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Simple Summary: As we increasingly rely on advanced imaging for medical diagnosis, it’s vital that
our computer programs can accurately interpret these images. Even a single mistaken pixel can lead
to wrong predictions, potentially causing incorrect medical decisions. This study looks into how these
tiny mistakes can trick our advanced algorithms. By changing just one or a few pixels on medical
images, we tested how various computer models handled these changes. The findings showed that
even small disruptions made it hard for the models to correctly interpret the images. This raises
concerns about how reliable our current computer-aided diagnostic tools are and underscores the
need for models that can resist such small disturbances.

Abstract: Due to the growing number of medical images being produced by diverse radiological
imaging techniques, radiography examinations with computer-aided diagnoses could greatly assist
clinical applications. However, an imaging facility with just a one-pixel inaccuracy will lead to the
inaccurate prediction of medical images. Misclassification may lead to the wrong clinical decision.
This scenario is similar to the adversarial attacks on deep learning models. Therefore, one-pixel and
multi-pixel level attacks on a Deep Neural Network (DNN) model trained on various medical image
datasets are investigated in this study. Common multiclass and multi-label datasets are examined for
one-pixel type attacks. Moreover, different experiments are conducted in order to determine how
changing the number of pixels in the image may affect the classification performance and robustness
of diverse DNN models. The experimental results show that it was difficult for the medical images
to survive the pixel attacks, raising the issue of the accuracy of medical image classification and the
importance of the model’s ability to resist these attacks for a computer-aided diagnosis.

Keywords: machine learning; artificial intelligence; adversarial learning; computer vision;
metaheuristic

1. Introduction

The use of ML models in the medical domain enables AI to assist doctors in hospitals
as a critical diagnostic tool. ML is utilized widely in healthcare for its power to assist in the
early diagnosis of diseases reasonably quickly and accurately. The ML model can provide
a quick diagnosis based on medical images due to the development of deep learning in
the medical field. Although ML is shown to have remarkable performance in various
domains, many researchers have found ML models to be susceptible to different types of
adversarial attacks. For example, Mahmood et al. [1] demonstrated adversarial attacks
taking place in the physical realm with eyeglass frames designed to fool face-recognition
systems, and [2] proposed that an adversarial attack can reprogram neural networks to
perform novel adversarial tasks.

Real-life adversarial attacks on deep learning models pose significant concerns due to
their potential danger. In a notable study, Eykholt et al. [3] demonstrated the feasibility of
robust physical-world attacks by perturbing a real stop sign using black and white stickers,
resulting in targeted misclassification. These attacks are particularly concerning due to their
ability to withstand various physical conditions, including changes in view angles, distances,
and resolutions. This highlights the potential for adversaries to use deep learning models to
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manipulate real-world objects, such as traffic signs, leading to misperception. Such attacks
have critical implications for safety and security, as they can deceive autonomous systems,
including self-driving cars, and cause dangerous consequences on roads.

Real-life adversarial attacks on deep learning models not only pose significant con-
cerns, but they also have potentially life-threatening consequences, particularly in the
medical field. A misclassified medical image due to an attack could lead to delayed or in-
correct treatment, potentially endangering patients’ lives. Acknowledging the criticality of
securing ML models in the medical domain and developing robust defense mechanisms to
mitigate the risks associated with adversarial attacks is crucial. Ensuring the integrity and
reliability of AI-powered diagnostic tools is paramount to safeguarding patients’ well-being
and providing accurate medical care.

This study uses a one-pixel attack on various medical images and a multi-pixel attack
on the COVID-19 chest X-ray dataset. These datasets contain multiclass and binary-class
multi-label classifications. According to the experiment results, most medical images could
be perturbed into adversarial images. As the original one-pixel attack paper [4] did not
cover the topic of multi-labels, a method was devised to evaluate the effectiveness of a
multi-label dataset attack. The overall contribution of this study is as follows:

• Test the effectiveness of a pixel attack on various types of medical images;
• Develop an effective way to evaluate the effectiveness of attacks on multi-label datasets.

2. Related Work

Most adversarial attacks can currently be divided into the following categories:

2.1. White Box Attack

Szegedy et al. [5] were the first to show that an adversarial attack can cause the network
to misclassify an image based on applying hardly perceptible perturbation. In a white box
attack, the attacker needs access to the victim model, including its structure, training datasets, or
parameters. Goodfellow et al. [6] proposed a fast gradient sign method (FGSM) that can quickly
generate adversarial samples without hyperparameter tuning or additional processing.

2.2. Black Box Attack

In a black box attack, the attacker does not need access to training samples and the
model’s structure. The two main types of black box attacks are query-based and transfer-
based. Yan et al. [7] proposed the subspace attack method, which reduces the complexity of
the query by limiting the search directions of gradient estimation by promising subspaces that are
spanned by the input gradients of a few reference models. Meanwhile, Dong et al. [8] proposed a
translation-invariant attack method to generate adversarial examples with better transferability.

2.3. One-Pixel Attack

Adversarial images are generated by changing only one pixel in the original image.
The original one-pixel attack paper [4] contained a simple but effective way to generate
adversarial images by utilizing a different evolution algorithm to select the sensitive pixels
and optimal perturbation in a CIFAR-10 dataset. To determine why a one-pixel attack may
work, Danilo [9] used propagation maps that demonstrated the effect of the perturbation
in each layer of the model. Moreover, he found that pixels near the perturbed one in the
one-pixel attack tended to share the same susceptibility, showing that neither neurons
nor pixels are the primary sources of vulnerability but rather the receptive fields. This is
because most image recognition neural networks contain convoluted layers, which makes
them more susceptible.

2.4. Adversarial Attack on Medical Images

In their study, Ma et al. [10] focused on adversarial attacks on deep learning-based
medical image analysis systems. Their experiments on benchmark medical image datasets
showed that adversarial attacks on medical images are easier to craft due to the unique
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characteristics of medical image data and deep neural network models. They also demon-
strated that medical adversarial examples tend to target areas outside pathological regions,
resulting in fundamentally different and deep features that are easy to separate.

In their study, Paul et al. [11] investigated the impact of adversarial attacks on the
accuracy of predicting lung nodule malignancy and developed an ensemble-based de-
fense strategy. They also explored the addition of adversarial images in the training set
to enhance robustness against adversarial attacks. Experiments conducted on a subset
of cases from the National Lung Screening Trial (NLST) dataset revealed that adversarial
attacks, specifically the Fast Gradient Sign Method (FGSM) and one-pixel attacks, sig-
nificantly affected the accuracy of CNN predictions. They found that a defense strategy
involving multi-initialization ensembles and training with adversarial images can improve
classification accuracy.

Ozbulak et al. [12] investigated the impact of adversarial examples on deep learning
models to segment medical images with a specific focus on skin lesion and glaucoma
optic disc segmentation and introduced the Adaptive Mask Segmentation Attack, a novel
algorithm capable of generating adversarial examples with realistic prediction masks. This
algorithm is based on utilizing perturbations that are mainly imperceptible to the human eye
but lead to misclassification. This research sheds light on the potential risks associated with ad-
versarial examples in segmenting medical images and highlights the need for robust defenses
to ensure the reliability and accuracy of segmentation models used in clinical applications.

3. Approach
3.1. One-Pixel Attack

Considering that the original image could be represented by an n-dimensional array
x = (x1, x2, . . . , xn), f is the model we chose to attack. The input of model f is the original
image x, from which the confidence level of what category x is could be obtained, which is
f(x). The adversarial image is generated by perturbing a pixel in the original image x. Here,
the perturbed pixel is defined as e(x) = (e1, e2, . . . , en) and the limit of the perturbation
length is specified as L. Supposing that the class set in the dataset is C = (c1, c2, . . . , cn), the
original image belongs to class cori, and we want to change it into an adversarial class cadv.
cadv and cori ∈ C, hence this can be done using the following equation:

max
e(x)∗

fcadv(x + e(x)) subject to ‖e(x)‖0 ≤ L (1)

In a one-pixel attack scenario, since we only want to change one pixel, the value of
L is set to 1. The most direct way to find the best solution is an exhaustive search, which
involves trying every different pixel in the image. For a 224× 224 RGB image, there will
be as many as 224× 224× 256× 256× 256 = 841, 813, 590, 016 possibilities. As a result, a
more effective way to simulate adversarial attacks is a differential evolution.

3.2. Differential Evolution

A differential evolution (DE) [13] is a branch of an evolution strategy (ES) [14]. The
algorithm is developed by mimicking the natural breeding process. The DE process is
shown in Figure 1 with each stage described as follows:
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(1) Initial populations

The process starts with the generation of possible solutions to the issue to be solved.
Each potential solution is called a “gene”. A set of solutions is produced in each “gen-
eration”, which is the process of a specific run of the ES. This set of solutions is called a
“population”. As mentioned above, f is the model to be attacked for the base image x. In
a one-pixel attack, the solution is in the form of (X, Y, R, G, B) array if the base image is
colored, or the form of (X, Y, I) array if the image is a greyscale one. X denotes the value of
the x-coordinate, Y denotes the value of the y-coordinate, and I denotes the value of the
grey level. The solution for the two-pixel attacks and three-pixel attacks is (X1, Y1, I1, X2,
Y2, I2) and (X1, Y1, I1, X2, Y2, I2, X3, Y3, I3), respectively (greyscale image). The population
size is set to 100, meaning that there will be 100 adversarial arrays in each generation of
the DE. The initial population will be developed randomly, after which a set of parental
adversarial arrays will be set ARRj =

(
arrj

1, arrj
2, . . . , arrj

100

)
. The superscript indicates

the number of generations, and the subscript indicates the index.

(2) Mutation

The following formula was used to generate new genes in the mutation process:

arrj′

i = arrj
r1 + F·

(
arrj

r2 − arrj
r3

)
(2)

arrj
i means that this is the j generation array with index i, and the apostrophe means

that this is the offspring population. r is a random number ranging between 1 and the size
of the parent population. F is the mutant factor that ranges from 0 to 1 and decides the
strength of the mutation. According to the above formula, the mutant gene firstly comprises
a random parental gene arrj

r1 , and secondly, the difference between the two parental genes(
arrj

r2 , arrj
r3

)
. The mutant factor decides how much the difference between the two random

parental genes will affect the “base gene” arrj
r1 . The offspring population is generated by
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repeating the above equation 100 times. Assuming that this is generation j in the DE process,

the generated offspring population is denoted as ARRj′ =
(

arrj′
1 , arrj′

2 , . . . , arrj′
100

)
.

(3) Crossover

Since the original one-pixel attack did not include a crossover, it was not used in this work.

(4) Selection

Unlike many other evolution strategies that enable the next generation of top per-
formance genes to survive, DE uses a pairwise survival strategy to select the group of
genes that will survive. The selection process will be applied to each parent and off-
spring pair. There will now be two sets of arrays in our work: ARRj and ARRj′ , each of
which contains 100 arrays in the form of (X, Y, I) (for the one-pixel attack on a grayscale
image). Each array will generate a corresponding adversarial image modified from the
original image. Hence, the algorithm will now have two groups of adversarial images

X j =
(

X j
1, X j

2, . . . , X j
100

)
and X j′ =

(
X j′

1 , X j′
2 , . . . , X j′

100

)
. These images will then be input

to trained model f to generate two sets of confidence level arrays, CLj =
(

cl j
1, cl j

2, . . . , cl j
100

)
and CLj′ =

(
cl j′

1 , cl j′
2 , . . . , cl j′

100

)
. The performance of the adversarial images can be

evaluated based on the confidence level. Supposing that the class set in the dataset
C = (c, c2, . . . , cn) and the original image belongs to class cori., the confidence level arrays
that are generated can be denoted as cl j

i =
(

cl j
i1

, cl j
i2

, . . . , cl j
i100

)
, cl j

ik
∈ [0, 1], ∑n

k=1 cl j
ik
= 1.

Each element of each confidence level array corresponds to the confidence level of the class.
cl j

ik
is how confident the model is that the image belongs to class ck. The groups of adver-

sarial arrays that survive will then be selected when the algorithm pairs the confidence
level arrays in an equation. It will compare each group of confidence levels, which means

it will compare (cl j
i , cl j′

i ) on the kth position of the confidence level array. Supposing that
ck is the target class, the target attack experiment aims to maximize the fitness score. This
means that the confidence level with the higher value should be reserved. For instance,

the parental gene arrj
i will perform better if cl j

i < cl j′

i . Notably, the algorithm will preserve
the parental gene when the performance of both genes is similar. This group of preserved
genes is then passed to the next step.

(5) Termination

An early-stop mechanism is established to determine if the performance is good
enough. Based on the above selection process, the algorithm has 100 adversarial arrays
corresponding to 100 adversarial images, each belonging to a specific class in class set C. In
a non-target attack, the process will be terminated if one image has a class that is different
from the original image. On the other hand, the process will be terminated in a targeted
attack if one image has the same class as the target class; otherwise, the preserved group of
genes will become the new parental initial population, and the DE process will be re-run.
The process will also be terminated when the maximum iteration is reached.

3.3. One-Pixel Attack Fitness Score Setting on a Multiclass Dataset and Multi-Label Dataset

Only multiclass datasets were used in the original one-pixel attack paper, but in medi-
cal images one image could contain multiple diseases, making a multi-label classification
problem. The classifier not only needs to determine whether the image is diseased or not,
but it also needs to identify all the diseases in the image. Recalling that a one-pixel attack
uses DE to generate the adversarial images, and DE requires a fitness score to assess the
performance of the generated images, the target or original class confidence level was used
as the fitness score in the original one-pixel attack study. Suppose that the class set in the
dataset is C = (c1, c2, . . . , cn), and the original image belongs to the class cori. cori ∈ C,
hence when this image is processed by the classifier it will generate a confidence interval
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vector cl = (cl1, cl2, . . . , cln), cli ∈ [0, 1],
n
∑

i=1
cli = 1, and clori will denote the confidence

level of the original class. clori ∈ cl. If the experiment involves conducting a non-target
attack, the goal will be to minimize clori. If the experiment involves conducting a targeted
attack and the adversarial images need to become class cadv (cadv ∈ C), the goal will be to
maximize the confidence level of class cladv. cladv ∈ C. The same technique will be used
for the multiclass datasets in this study [8], but for the multi-label datasets the algorithm
may not look at just one specific class. It will look at multiple class confidence levels at
once. Supposing that the class set in the dataset is C = (c1, c2, . . . , cn), the image label can
be constructed with an array l = (l1, l2 . . . , ln). li (i ∈ N, i ∈ [0, n]). Each li corresponds
to each class ci in the class set C and the value will be 0 or 1. If the value is 0, the image
does not contain this class, but if the value is 1 it does. The image can be considered to be
a multi-dimensional array x = (x1, x2, . . . , xn ), and the classifier can be represented by f .
When the image x is input to the classifier f , f (x) will produce a set of confidence levels
cl = (cl1, cl2, . . . , cln), cli ∈ [0, 1], i ∈ N. Threshold γ can be set with a range from 0 to 1,
where, if cli > γ, the algorithm will consider it to contain a class ci disease. Therefore, if all
ci < γ, the image is of a normal patient with no disease. Suppose that an image xori that we
want to attack is found with the original class set cori. cori is a subset of C and has a label
form lori. lori is a subset of l. By inputting the image xori into the classifier it becomes f (xori),
and the classifier has successfully predicted the image and produced confidence level clori.
Because all the elements in the cori needed to be considered at once, cosine similarity is
used in this study to construct the fitness score. The generated adversarial image xadv will
be input into the classifier and become f (xadv), hence producing an adversarial confidence
level cladv. If this is a non-target attack, the formula will be as follows:

similarity(lori, cladv) =
lori·cladv

max(‖lori‖‖cladv‖, δ)
, δ = 10−5 (3)

δ is a very small number that prevents the denominator from becoming 0. The goal is
to minimize the above formula.

If this is the target attack and the target class set is cadv, cadv is a subset of C and has a
label form ladv, ladv is a subset of l, the formula will be as follows:

similarity(ladv, cladv) =
ladv·cladv

max(‖ladv‖‖cladv‖, δ)
, δ = 10−5 (4)

The goal is to maximize the above formula. The algorithm transformed the label and
confidence level range from [0, 1] to [−1, 1] as a reminder to calculate the cosine similarity.
This is because if the label is all zeroes, the cosine similarity will always be zero, causing
the fitness function to fail.

4. Experimental Setting

All experiments are non-target attack experiments except for the COVID-19 dataset.
For non-target attacks, each class in each multiclass dataset will undergo 100 individual
experiments. We attack all test images in each class for a targeted attack on the COVID-19
dataset. For the multi-label dataset, which is the Chest dataset, only five classes were
involved in the experiment with the five larges amounts of data in the whole dataset. The
reason for this will be explained in the Chest dataset section.

4.1. Differential Evolution

This DE process has no crossover like the original one-pixel attack paper, and the
mutant factor is set to 0.5. The population size is set to 100. The maximum number of
iterations to run the DE process is limited to 100. It may stop if it meets the early-stop
condition, indicating that the total number of successful images has surpassed 1% of the
total number of adversarial images generated in that particular iteration.
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4.2. Model

We used a stochastic gradient descent (SGD) optimizer with a learning rate = 0.001 and
momentum = 0.9. The main model was ResNet50 [15]. Each model trained 100 epochs with
batch size = 64. To prevent overfitting and optimize the training efficiency, we implemented
early stopping with a condition that terminates training when the model achieves the 95%
accuracy threshold.

4.3. Hardware and Software

The CPU is 11th Gen Intel(R) Core (TM) i7-11700KF @ 3.60GHz 3.60 GHz and the
RAM is 16 GB. The GPU is NVIDIA GeForce RTX 3060 and the RAM is 12 GB.

The software is the Python package “torchvision”. At the same time, the model is
pretrained and adjusted in the first layer according to the dataset size and number of
channels. The last layer is also adjusted based on the class number of the dataset. The
software specifications are OS: Windows 10 × 64 Education. Programming language:
Python 3.9.7. Programming modules: numpy 1.20.3, torchvision 0.11.3, pytorch 1.10.2,
tqdm 4.62.3, scikit-learn 0.24.2, pillow 8.4.0, tiffile 2021.7.2, matplotlib 3.4.3, pandas 1.3.4,
pyyaml 6.0, sqlite 3.36.0, plotly 5.8.2.

4.4. Dataset

The Derma, Pneumonia, and OCT datasets will be split into training and testing sets
with a ratio of 8:2. The training and testing split for the COVID-19 dataset will be the
same as the original setting of [16]. For the Chest dataset some of the labels in the Chest
multi-label dataset contain only one piece of data, which cannot be split into training and
testing sets. Instead, the provider of this dataset produced a list of training and testing
images that will be used for the experiment on the Chest dataset. Multi-label datasets have
a different training option from multiclass datasets.

The multiclass training set will be used to train and obtain the test accuracy. The
multi-label training set will exclude all “normal” cases because a “normal” label is all
zeroes, which will easily cause the model to train in the wrong direction.

The “normal” case also has the most significant data points in the dataset that will
contribute to 94% accuracy of the model by predicting all cases to be “normal”. Therefore,
the experiment excludes this class in order to train the model appropriately. An overview of the
dataset information is provided in Table 1. The images in different datasets come in different
sizes and will be resized as 224 × 224. The contents of each tested database are as follows:

Table 1. Overview of the dataset information.

Name Number
of Data

Number
of Class Original Size of Image Type of Dataset Color

Information Type of Image

Derma 10,015 7 600 × 450 Multi-class Color Dermatoscopic
Pneumonia 5856 2 (384~2916) × (127~2713) Multi-class Greyscale X-ray

OCT 109,309 4 (1, 3) × (384~1536) × (277~512) Multi-class Greyscale Optical Coherence
Tomography

COVID-19 30,530 3 1024 × 1024 Multi-class Greyscale X-ray

Chest 112,120 14 1024 × 1024 Binary-class
Multi-label Greyscale X-ray

(1) Derma

This is a multiclass dermatoscopic colored image dataset of common pigmented skin
lesions. It consists of 10,015 images and seven categories. The dataset [17] has a size of
3 × 600 × 450. An overview of the dataset information is provided in Table 2.
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Table 2. Overview of the Derma dataset information.

Class Count Percentage Disease Type Precision Recall

Actinic keratoses and
intraepithelial carcinoma 327 3.27% Disease 57% 62%

Basal cell carcinoma 514 5.13% Disease 65% 74%
Benign keratosis-like lesions 1099 10.97% Normal 70% 61%

Dermatofibroma 115 1.15% Normal 67% 35%
Melanoma 1113 11.11% Disease 68% 56%

Melanocytic nevi 6705 66.95% Normal 90% 95%
Vascular lesions 142 1.42% Disease 91% 75%

(2) Pneumonia

The Pneumonia dataset, sourced from the study [18], consists of a comprehensive
collection of 5856 greyscale chest X-ray images, which provide a valuable insight into a diag-
nosis of pneumonia. Comprised of two classes, “Normal” (1583 images) and “Pneumonia”
(4273 images), this dataset provides a solid foundation for training and evaluating machine
learning models in the detection and differentiation of pneumonia cases. The images will
be center-cropped with a 20% reduction in width and height, effectively removing most
artificial labels to ensure an accurate analysis. The precision of the “Pneumonia” class
is 88%, with a recall of 100%. The precision of the “Normal” class is 100%, with a recall
of 65%.

(3) OCT

The Optical Coherence Tomography (OCT) dataset, which is referenced in [18], is a
large and diverse collection of medical imaging data specifically designed for the study
and analysis of retinal diseases. It contains 109,309 high-resolution grayscale images.
The dataset is organized into four distinctive classes, each of which represents a specific
retinal disease or condition: “Normal” (51,390 images), “Choroidal neovascularization”
(37,455 images), “Diabetic macular edema” (11,598 images), and “Drusen” (8866 images).
The precision of the “Normal” class is 97%, with a recall of 100%. The precision of the
“Choroidal neovascularization” class is 97% with a recall of 97%. The precision of the
“Diabetic macular edema” class is 95% with a recall of 93%, and the precision of the
“Drusen” class is 92% with a recall of 79%.

(4) COVID-19 Chest X-ray

This public COVID-19 chest X-ray dataset [16] consists of images and other associated
metadata, including patients’ age, gender, etc. The latest V9A version of the training and
testing dataset was used. This contains 30,130 training images and 400 testing images across
three classes: normal, pneumonia, and COVID-19 cases. The same training and testing split
as the original setting of [16] was used in the experiment, and the image distribution is
shown in Table 3.

Table 3. Overview of the COVID-19 dataset information.

Class Count Percentage Disease
Type Precision Recall

train test train test
Normal 8085 100 26.83% 25% Normal 90% 95%
Covid 16,490 200 54.73% 50% Disease 99% 91%

Pneumonia 5555 100 18.44% 25% Disease 91% 94%

(5) Chest

The Chest dataset is a binary-class multi-label frontal-view X-ray chest greyscale image
dataset with a total of 112,120 images and 14 classes of disease. The dataset is taken from
the NIH-Chest X-ray 14 dataset [19]. The original size of the images is 1 × 1024 × 1024.
The labels contained in the dataset are shown in Table 4. For example, an image with
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the label [0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] shows that this is an image with the labels
Cardiomegaly and Effusion. If we want to perform each possible combination, there will be
214 = 16, 384 possible combinations considering there are 14 classes in the dataset. This will
mean conducting 1,638,400 experiments only on the Chest dataset. However, the dataset
only contains 247 different combinations of labels, most of which have a total number of
images under 100, and even under 10. To prevent the model from not classifying certain
types of images due to a lack of training images, we only chose the five combinations
of labels with the most data in the dataset: Normal with 60,361 images, Infiltration with
9547 images, Atelectasis with 4215 images, Effusion with 3955 images, and Nodule with
2705 images. An overview of the dataset information is provided in Table 5.

Table 4. Labels of Chest dataset.

Label Disease Label Disease

0 Atelectasis 7 Pneumothorax
1 Cardiomegaly 8 Consolidation
2 Effusion 9 Edema
3 Infiltration 10 Emphysema
4 Mass 11 Fibrosis
5 Nodule 12 Pleural Thickening
6 Pneumonia 13 Hernia

Table 5. Overview of the Chest dataset information.

Disease count Count Percentage Disease Type

Normal 11,928 53.17% Normal
1 6259 27.90% Disease
2 2914 12.99% Disease
3 989 4.41% Disease
4 275 1.23% Disease
5 54 0.24% Disease
6 12 0.05% Disease
7 2 0.01% Disease

5. Experimental Results and Data Analysis

The experiments will be divided into multiclass and multi-label types. Some of the
terms used will be explained before any further discussion. The attack will be considered
a success if “the resulting label is different from the original label”. This applies to both
multiclass and multi-label datasets. For the multi-label dataset, if the resulting label contains
the original label but with different classes added or deducted, it will still be a success
because the resulting label will be “different” from the original one. The “success rate” is
used as the index of the attack performance in this study, and the formula is as follows:

Success rate =
Number of successful adversarial images

Total number of experiments
(5)

In other words, this is the ratio of the successful experiments compared to the total
number of experiments. The number of classes transformed from the original label to
another class called the “transform class” will also be counted. Several tables are defined
as follows:

• Example of successfully attacked images

Because 100 experiments will be conducted on each class in each dataset, and there
will be a large number of successful images if the success rate is high, only one successful
image will be presented for each class. The successfully modified image will be shown with
a red circle to indicate the modified pixel. There will be two description lines under each
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image: a bold black line to indicate the original class and a bold red line to show the class
that has been transformed. The number in parentheses shows the confidence level of that
class. Notably, there will be some confidence levels that indicate “~100%”. This represents
a confidence level above 99.94% because the number will be rounded to one decimal point.

• Success rate table

This shows the success rate for each class in the dataset in percentages. The first
row is the class name. The second row is the corresponding attack success rate. There
will sometimes be an asterisk next to the number in parentheses, indicating that different
images were used to construct the attack. Ideally, the algorithm should use 100 different
images for the experiment. However, many datasets had too few images to train the model,
making the model’s overall accuracy too low to identify some labels or insufficient images
were provided to attack that specific class.

• Class transformation table

This is the number of images being transformed for each dataset class. The vertical
axis is the original class of the image. The horizontal axis is the resulting class after the
transformation. Notably, the axis order is inverted for multi-label datasets, namely the
Chest dataset, due to the large number of classes being transformed.

• The ratio of class transformation table

One of the purposes of this study is to explore the resistance of images in each class
in the dataset. The class transformation table presented above shows the ratio of class
transformation of each class. The ratio can be calculated as follows: Supposing that the
original class is denoted as cori and the adversarial class is denoted as cadv, there is a total
of K classes in the dataset, which make ori, adv ∈ [0, K], ori, adv, K ∈ N, K > 1. The
number of transformations from class cori to cadv is denoted as nori,adv. When ori = adv, the
attack is considered to be a failure, so that nori,adv = 0. The transformation ratio of the specific
adversarial class should be found, which is denoted as Tadv., which can be calculated as follows:

Tadv =
∑K

ori=0 rori,adv

K− F
(6)

where rori,adv is the ratio of transformation from class cori to cadv and is calculated as follows:

rori,adv =
nori,adv

∑K
adv=0 nori,adv

(7)

Based on the above formula, Tadv is the average effect for each class in cori.
Notably, the formula for Tadv’s denominator has F in it. This denotes the total number

of classes that failed the attack. The reason the formula needs to deduct it is that, if one
class failed the test, it would not contribute any value on rori,adv but it would still add
1 to the denominator (consisting of K). Although it will not affect the order of the class
transformation ratio, it will lower the total transformation ratio to 100%, which would be
incorrect since all transformations should be contained in K classes. Therefore, the effect of
the attack ratio can be eliminated using the above formula to obtain a relatively unbiased
result of class transformation power.

• Table of class conversion for disease type

This table shows the number and ratio of data converted from “Disease” to “Normal”
or “Normal” to “Disease”. The “Class conversion” column indicates whether the type
is “Disease to Normal” or “Normal to Disease”. The “Count” column indicates the total
images that belong to the conversion type. The “Percentage” column indicates the ratio of
the “Count” column.
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• Other necessary graphs or tables

Some datasets needed extra figures and tables to further elaborate the results. More
will be mentioned and explained as needed.

5.1. Multiclass Dataset

(1) Derma

Different Derma class successful attack images are shown in Figures 2 and 3. The
class type that has the disease “Melanoma” has been transformed to the normal class
“Melanocytic nevi” in Figure 2. This may be because these two types are similar to each
other. In Figure 3, several diseased images are categorized into normal images after the one-
pixel attack. Table 6 shows that the class Dermatofibroma is more susceptible to attack than
other classes. Table 7 lists the class transformation of the Derma database. It is apparent
from Table 8 that the top three classes that are more easily transformed are “Melanocytic
nevi”, “Basal cell carcinoma”, and “Benign keratosis”. After further analysis of the data,
Table 9 shows that it is easier to transform normal images into diseased images than to
transform diseased images into normal images.
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Table 6. Derma success rate.

Class Benign
Keratosis

Melanocytic
Nevi Dermatofibroma Melanoma Vascular Skin

Lesions
Basal Cell
Carcinoma

Actinic
Keratoses

Success rate 41% 4% 80% 16% 10% 32% 41%

Table 7. Derma class transformation.

Original

Transform
Benign

Ker-
atosis

Melanocytic
Nevi

Dermatofibroma Melanoma
Vascular

Skin
Lesions

Basal Cell
Carci-
noma

Actinic
Keratoses

Benign Keratosis 18 1 8 0 9 5

Melanocytic Nevi 3 0 0 0 1 0
Dermatofibroma 2 18 0 0 57 3

Melanoma 4 11 0 0 1 0

Vascular Skin Lesions 0 9 0 0 1 0

Basal Cell Carcinoma 7 12 4 3 0 6

Actinic Keratoses 10 0 4 3 0 24

Table 8. Derma ratio of class transformation.

Class Benign
Keratosis

Melanocytic
Nevi Dermatofibroma Melanoma Vascular Skin

Lesions
Basal Cell
Carcinoma

Actinic
Keratoses

Transform ratio 21.25% 37.52% 3.53% 5.17% 0.00% 27.57% 4.96%

Table 9. One-Pixel Class conversion type.

Dataset Class Conversion Count Percentage

Derma
Disease to Normal 61 42.36%
Normal to Disease 83 57.64%

Chest
Disease to Normal 156 62.15%
Normal to Disease 95 37.85%

(2) Pneumonia (Multi-pixel)

The Pneumonia dataset encompasses two different image classes, namely “Normal”
and “Pneumonia”. A multi-pixel attack strategy was used on both classes in this research
with the objective of transforming the images into their respective opposite categories.

As illustrated in Table 10, the success rate of converting normal images into pneu-
monia images is positively correlated with the number of perturbed pixels. However, the
algorithm’s performance in transforming pneumonia images into normal images does not
yield successful results, even with an increase in the perturbed pixels. The successful attack
images are shown in Figure 4.

Table 10. Pneumonia: Attack Results.

ResNet50 One-Pixel Two-Pixel Three-Pixel

Normal 64% 66% 70%
Pneumonia 0% 0% 0%
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(3) OCT (Multi-pixel and target attack)

The OCT dataset comprises four distinctive classes: “Normal”, “Choroidal neovascu-
larization” (CNV), “Diabetic macular edema” (DME), and “Drusen”. Three targeted attacks
were conducted, each aiming to transform the images from one of the three disease classes
into normal images. The outcomes of these attacks are presented in Table 11. Consistent
with the results observed in the pneumonia dataset, the attack that converted normal
images into diseased images demonstrated a high success rate by exhibiting a positive
correlation with the number of perturbed pixels.

Cancers 2023, 15, x FOR PEER REVIEW 13 of 23 
 

 

(2) Pneumonia (Multi-pixel) 

The Pneumonia dataset encompasses two different image classes, namely 

“Normal” and “Pneumonia”. A multi-pixel attack strategy was used on both clas-

ses in this research with the objective of transforming the images into their respec-

tive opposite categories. 

As illustrated in Table 10, the success rate of converting normal images into 

pneumonia images is positively correlated with the number of perturbed pixels. 

However, the algorithm’s performance in transforming pneumonia images into 

normal images does not yield successful results, even with an increase in the per-

turbed pixels. The successful attack images are shown in Figure 4. 

Table 10. Pneumonia: Attack Results. 

ResNet50 One-Pixel Two-Pixel Three-Pixel 

Normal 64% 66% 70% 

Pneumonia 0% 0% 0% 

 

  

(a) Pneumonia to Normal (1%) (b) Normal to Pneumonia (87.6%) 

  

(c) Normal to Pneumonia (91%) (d) Normal to Pneumonia (98.1%) 

Figure 4. Examples of the attack results on the Pneumonia dataset with confidence level of Res-

Net50: (a) One-pixel attack turning Pneumonia to Normal; (b) One-pixel attack turning Normal to 

Pneumonia; (c) Two-pixel attack turning Normal to Pneumonia; (d) Three-pixel attack turning Nor-

mal to Pneumonia. 

(3) OCT (Multi-pixel and target attack) 

The OCT dataset comprises four distinctive classes: “Normal”, “Choroidal neovas-

cularization” (CNV), “Diabetic macular edema” (DME), and “Drusen”. Three targeted at-

tacks were conducted, each aiming to transform the images from one of the three disease 

classes into normal images. The outcomes of these attacks are presented in Table 11. Con-

sistent with the results observed in the pneumonia dataset, the attack that converted nor-

mal images into diseased images demonstrated a high success rate by exhibiting a positive 

correlation with the number of perturbed pixels. 

  

Figure 4. Examples of the attack results on the Pneumonia dataset with confidence level of ResNet50:
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Table 11. OCT: Attack Results.

ResNet50 One-Pixel Two-Pixel Three-Pixel

Normal (untargeted) 62% 66% 69%
CNV to Normal 0% 0% 1%
DME to Normal 0% 0% 1%

DRUSEN to Normal 3% 3% 3%

In the targeted attacks, the algorithm struggled to generate successful attacks when
attempting to convert CNV and DME images into the normal class using only one or two
perturbed pixels. It was not until the number of perturbed pixels was increased to three
that the attack began to generate successful transformations.

When converting Drusen images into the normal class, the success rate remained
unchanged despite increasing the number of perturbed pixels. This result indicates that
the algorithm may find it difficult to adapt to specific classes of images or that the Drusen
class exhibits certain characteristics that render the algorithm less effective. The successful
attack images are shown in Figures 5 and 6.
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(4) COVID-19 (Multi-pixel and target attack)

The average confidence level was used as an additional evaluation metric, alongside
the success rate, for the multi-pixel attack in order to better understand the effect of the
variation in the number of perturbed pixels on the confidence of the classification.

AvgCL =
∑Nsuc

i=1 CLi

Nsuc
(8)

Nsuc is the number of adversarial samples, and the victim model is classified into the
target class. As shown in the above equation, AvgCL was the average confidence level of
the target class in the adversarial images.
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• Diseased images to Normal images

This dataset contained two diseases: “Pneumonia” and “Covid”. The goal was to
perturb a pixel in the original disease image and turn it into a normal image. Since the
attacked image had to be classified as “Normal”, this was a targeted attack. The test dataset
belonging to “Pneumonia” and “Covid” was attacked, and the results were evaluated based
on the Success Rate and Average Confidence Level. A further experiment was conducted
on two- and three-pixel attacks to understand the influence of the number of perturbed
pixels on the performance of the victim model, and the results are shown in Table 12. The
examples of attack images are shown in Figure 7.

Table 12. COVID-19: Results of RESNET-50.

ResNet50 One-Pixel Two-Pixel Three-Pixel

Pneumonia
SR 4% 5% 4%

AvgCL 0.836 0.857 0.915

Covid
SR 1.5% 2% 2.5%

AvgCL 0.718 0.720 0.653

Normal to Disease
SR 21% 23% 22%

AvgCL 0.835 0.830 0.826
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Logically, with the increase in perturbed pixels, the value of AvgCL should also increase
because it changes more parts of the image, making the attack easier.

However, the AvgCL was found to have dropped significantly in the three-pixel attack
on the “Covid” class. It is believed that this may have been caused by the newly generated
three-pixel attack images, which are more difficult to attack so the confidence levels in the
target class were also lower. This may have affected the overall AvgCL.

• Normal images to Diseased images

An experiment was also conducted using non-target attacks that turn normal images
into diseased images to compare it with target attacks that turn diseased images into normal
ones. The results can be seen in Table 12. Obviously, it was found to be easier to turn
normal images into diseased images.
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The class distribution was further examined after the attack in Table 13, and the results
show that the proportion of two different disease classes generated is similar, but the AvgCL
of “Covid” is always higher. This may imply that the victim model tends to “believe” that an
image belongs to “Covid”. The result may explain why it is harder to attack “Covid” images.

Table 13. COVID-19: Normal Images to Diseased Images.

ResNet50
One-Pixel Two-Pixel Three-Pixel

Covid Pneumonia Covid Pneumonia Covid Pneumonia

Proportion 57% 43% 48% 52% 45% 55%
AvgCL 0.878 0.778 0.887 0.778 0.862 0.796

• Other models

All the above experiments were conducted using ResNet50 [15]. To understand how
different models may perform under adversarial attacks, the attack method was also tested
using DenseNet121 [20], and the results are shown in Table 14. The success rate was found
to have declined slightly in both the “Covid” and “Normal” classes, meaning that the model
is more robust under pixel-level attacks. However, the success rate of the class “Pneumonia”
had increased, although with a lower AvgCL. These results indicate that a larger model like
DenseNet121 may be even more susceptible than ResNet50 in some circumstances. Also,
the results of pixel-level attacks on the COVID-19dataset can be generalized over different
CNN networks.

Table 14. COVID-19: Results of DenseNet121.

DenseNet121 One-Pixel Two-Pixel Three-Pixel

Pneumonia
SR 4% 6% 7%

AvgCL 0.578 0.616 0.630

Covid
SR 1% 1.5% 2%

AvgCL 0.711 0.671 0.603
Normal to

Disease
SR 18% 17% 16%

AvgCL 0.717 0.705 0.738

5.2. Multi-Label Dataset

The Chest dataset is a multi-label dataset. Some successful attack examples are shown
in Figure 8. The class “Normal” has no confidence level because it means that all labels’
confidence level is below 50%. Figure 9 illustrates some images transformed from a diseased
class to a normal class.
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Figure 9. Chest attack cases: Disease to Normal type.

It is evident that the “Normal” type had the highest success rate, which is shown in
Table 15. The details of the conversion are shown in Table 16. Figure 10 shows the number
of diseases in the transformed class of the Chest dataset. The top three were “Infiltration”,
“Atelectasis”, and “Effusion”. Table 9 shows that it is easier to transform diseased images
into normal ones.

Table 15. Chest success rate.

Class Normal Infiltration Atelectasis Effusion Nodule

Success rate 95% 85% 94% 87% 91%

Unlike multiclass datasets, in which the confidence level of the original class needs
to be reduced, and the confidence level of other classes increased simultaneously, the
confidence level of the original label of multi-label datasets does not need to be reduced
too much. The confidence level of other classes only needs to be increased to generate a
different label, but when researching the number of disease tables for these two datasets,
the final label with one disease is found to be the most common for both datasets. This
means that the algorithm will first try to reduce the original class and simultaneously
increase another particular disease.

It can be seen from the table of the number of diseases in the Chest dataset that
the second most common disease is no disease, which is the normal patient image. This
explains why the algorithm will reduce the original label’s confidence level first before trying
to increase the other classes’ confidence levels. If reducing the original label has resulted in a
different label, which will always be the “Normal” label, the algorithm will stop because it
has already reached its goal. Due to this phenomenon, the Chest dataset “Disease to normal”
ratio increased dramatically, causing severe concern about the medical system.

In terms of the number of each disease, the types of diseases in the number of diseases
table are much the same as the top five labels used in the experiments, meaning that the
final table contained fewer rare diseases. This is likely to be because the model is slightly
overfitted, so it will tend to predict the image with these labels.
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Table 16. Chest class transformation.

Transform

Original
Normal Infiltration Atelectasis Effusion Nodule

Atelectasis 13 3 N/A 3 5
Atelectasis, Effusion 0 1 7 15 0
Atelectasis, Effusion,

Infiltration 0 0 1 0 0

Atelectasis, Infiltration 2 9 15 2 0
Atelectasis, Nodule 0 0 0 0 1

Cardiomegaly 1 1 1 0 0
Effusion 8 1 6 N/A 4

Effusion, Infiltration 1 4 0 19 0
Effusion, Mass 0 0 0 1 1

Effusion, Mass, Pleural 0 0 0 2 0
Infiltration 51 N/A 17 13 17

Infiltration, Edema 0 6 0 0 0
Infiltration, Nodule 2 5 0 0 21

Mass 13 1 2 2 0
Mass, Nodule 1 0 0 0 14

Nodule 2 0 0 0 N/A
Normal N/A 54 44 30 28

Pneumothorax 1 0 1 0 0
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6. Discussion

Appendices, if needed, appear before the acknowledgments.

6.1. Why Use the One-Pixel Attack?

The major reason for choosing the one-pixel attack is that it is simple and effective.
Unlike many other attack methods, it does not rely on gradient descent. This has two
main benefits: (1) The problem that needs to be solved does not need to be differentiated,
making this attack method more flexible. (2) It requires less computing power and takes
less time and cost to implement. Another reason for choosing this attack method is that
this kind of “adversarial” image may not be purposely generated. Many other methods
that change a lot of pixels in the image to generate adversarial images need time and
knowledge, and it is highly likely that the adversarial images will need to be generated
purposely. It is possible for adversarial images to be generated naturally using a one-pixel
attack. These images may be generated by malfunctioning medical instruments, humans or
computers processing images wrongly, or engineers making careless mistakes. They may
not be adversarial images that are sufficiently powerful to fool all models, but the goal of a
one-pixel attack is not to generate a powerful adversarial image but just a workable one
using a reasonable amount of time and computing power.
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6.2. Comparison of the Colored and Greyscale Datasets

The colored dataset used in the experiment consisted of three RGB channels, whereas
the greyscale dataset only contained one channel. More channels can be seen in colored
images than in greyscale images, which is likely to affect the time taken for the experiment
and the attack success rate. Table 17 shows that the color channel factor had a greater effect
on the attack success rate and DE experiment time.

Table 17. Color channel analysis.

Color Channel Average Attack Success Rate Average DE Time

Grayscale 19% 2 min 49 sec

Colored 25% 3 min 07 sec

Potential strategies to counter pixel attacks:

• Adversarial Training: Employing adversarial training techniques can enhance the ro-
bustness of models by including adversarial examples in the training process. Training
the model on both clean and perturbed images makes it more resilient to pixel attacks;

• Input Preprocessing: Input preprocessing techniques such as denoising, image resiz-
ing, or blurring can help to remove or reduce the impact of perturbations in the input
images, making the model more resilient to pixel attacks; Model Ensemble: An en-
semble of multiple models can improve the classification system’s overall robustness.
Aggregating the predictions of multiple models can minimize the impact of individual
pixel attacks.

Limitations of this study:
Although many experiments were conducted in this study to illustrate that there may

be several potential threats when using AI to recognize medical images, it is imperative
to understand the severity of the impact of this phenomenon on the medical system. Will
successful adversarial images cause the medical system to collapse? A real doctor dedicated
to chest diseases was interviewed, and he provided some important advice:

• The medical dataset used for labeling may not be 100% correct. The people who
provided the dataset may not have correctly labeled the image, and those who used
it may have been unaware of or unable to recognize the mistakes. For example,
Figure 11 may not be labeled correctly. Although the image in this dataset is labeled
“Infiltration”, which means that the original image had a disease named “Infiltration”,
the doctor thought that the image was actually a “Normal” image. He guessed that
the lower part of the image might cause the people who labeled the image to think
it had been infiltrated, but it may actually be normal muscle cells. The problem of
incorrect labeling questions the use of an open-source dataset;
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• A one-pixel attack may be capable of generating many adversarial images, but a
real doctor will check multiple images with different angles and opacity on one



Cancers 2023, 15, 4228 20 of 22

patient. Unless multiple images have been attacked, it may have little impact on
the medical system. Also, when doctors make a diagnosis, they do not determine if
the patient has a disease by just looking at medical images. They also collect other
information, including the patient’s medical records, to assist with their diagnosis. If
the doctor thinks the patient may potentially have a disease, but he cannot diagnose
it immediately, he may invite the patient to have follow-up treatments. All these
measurements in today’s medical system indicate that the treatment may not be
disrupted purely by one adversarial image;

• Successful adversarial images were generated in this study with all possible outcomes.
These outcomes can be classified by disease type as “Normal to Normal”, “Normal
to Disease”, “Disease to Disease”, and “Disease to Normal”. The only type that is of
interest to doctors is “Disease to Normal” because “Normal to Normal” will not affect
the patient’s life, and “Normal to Disease” and “Disease to Disease” will be more likely
to be subject to additional treatment and have a high chance of being re-classified into
their correct category. Only “Disease to Normal” may affect the diagnosis.

6.3. Future Directions

Although many experiments were conducted in this study using various medical
image datasets, many aspects could not be covered due to time and space constraints. The
following are some of the aspects that might be considered for further research in the future:

• ResNet50 was used in this study as the basic model being attacked, and some experi-
ments were conducted to illustrate the likely consequences of using different models.
However, there are still other neural networks and models that can be used for image
identification. For example, capsule-type models [21], Transformers [22], and so on.
Another related direction would be to use a real model in the medical domain, such as
IBM CODAIT’s MAX breast detector, for comparison;

• Image classification is just one of the tools used in the medical domain. Image seg-
mentation is also a popular type. FGSM was used in a prior study [23] to generate
adversarial images for image segmentation tasks on medical images, but a one-pixel
attack was not included in the paper. Few researchers have specifically covered the
one-pixel attack for medical image segmentation scenarios so far;

• The experiments in this study demonstrated possible weaknesses in several medical image
datasets under the one-pixel type of attack. Researchers can use this study to develop an
effective way to defend against this attack, specifically for medical image datasets.

7. Conclusions

The experiments conducted in this study have shown that nearly all types of medical
image datasets, whether greyscale or colored, X-ray, or many other types, can be modified
into adversarial images with a one-pixel attack. In addition, multi-pixel attacks were made
on the COVID-19 dataset to investigate the impact of the number of perturbed pixels on the
success rate and average confidence level. Furthermore, a robust evaluation method was
devised for the multi-label Chest dataset to assess the effectiveness of attacks specifically
designed for multi-label datasets. The results demonstrated the great risk of using AI or
machine learning models to identify medical images and give medical assistance or advice.
These experiments showed that adversarial images could result from having no disease to
having diseases or vice versa, misjudging the severity of the disease or even classifying
the disease type incorrectly. If AI malfunctioned, it would have devastating consequences.
Giving the wrong medical advice could delay much-needed treatment, and taking the
wrong medicine would cause severe side effects. Medical resources would be wasted, and
patients’ lives would be lost in worst-case scenarios. Furthermore, one-pixel attack-like
adversarial images could be generated effortlessly, and related knowledge may be assumed
mistakenly as a result. In summary, this study provides a major warning of the possible
weaknesses of implementing AI in the medical system.
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