheroids have gained popularity
as they enable the comparison of in vivo organs in vitro. Organoids, derived from stem
cells or patient tumor cells, are three-dimensional tissue cultures that replicate the mor-
phological and genetic features of the original tumor, allowing for patient-specific models
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and in vitro representations of the TME [25]. However, organoids have limitations, such
as high patient variability, absence of specific essential cellular components, challenging
culture maintenance, and higher costs [25]. On the other hand, spheroids are simpler
three-dimensional clusters of cells derived from various cell types, including tumor tissues
and hepatocytes [26]. They do not require scaffolding to form 3D cultures but rely on cell
adhesion. However, spheroids lack the ability to self-assemble or regenerate, making them
less desirable compared to organoids [26]. Both models enable three-dimensional assess-
ment of tumors in vitro, providing improved translational models for clinical applications.
Tissue biopsy slices are also valuable for identifying the spatial distribution and location of
cells within the TME or normal tissues. However, the slicing process introduces variability
in cell distribution due to the method employed [27].
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Figure 2. Human and murine methods to study cell–cell interactions. Schematic overview of the
current human and murine methods for studying intercellular interactions. Human samples, obtained
primarily from tissue biopsies and blood samples, serve as valuable resources for investigating these
interactions. Two key techniques employed in human models are single-cell RNA sequencing
(scRNA-seq) and immunohistochemical staining (IHC). scRNA-seq enables the analysis of ligand–
receptor interactions, facilitating the mapping of diverse cell–cell interactions. On the other hand,
IHC provides spatial information, allowing for the identification of cell locations and their physical
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proximity to one another. In addition to the techniques utilized in human models, other innovative
methods have been developed to study intercellular interactions. These include proximity-based
intercellular labeling approaches such as LIPSTIC and EXCELL, which enable the identification of
neighboring cells and the assessment of their interactions. Proximity-based intercellular imaging
approaches such as confocal microscopy and CODEX offer further insights into intercellular commu-
nication by visualizing the spatial relationships between cells. Furthermore, intravital microscopy has
emerged as a powerful tool for the real-time monitoring of lymphocyte localization and movement
within tumor microenvironments.

Table 1. Experimental modeling systems for intercellular interactions.

Model System Sample Method Description Reference

2D cell culture Cells

Cells grow in a monolayer if adherent or suspended in a
culture flask. These cultures are a straightforward,
cost-effective, and low-maintenance approach. Within
the controlled environment, it is possible to investigate
the interactions between different cell lines and observe
their behavior and responses to treatments.

[24]

3D cell culture Cells

Cell growth and interactions occur in 3D space, where
cells interact with their surrounding environment and
neighboring cells. Two approaches: scaffold-based
methods using hydrogels or structural scaffolds and
scaffold-free techniques (spheroids).

[24]

Spheroids Cells

Organoids, also known as multicellular spheroids, are
self-assembled structures that mimic the physiological
environment and interactions found in vivo. They
provide a more physiologically relevant context,
allowing the investigation of intercellular interactions
and responses within a 3D microenvironment
resembling in vivo conditions.

[25]

Organoids Patient-derived cells
and tissues

Primary patient-derived microtissues grown in a 3D
extracellular matrix that represents in vivo physiology
and genetic diversity, allowing the investigation of
intercellular interactions and responses in a
patient-specific manner.

[26]

Tissue Slices Tumor Tissue
Tumor biopsy taken from patients or xenograft models,
stained to assess tumor morphology and spatial location
of cells.

[27]

Animal models Tumor Tissue

Compatible with intravital and intercellular
imaging/labeling techniques, as well as other genetic
systems designed to detect cell–cell interactions upon
contact or external stimulation, including UV or
fluorescent light.

[28]

Nevertheless, in vitro systems lack the host tissue contexture and immune system,
which are critical components for studying cell–cell interactions. Cell–cell interactions
rely heavily on the tissue contexture, and techniques that support in vivo investigations
have the potential to unveil novel modes of cell–cell interactions and their impact on
tumor response to therapies. In vivo systems with an intact host immune system, such as
syngeneic mouse models, are useful for studying the TME since the host immune system
can interact with the TME [28,29]. However, a drawback of in vivo models lies in the fact
that the interacting immune system being studied is often the host mouse immune system,
which differs significantly from the human immune system, especially concerning cellular
interactions [28].

Furthermore, tumor xenograft models using cell lines often undergo substantial ge-
netic changes, fail to recapitulate the natural tumor structure, and may lead to mouse-
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specific tumor evolution [29]. While mice are the preferred experimental model for immu-
nologists, there are significant differences between mice and humans, particularly in innate
and adaptive immunity, leading to challenges in translating findings to humans [30].The
low success rate of clinical trials, which is less than 15%, can be attributed, in part, to the
inadequate modeling of human diseases in animals and the limited predictability of animal
models [31]. Future advancements in ex vivo models and platforms, such as microfluidics,
hold promise with regard to the use of patient-derived human samples to study cell–cell
interactions, leading to better clinical translation.

5. Proximity-Based Labeling Approaches for Studying Cell–Cell Interactions

Intercellular proximity labeling approaches have revolutionized the study of cell–
cell interactions by providing spatially resolved information. These methods involve the
tagging or labeling of proteins or other molecules that are in proximity to a specific cell
type or surface marker [32] (Table 2). By identifying and analyzing the labeled molecules,
researchers can gain valuable insights into the neighboring cell types and their interactions.
In the context of studying the TME, proximity labeling approaches play a crucial role.
Understanding the interactions between cancer cells and immune cells within the TME is
essential for developing effective immunotherapies. By labeling and tracking immune cells
that have come into proximity or contact with tumor cells, we can investigate the molecular
features of immune cells and assess how these cells influence the composition and function
of the TME.

Unlike the IHC or fluorescent staining approaches, proximity labeling techniques can
go beyond a time-frozen snapshot, helping to identify and track cells and providing a more
dynamic approach to cell–cell interactions. This becomes important when studying where
immune cells go after interacting with cancer cells and how that cellular movement affects
the composition of the TME. To ensure the applicability of proximity labeling approaches in
both in vivo and in vitro environments, it is essential that these methods are non-disruptive
and non-toxic to cells. This consideration ensures that the labeled cells maintain their
physiological properties and behave naturally during the experimental process. By utilizing
labeling techniques that are minimally invasive and compatible with live cell imaging,
researchers can gain a comprehensive understanding of cell–cell interactions in the TME.

Table 2. Proximity-based labeling approaches for studying cell–cell interactions.

System Scale Application Method Reference

EXCELL In vitro Labeling
Imaging

EXCELL (enzyme-mediated intercellular proximity labeling) is a
method that utilizes a variant of SrtA, mgSrtA, to enable the
non-specific labeling of cell surface proteins containing a
monoglycine residue at the N-terminus. Unlike other methods,
EXCELL does not require pre-engineering of acceptor cells and was
applied in in vitro studies.

[33]

G-BaToN
In vitro
In vivo
Ex vivo

Labeling
Imaging

G-BaToN is a versatile system for physical contact labeling between
cells. Sender cells express surface-bound GFP, while receiver cells
carry a synthetic element that selectively binds to GFP. Upon cell
contact, GFP is transferred from sender to receiver cells, leading to
fluorescence labeling of the receiver cells. This method requires
pre-engineering of both sender and receiver cells and can be used
for in vitro and ex vivo studies.

[34]

LIPSTIC In vitro Labeling

LIPSTIC (Labelling Immune Partnerships by SorTagging
Intercellular Contacts) is a proximity-dependent labeling method
that employs bacterial sortase (SrtA) to detect receptor–ligand
interactions between cells. It involves the attachment of biotin to
cell surface proteins, which can be detected using flow cytometry.
LIPSTIC can be used in both in vitro and in vivo settings by
pre-engineering the cells on both sides of the interaction.

[35]

FucoID In vitro
Ex vivo Labeling

FucoID is a method for identifying antigen-specific T cells using
interaction-dependent fucosyl biotinylation. This technique enables
the isolation of endogenous tumor antigen T cells from tumor
digests without prior knowledge of the tumor-specific antigens and
has been used for ex vivo studies.

[36,37]
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Table 2. Cont.

System Scale Application Method Reference

PUP-IT In vitro Labeling

PUP-IT (pupylation-based interaction tagging) is a method used to
identify membrane protein interactions. In this approach, a small
protein tag, Pup, is applied to proteins that interact with a
PafA-fused bait, enabling transient and weak interactions to be
enriched and detected by mass spectrometry. PUP-IT enables the
identification and analysis of protein–protein interactions occurring
at the membrane level.

[38]

2CT-CRISPR In vitro
Ex vivo Genetic influence

Two-cell type CRISPR assay. This assay can genetically manipulate
T cells to interact with cancer cells ex vivo to determine the genes
that influence T cell effector function on cancer cells.

[39]

TRACC In vitro Labeling Imaging

TRACC (Transcriptional Readout Activated by Cell–Cell Contacts)
is a system that utilizes light gating to detect cell–cell contacts
based on transcriptional activity (TF). Cells are engineered to
express a light-responsive TF that regulates the expression of a
reporter gene. When two cells come into contact, a light signal is
applied to activate the TF, resulting in the activation of the reporter
gene and subsequent detection of the cell–cell contact, monitoring
cell–cell interactions in a controlled and dynamic manner.

[40]

Cherry-niche In vivo Labeling Imaging

Cherry-niche is an innovative method that allows cells expressing a
fluorescent protein to selectively label their surrounding cells in the
tumor niche. This technique involves generating cancer cells
capable of transferring a liposoluble fluorescent protein to their
neighboring cells within the tumor microenvironment.

[41]

Caged luciferins In vitro
In vivo Imaging

Caged luciferins are utilized for bioluminescent activity-based
sensing. Activator cells expressing β-galactosidase catalyze the
cleavage of caged luciferin, known as Lugal, resulting in the release
of D-luciferin. The liberated D-luciferin can then enter nearby
reporter cells, where it serves as a substrate for the luciferase
enzyme, leading to the production of light and allowing for the
identification and visualization of cells that are in close proximity
to the sender cells.

[42]

SynNotch-activated
MRI In vivo Imaging

The SynNotch system is utilized to induce the expression of an MRI
contrast agent in recipient cells when they interact with sender cells
expressing the corresponding synthetic notch receptor, enabling the
detection and visualization of cell–cell communication events in
real time.

[43]

CLIP In vivo Labeling
Imaging

CLIP (cre-induced intercellular labeling protein) secretes a
membrane-permeable fluorescent protein (mCherry) from a donor
cell that can mark neighboring receptor cells. This method can label
both direct cell contact receptor cells and receptor cells at a
close-range distance.

[44]

Two prominent intercellular proximity labeling methods, EXCELL and LIPSTIC, em-
ploy the Staphylococcus aureus enzyme Sortase A (SrtA) to measure cell–cell interactions.
LIPSTIC (Labeling Immune Partnerships by SorTagging Intercellular Contacts) enables
the identification of ligand–receptor interactions between immune cells and their target
cells [33,35]. Cells expressing SrtA on their surface covalently attach biotin molecules to
neighboring surface proteins upon cell–cell contact [45]. The interacting cells are then
exposed to a streptavidin-conjugated fluorescent dye, allowing for quantification of the in-
teraction. LIPSTIC offers an unbiased approach for identifying ligand–receptor interactions
and allows for the study of interaction dynamics over time. However, it relies on the genetic
modification and the expression of both donor and receiver cells, limiting its application
to specific cell types or tissues [35]. EXCELL (enzyme-mediated intercellular proximity
labeling) represents a recent development; it uses an SrtA variant, mgSrtA, enabling promis-
cuous labeling of various cell surface proteins containing a monoglycine residue at the
N-terminus [33]. Unlike LIPSTIC, EXCELL does not require genetic modification of the
receiver cells, and it supports the identification of novel cellular interactions, including the
subtype identification of TILs interacting with tumor cells. For both approaches, the biotin-
labeled proteins can then be isolated and identified using streptavidin-based purification
methods such as flow cytometry, and these labeled cells could then be subjected to further
molecular characterization.

GFP-based Touching Nexus or G-baToN harnesses the trogocytosis communication
of cells to transfer GFP from a donor cell to an acceptor cell [34]. However, the G-baToN
approach requires the donor and receiver cells to both be transfected, which does not
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support the identification of unknown or novel CCIs [34]. FucoID has several advantages
over other proximity labeling approaches. It enables the labeling of glycoproteins, which are
an important class of proteins involved in many biological processes [36,37]. Additionally,
the fucose tag is relatively small, and it interferes minimally with the function of the labeled
proteins, which can reduce the likelihood of introducing artifacts into downstream analyses.
FucoID can also be combined with other techniques, such as single-cell RNA sequencing,
to gain a deeper understanding of the molecular mechanisms underlying intercellular
communication. However, FucoID also has some limitations. It is dependent on the
expression level and accessibility of the cell surface marker of interest, which may limit its
application to certain cell types or tissues. Additionally, the labeling efficiency of FucoID
may be affected by the density of glycoproteins on the cell surface and the availability of
fucose residues. Careful experimental design and validation are necessary to ensure the
accuracy and specificity of the results obtained using FucoID [36,37].

A subsequent method that is able to detect membrane proteins through proximity
labeling is population-based interaction tagging (PUP-IT) [38]. In this system, the small
protein tag Pup is weakly attached to proteins or prey interacting with the gene PafA or
bait [38]. PUP-IT was utilized to label the interaction between CD28-expressing Jurkat T
cells and CD80/86-expressing Raji B lymphocytes. PUP-IT CD28 extracellular Jurkat T cells
were able to label the Raji B cell in vitro [38]. However, for this interaction to be observed
both cells needed to be modified with the prey or bait genes. PUP-IT is also classified as a
“weak” interaction and may not be suitable for long-term tracking [38]. This highlights that
PUP-ID needs some knowledge of ligand–receptor interactions before using.

2CT-CRISPR assay is a novel and interesting approach for identifying genes that are
essential for effector T cell function in tumors. In the 2CT-CRISPR assay, human T cells were
represented as effectors, and melanoma cells were represented as targets [39]. The purpose
of this assay was to determine whether genetically manipulating the immune cell would
influence the tumor cell during ligand–receptor interactions [39]. A recombinant TCR-
engineered CD8+ T cell was used to target a specific antigen (NY-ESO-1) that can mediate
tumor size in melanoma patients. The 2CT method was used to control the selection
pressure and killing effects shown by the T cell as well as to modulate the effector to target
ratio. Furthermore, the 2CT method was used in combination with a CRISPR-Cas9 library
that held over 100,000 single-guide RNAs which impaired effector function in T cells. The
2CT method allowed for the analysis of genes necessary for immunotherapy, specifically
those that target effector T cell function. The 2CT method has exciting translation and
clinical opportunities to uncover genes in immunotherapy-resistant patients [39].

Other proximity-based methods for studying cell–cell interactions include TRACC
(Transcriptional Readout Activated by Cell–Cell Contacts) and SynNotch-activated MRI
(magnetic resonance imaging), both of which exploit specific receptor–ligand interactions
between two interacting cells to facilitate labeling and detection [40,43]. TRACC utilizes a g-
protein-coupled receptor with a light-sensitive domain to detect cell–cell interactions using
a transcriptional readout [40]. This approach allows for the visualization and identification
of cell populations involved in the interaction of interest. SynNotch-activated MRI combines
synthetic biology and imaging techniques to detect cell–cell interactions [43]. It involves
the engineering of cells expressing a synthetic Notch receptor that can be activated upon
interaction with a specific ligand presented by neighboring cells. Upon activation, the
engineered cells produce a contrast agent detectable by MRI, enabling the visualization
and tracking of the interacting cell populations [43].

Most proximity-based methods are dependent on cell–cell contact and interaction.
Cherry-niche, caged luciferins, and CLIP (cre-induced intercellular labeling protein) are
three approaches that do not solely rely on direct cell–cell contact for labeling [41,42,44]. In
the Cherry-niche method, cells are engineered to express the enzyme Cherry-tagged ligase,
which can attach a fluorophore to nearby cells expressing a complementary Cherry-tagged
receptor [41]. This proximity labeling occurs within a specific microenvironment or niche
defined by the presence of the ligase and receptor [41]. Caged luciferins, on the other hand,



Cancers 2023, 15, 4188 11 of 15

involve the use of caged luciferin molecules that can be activated by specific enzymes or
stimuli produced by engineered cells [42]. Upon activation, the caged luciferins produce
luminescent signals that can be detected and used to identify neighboring cells in the
vicinity [42]. CLIP has an interesting methodology in that it can label cells that are in direct
contact as well as those that are not in direct contact but are in proximity to each other [44].
This method involves the engineering of both the donor and receiver cells, where the donor
cell secretes a lipid-soluble tag containing mCherry that labels the recipient cells [44]. These
approaches provide additional tools for studying cell–cell interactions, offering different
mechanisms for labeling and detection beyond direct cell–cell contact.

In summary, intercellular proximity labeling or imaging approaches offer significant
potential for elucidating the intricate cellular interactions and communication networks
within the TME. These methods have been successfully employed in various research areas,
including the investigation of tumor metastasis [37,41], T cell priming [35], cell migra-
tion [35], tumor–immune cell interactions [37], cellular therapy [37], and the examination
of interactions between neurons and glioma cells [40]. As these techniques continue to
advance, it is anticipated that their application will expand further, enabling a broader
understanding of the factors and mechanisms that impede the pharmacological effects
of immunotherapies. Overall, intercellular proximity labeling approaches can provide
valuable insights into the complex cellular interactions and communication networks in
the TME, which can inform the development of more effective cancer immunotherapies.

6. Bioinformatic Techniques for Inferring Cell–Cell Interactions

Enzyme-based intercellular proximity labeling approaches are predominantly em-
ployed in experimental systems. However, with the growing availability of large clinical
datasets, bioinformatic methods have gained significance in the study of cell–cell inter-
actions and the identification of novel interactions. In clinical settings, bioinformatics
methods play a crucial role in inferring intercellular interactions or communication by
examining the coordinated expression patterns of ligand–receptor pairs’ cognate genes.
Ligand–receptor analysis has emerged as a valuable approach for investigating intercellu-
lar communication, particularly in the context of cancer immunotherapy. This approach
enables the identification of the specific ligand–receptor pairs involved in immune cell
interactions with cancer cells or the TME (Table 3).

This approach proves to be especially valuable in deducing intercellular interactions
that are not solely reliant on cell-to-cell contact. This is evident when immune cells and
cancer cells release diverse cytokines, chemokines, and growth factors that govern immune
reactions and inflammation. These signaling molecules and their corresponding receptors
may be modulated based on environmental cues. Through these bioinformatics methods,
we can deduce the likelihood of intercellular interactions based on their ligand–receptor
profiles; this is potentially pivotal in forecasting patient prognosis and treatment outcomes.

The analysis of ligand–receptor interactions primarily relies on single-cell RNA se-
quencing (scRNA-seq) or bulk RNA-seq data. The procedure typically involves the follow-
ing steps:

Data preprocessing: This step involves normalizing, quality controlling, and filtering
of gene expression data to ensure data integrity and reliability.

Gene set selection: A specific set of ligand and receptor genes is chosen based on prior
knowledge or by utilizing databases such as CellPhoneDB or Interactome INSIDER.

Calculation of ligand–receptor expression: The expression levels of ligand and receptor
genes are calculated for each cell or cell type within the dataset, regardless of whether the
data are scRNA-seq or bulk RNA-seq.

Ligand–receptor interaction analysis: Interactions between ligands and receptors are
predicted by assessing the co-expression patterns of ligand and receptor genes across differ-
ent cells or cell types. Several methods, including CellPhoneDB, scRNA-seq-based ligand–
receptor pair analysis (sLRPA), and LigandNet, are available for performing this analysis.
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Table 3. Bioinformatic techniques for inferring cell–cell interactions.

Platform Data Source Method Reference

CellTalkDB scRNA-seq Manually curated database of ligand–receptor pairs from both human and mouse samples. [46]

iTalk scRNA-seq Identifying and illustrating alterations in intercellular signaling network. R package made to
analyze and visualize ligand–receptor pair. [47]

PyMINeR scRNA-seq
Python maximal information network exploration resource. Fully automates cell
type-specific identification, and pathways as well as in silico detection of autocrine and
paracrine signaling networks

[48]

CellChat scRNA-seq

Open source R package that is able to visualize, analyze, and deduce intercellular
communications from a data input. Uses mass action models and differential expression
analysis to deduce cell state-specific signaling communications. Also provides visualization
outputs to compare intercellular communication methods.

[49]

CellPhoneDB scRNA-seq
Identifies biologically relevant interacting ligand–receptor pairs. Cells with the same cluster
are pooled together as one cell state. Ligand–receptor interactions are derived based on the
expression of a receptor of one state and a ligand of the other state.

[50]

Giotto scRNA-seq

Open source spatial analysis platform that contains two modules, Giotto analyzer and
Giotto viewer, which are both independent and fully integrated. Analyzer provides
instructions about steps in analyzing single-cell expression data, and the viewer provides an
interactive view of the data.

[51]

ICellNET RNA-seq, scRNA-seq,
and microarray

Transcriptomic-based framework that integrates a database of ligand–receptor interactions,
communication scores, and connections of cell populations of interest with 31 human
reference cell types and three visualization methods.

[52]

SingleCellSignalR scRNA-seq Open source R platform. Relies on a database of known ligand–receptor interactions
called LRdb. [53]

CCC Explorer Transcriptome profiles Java-based software. Uses a computational model to look at cell–cell communications
ranging from ligand–receptor interactions to transcription factors and target genes. [54]

NicheNet Gene expression data Open source R platform. Uses a database of ligand–receptor interactions to identify
ligand–receptor interactions that could drive gene expression changes [55]

SoptSC RNA-seq

Similarity matrix-based optimization for single-cell data analysis. Uses a cell-to-cell
similarity matrix via gene marker identification, lineage reference, clustering, and
pseudo-temporal ordering. From this information, it predicts cell–cell
communication networks.

[56]

SpaoTSC scRNA-seq

Spatially optimal transporting of the single cells. The method has two major components: (1)
constructing spatial metric for cells from scRNA-seq data and (2) reconstructing the cell–cell
communication networks from the data and identifying relationships between genes from
intercellular relationships. Uses python.

[57]

scTensor scRNA-seq
Open source R package. Instead of looking at one-to-one cell–cell interactions, this software
focuses on many-to-many cell–cell interactions. scTensor looks at a three-way relationship
(hypergraph) between ligand expression, receptor expression, and ligand–receptor pairs.

[58]

Visualization and interpretation: The results of the analysis are visualized using
heatmaps, networks, or other visualization techniques. These results can be interpreted to
identify the specific ligand–receptor pairs that may be involved in intercellular communica-
tion and to gain insights into the underlying biological processes.

Bioinformatic methods offer valuable tools for inferring intercellular interactions and
communication based on transcriptome data. These approaches provide valuable insights
into the intricate network of cell–cell interactions in the context of cancer immunother-
apy. Notably, ligand–receptor analysis holds promise for the identification of predictive
biomarkers for immunotherapy response and the monitoring of treatment efficacy.

Nevertheless, it is important to acknowledge the limitations of these bioinformatic
methods in inferring intercellular interactions. Firstly, their predictions solely rely on gene
expression data and overlook additional factors like post-translational modifications or
protein localization that can influence interactions. Secondly, these methods hinge upon ex-
isting knowledge of ligand–receptor pairs, which may be incomplete or imprecise. Thirdly,
the biological relevance of the predictions is not guaranteed, necessitating experimental
validation. Lastly, technical artifacts such as batch effects, sequencing depth, and normal-
ization methods can influence the accuracy and reproducibility of the results. Considering
these limitations, it is crucial to exercise caution and combine bioinformatic predictions
with experimental validation to ensure the reliability and significance of the findings.
Continued advancements in bioinformatic techniques and complementary experimental
approaches will enhance our understanding of intercellular interactions and their role in
cancer immunotherapy.
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7. Potential Questions to Be Addressed by These Approaches

A wide array of scientific questions concerning cancer immunotherapy could be
answered by utilizing these cell-cell interactions techniques. These questions include:

What are the subpopulations of immune cells interacting with the tumor cell during
immunotherapy?

What are the molecular features of these interacting immune cells, and how are the
molecular features related in response to immunotherapy?

Do the effector cells that have interacted with the tumor cells migrate across tumor
metastatic lesions?

Ultimately, the answers to these questions can uncover the pharmacological actions of
cancer immunotherapy and reveal the underlying molecular mechanism of resistance.

8. Concluding Remarks

The TME represents an intricate network comprising diverse cell types engaged in
communication; it plays a pivotal role in shaping the tumor landscape. Effective communi-
cation between immune cells and cancer cells holds great significance in the determination
of the patients’ responses to immunotherapy, and it contributes to treatment resistance
and interpatient variability in the responses. The investigation of cell–cell communication
in immune cells under normal and pathological conditions provides crucial insights into
the mechanisms of cancer immunotherapy, patient responses, disease progression, and
TME status. Various experimental and computational approaches exist for elucidating
pathological intercellular interactions, both directly and indirectly, with the aim of iden-
tifying the communicating cell populations. Comprehensive understanding, modeling,
and the discovery of cell–cell interactions within the TME hold immense potential for the
identification of the critical factors and strategies influencing immunotherapy response,
treatment resistance, and TME status.

In recent times, advances in imaging, microscopy, cellular engineering, and bioinfor-
matics have emerged as powerful tools for the unraveling of novel mechanisms and cellular
relationships, thereby paving the way for improved immunotherapy options for patients.
By leveraging these methodologies synergistically, it becomes possible to bridge existing
knowledge gaps and gain a comprehensive understanding of treatment resistance and to
design more potent cancer immunotherapies.
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