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Simple Summary: Transcription factors (TFs) can reprogram cellular states by modulating the
expression of their target genes and establishing gene expression programs under homeostasis
and diseases manifestation. In neuroblastoma, the TF MYCN has been recorded as dysregulated,
presenting both aberrant expression and genomic abnormalities across its coding locus. Herein, we
computationally investigated the gene expression characteristics that distinguish neuroblastoma-
MYCN-amplified from neuroblastoma non-MYCN-amplified cancer cells, and we addressed the
upregulation of several metabolism-related TF-encoding genes. Moreover, cistromic computational
assessments of MYCN revealed its direct binding across regulatory sequences that reside in cis
proximity to several of those genes. These results illuminate substantial mechanistic interrelationships
between the key driver of neuroblastoma and a wealth of transcriptional regulators in cancer cells.

Abstract: Cancer is a disease caused by (epi)genomic and gene expression abnormalities and char-
acterized by metabolic phenotypes that are substantially different from the normal phenotypes of
the tissues of origin. Metabolic reprogramming is one of the key features of tumors, including those
established in the human nervous system. In this work, we emphasize a well-known cancerous ge-
nomic alteration: the amplification of MYCN and its downstream effects in neuroblastoma phenotype
evolution. Herein, we extend our previous computational biology investigations by conducting an
integrative workflow applied to published genomics datasets and comprehensively assess the impact
of MYCN amplification in the upregulation of metabolism-related transcription factor (TF)-encoding
genes in neuroblastoma cells. The results obtained first emphasized overexpressed TFs, and subse-
quently those committed in metabolic cellular processes, as validated by gene ontology analyses (GOs)
and literature curation. Several genes encoding for those TFs were investigated at the mechanistic and
regulatory levels by conducting further omics-based computational biology assessments applied on
published ChIP-seq datasets retrieved from MYCN-amplified- and MYCN-enforced-overexpression
within in vivo systems of study. Hence, we approached the mechanistic interrelationship between
amplified MYCN and overexpression of metabolism-related TFs in neuroblastoma and showed that
many are direct targets of MYCN in an amplification-inducible fashion. These results illuminate how
MYCN executes its regulatory underpinnings on metabolic processes in neuroblastoma.

Keywords: cancers; neuroblastoma; metabolism; dysregulated gene expression; transcription factors;
MYCN amplifications; genomics; computational investigations

1. Introduction

Cancer is defined by genomic, epigenomic, and gene expression abnormalities [1] and
is characterized by the evolution of metabolic phenotypes that are substantially deviated
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from those of the original tissues [2,3]. In cancerous states, essential cellular functions con-
nected to bioenergetics, biosynthesis, redox balance, and other dependencies are modified
compared to normal cells. These cellular decisions facilitate the increased nutrient uptake
and tolerance within tumor microenvironments [3,4]. In many cases, diverse tumors share
metabolic properties that are supported by common cellular pathways. These findings have
led to a revolution in the cancer metabolism field, which then introduced metabolic repro-
gramming as a hallmark of tumorigenesis [3,5,6]. At the cellular level, metabolic rewiring
underpins growth, survival, and proliferation of tumors [2,7]. Accordingly, metabolism-
related gene expression signatures correlate with patient survival [8]. For instance, one
of the key metabolic features of cancerous cellular states is excessive glucose uptake and
its fermentation to lactate [7]. This functional shifting from oxidative phosphorylation to
aerobic glycolysis is the renowned “Warburg effect” [7,9–11], which describes how cancer
cells excessively produce lactate as a derivative of glucose, regardless of oxygen levels. This
mechanistic adaptation is vital for long-term tumor sustenance since it enables cancer cells
to fine-tune ATP synthesis [11]. It is noteworthy that the metabolic features of cancerous
cellular states are not stable but rather change during tumor evolution, thus leading to
“metabolically heterogeneous” phenotypes [2,12]. A wealth of examples describes the
rewiring of pathways between later and initial stages of cancer phenotypes [13–15]. For
example, aberrant activation of EGFR in non-small-cell lung carcinoma (NSCLC) drives
UDP-glucose 6-dehydrogenase (UGDH) phosphorylation and activation. UGDH abolishes
UDP-glucose resulting in enhanced SNAI1 mRNA stability. Increased production of SNAI1
transcription factor (TF) induces the epithelial-to-mesenchymal transition enabling cancer
cell migration and metastasis [15]. Together, the above discoveries imply the constant
function of cellular mechanisms of gene expression regulation that can confer adaptation to
the “newly evolved” tumor microenvironments during the initiation, growth, progression,
and metastasis of human cancers.

Tumors are addicted to transcriptional dysregulation [1,16] that is orchestrated by tran-
scription factors (TFs) and featured as aberrant gene expression programs [1,17]. TFs are the
endpoints where signal transduction pathways converge [18] and they interpret DNA gram-
mar and syntax, whereas together with their counterparts, e.g., coactivators/repressors and
chromatin modifiers/remodelers, they regulate gene expression [1,16]. Genomic abnor-
malities within TFs’ coding DNA sequences or/and across their cis-acting transcriptional
determinants, e.g., super-enhancers (SEs), predispose or even cause oncogenic pheno-
types [1,16,19]. The cancer genome has been exhaustively studied since the advent of omics
methodologies that illuminate previously unknown sequence alterations of cis-regulatory
DNA elements and dysfunctions of protein molecules, e.g., TFs, that dictate oncogenesis [1].
Such abnormalities lead to oncogenic gene expression programs directed by TFs and other
signaling components, such as MYC, KRAS, TAL-1, etc., that have been “crowned” as
master oncogenic drivers [16,20,21]. For instance, an extended repertoire of human cancers
is linked to quantitative or qualitative diversifications of MYC, and many of those are
coupled to metabolic adaptation of the neoplastic cellular states [16]. MYCN is a member
of the MYC proto-oncogene family, which also includes MYC and MYCL, and encodes a
basic helix–loop–helix–leucine zipper (bHLH–LZ) TF, initially characterized in neuroblas-
toma [22–25]. MYCN oncoprotein encompasses conserved amino acid stretches termed
MYC boxes, contains a C-terminal domain that serves as a DNA binding domain (DBD),
and dimerizes with MAX through its bHLH–LZ domain. MYCN gains access to chromatin
landscapes endowed with a consensus E-box [CAC(G/A)TG] or its degenerate DNA bind-
ing sites [23] and works as a transcriptional modulator of numerous target genes involved
in vital cellular processes, including but not restricted to metabolism [23].

Dysregulated gene expression landmarks the evolution of metabolic dependencies in
human tumors, including those established in neuroblastoma, a solid malignant tumor of
the sympathetic nervous system. The disease is the most common extracranial cancer in
children [26,27], accounting for ~7% of the total cancers in childhood and ~15% of those that
lead to children’s deaths [28]. Neuroblastoma patients exhibit various phenotypes that often
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correlate with the age of diagnosis [29]. They are primarily classified into four groups, as
very low-, low-, intermediate-, and high-risk, based on their disease stage (according to the
International Neuroblastoma Risk Group Staging System (INRGSS)), their age at the time of
diagnosis, their histological type (maturing ganglioneuroma versus ganglioneuroblastoma,
intermixed versus ganglioneuroblastoma, or nodular versus neuroblastoma), their grade,
their MYCN gene status, their 11q chromosomal status, and their tumor cell ploidy [28,30].
Stage L1 refers to tumors located only in the area where they started, L2 tumors are spread
both to nearby and other areas, M tumors have spread to other parts of the body, and MS
tumors have spread to only the liver, skin, and/or bone marrow in patients younger than
18 months [30].

Based on the INRGSS, very low-risk tumors encompass stage L1/L2 maturing gan-
glioneuroma or intermixed ganglioneuroblastoma, stage L1 tumors with non-amplified
MYCN, and stage MS in children younger than 18 months of age with no 11q aberration.
Low-risk neuroblastomas include stage L2 in children younger than 18 months of age with
no 11q aberration; L2 in children older than 18 months of age with ganglioneuroblastoma,
nodular, or differentiated neuroblastoma with no 11q aberration; and stage M in children
younger than 18 months without MYCN amplification and hyperdiploidy. Intermediate-
risk neuroblastomas include stage L2 in children younger than 18 months without MYCN
amplification but with 11q aberration; stage L2 in patients older than 18 months with
ganglioneuroblastoma, nodular, or neuroblastoma with differentiating histology and 11q
aberration; stage L2 in patients older than 18 months with ganglioneuroblastoma, nodular,
or poorly differentiated or undifferentiated neuroblastoma; stage M in children younger
than 12 months with diploidy; and stage M in children 12 months to 18 months old with
diploidy. High-risk neuroblastomas include stage L1 and L2 tumors with MYCN am-
plification, stage M in patients younger and older than 18 months of age with MYCN
amplification, stage MS in children younger than 18 months with 11q aberration, and stage
MS in children younger than 18 months of age with MYCN amplification [30,31].

Neuroblastoma treatment is designed based on the risk assessment, with most patients
with very low- and low-risk tumors undergoing surgery alone, intermediate-risk patients
receiving both surgery and chemotherapy (determined by the child’s age, stage, tumor
histology, and ploidy, as well as the genetic changes in chromosomes 1p and 11q), and
high-risk patients requiring a more intensive treatment including surgery, chemotherapy,
radiation, retinoid therapy, immunotherapy, and stem cell transplant [31].

Less than 50% of high-risk patients survive, in contrast to low-risk patients who are
cured in the majority of cases [29]. Neuroblastoma tumors exhibit extreme phenotypic
heterogeneity that might indicate alternative sensitivity during therapeutic drug appli-
cations [32]. Importantly, spontaneous regression of the disease has often been detected
in infants [27]. Neuroblastoma cells exhibit divergent metabolic features compared to
normal sympathetic neurons [28]. Mechanistically, the disease development is highly
connected with, among others, a well-studied genomic abnormality: the amplification
of MYCN [27–29,33], which nowadays has been assigned as a prognostic factor or/and
considered as a causal mechanism that drives the disease phenotype evolution [33]. As
mentioned above, MYCN amplification is frequent in high-risk patients [28] and is utilized
for patient-risk classification [34]; however, this is not the only mechanism responsible for
the disease, since non-MYCN-amplified neuroblastoma is abundantly recorded in patients.
Chromosomal abnormalities, such as the gain of 17q, the loss of 1p, and the loss of 11q,
have also been associated with worse prognoses [35].

The biology of neuroblastoma and its underlying developmental mechanisms have
been progressively elucidated by advanced studies [36–38] beyond the context of MYCN
amplifications that have been mapped both across the endogenous locus and in struc-
tures of extrachromosomal DNA amplicons (ecDNA) [1,39]. Recent studies have shown
that RAS/MAPK pathway alterations and telomere maintenance mechanisms may also
be useful for the discrimination of the high-risk subgroups or for the identification of
intermediate-risk subgroups with possible disease recurrence [40,41]. Additionally, muta-
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tions in the paired-like homeobox 2B (PHOX2B) and anaplastic lymphoma kinase (ALK)
genes have been detected in patients with rare familial neuroblastoma [42,43]. In many
cases, neuroblastoma phenotypes are characterized by the aberrant expression of MYCN
and its downstream interrelationships with critical metabolism-related genes. For example,
it has been shown that MYCN confers metabolic reprogramming in neuroblastoma cells
in cooperation with ATF4, and together, they assemble a positive feedback loop which is
critical for the activation of the serine–glycine–one carbon (SCOG) biosynthetic pathway in
MYCN-amplified neuroblastoma cells [44]. In addition, MYCN was recently shown to pro-
mote de novo lipogenesis in neuroblastoma through direct activation of lipogenic enzymes
that orchestrate fatty acid synthesis, a key hallmark of metabolic reprogramming in cancer
supporting tumor survival under nutrient deprivation conditions [45]. The engagement
of MYCN in neuroblastoma metabolic rewiring was further underscored by the finding
of its positive feedback loop with enzyme aldehyde dehydrogenase family 18 member A1
(ALDH18A1), a critical component in glutamine metabolism. Increased ALDH18A1 in
MYCN-amplified neuroblastoma is associated with amino acid and nucleotide metabolism,
thus supporting the cell proliferation and self-renewal potency of cancer cells [46].

The role(s) of MYCN in metabolic reprogramming-related gene expression program
evolution in neuroblastoma has remained largely elusive. This work evaluates the impact
of MYCN amplification in metabolic reprogramming in neuroblastoma. Two workflows
were applied to address this altered metabolic state in the contexts of MYCN amplifications
and transgenic-based enforced expression of the oncoprotein. We meta-analyzed published
datasets to address the impact of MYCN overexpression [26,29]. Our findings distinguish a
collection of metabolically committed and cancer-related TF-encoding genes that become
overexpressed and are “molecularly flagged” by direct MYCN binding across their cis-
acting regulatory elements. Importantly, comparative analysis of the results reciprocally
confirmed our findings and highlighted the functional significance of MYCN for neurob-
lastoma development. Hence, TFs are comprehensively studied at the mechanistic and
regulatory level in the context of neuroblastoma metabolism. The emerging new knowl-
edge describes previously unspecified direct targets of MYCN oncoprotein that encode for
TFs with regulatory capacities, thus facilitating a better understanding of how genomic
alterations drive metabolic phenotypes in cancers.

2. Materials and Methods
2.1. Transcriptomics Analyses

RNA-seq analyses in neuroblastoma cell lines: Computational meta-analysis compar-
ing MYCN-amplified and non-MYCN-amplified neuroblastoma cell lines was conducted
by utilizing publicly available RNA-seq data described in Boeva et al. [47] (GEO accession
number GSE90683). The detailed RNA-seq analysis pipeline and results can be found in
Koutsi et al. [1]. In brief, quality control of sequencing reads was conducted using FastQC
(Galaxy Version 0.73 + galaxy0). Then, reads were mapped to the hg19 reference human
genome using the HISAT2 alignment tool (Galaxy Version 2.2.1 + galaxy0) with “paired-end
data from a single interleaved dataset”, “stranded”, and “reverse” parameters [48]. Gene
expression quantification was performed using the htseq-count tool with “union mode”,
“stranded”, “reverse,” and “minimum alignment quality 10” parameters (Galaxy Version
0.9.1 + galaxy1) [49]. The EdgeR algorithm was employed to identify differentially ex-
pressed genes (DEGs) between MYCN-amplified and non-MYCN-amplified neuroblastoma
cell lines with a p-value threshold of <0.01 and |log2[fold change (FC)]| ≥ 1 considering
only the genes with more than ten counts in at least five individual samples. Differen-
tially expressed TFs were identified by utilizing the official list of human TFs [50]. Gene
ontology analyses (GOs) of upregulated DEGs (uDEGs) were performed through the
gProfiler tool [51]. Selected statistically significant biological processes (p-adjusted < 0.05)
were visualized as dotplots using the ggplot2 package. gProfiler was selected because
it provides information for the experimental or computational annotation origins of the
genes assigned to each biological term. This allows the demarcation of metabolism-related
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genes. Heatmaps of DEGs were constructed using pheatmap and assessing log2(CPM)
normalized counts.

RNA-seq analyses in neuroblastoma patient-derived samples: (A) We utilized pub-
licly available RNA-seq datasets, described in Rifatbegovic et al. (GEO accession number
GSE94035) [52]. The clinical samples were derived from neuroblastoma patients with
primary stage 4 metastatic (M) tumors. The total cohort of 16 samples was subjected to
rigorous computational processing in order to identify the portion/ratio of immune cells
within each sample, thus allowing us to exclude highly heterogeneous datasets from our
computational investigation. This step is important to avoid any transcriptional noise
that originates from highly “contaminated” samples to dominate our downstream anal-
yses. This was conducted by the application of ABsolute Immune Signal deconvolution
(ABIS), an efficient tool for clinical sample profiling that assesses gene expression values
and is available at https://giannimonaco.shinyapps.io/ABIS/ (accessed on 13 Septem-
ber 2023) [53]. Six samples that met the criteria and displayed low “contamination” from
immune cells were selected for further transcriptomics analysis. Three of those were MYCN-
amplified and three were non-MYCN-amplified and they shared similar-limited enrichment
of immune cells (≤10%). RNA-seq analyses were conducted as described above with minor
modifications outlined below: Sequencing reads were mapped to the hg19 reference hu-
man genome by utilizing the HISAT2 alignment tool (Galaxy Version 2.2.1 + galaxy0) and
applying “single-end” and “unstranded” options [48]. The calculation of reads that were
mapped across the genes was performed by the application of the htseq-count tool (Galaxy
Version 0.9.1 + galaxy1) in union mode with “unstranded” and “minimum alignment
quality 10” options [49]. The EdgeR algorithm was employed to identify DEGs between
MYCN-amplified and non-MYCN-amplified neuroblastoma patient-derived samples with
a p-value threshold of <0.05 and |log2(FC)| ≥ 0.6, considering only the genes with more
than ten counts in at least two individual samples. (B) Neuroblastoma datasets from the
Therapeutically Applicable Research to Generate Effective Treatments (TARGET) project
were also assessed to evaluate the effect of MYCN amplification in the metabolic rewiring
of neuroblastoma [54]. Raw RNA-seq counts of gene expression quantification (n = 162)
accompanied by the clinical and histological characteristics of the specimens were retrieved
from the National Cancer Institute GDC Data Portal. The samples for which information
regarding MYCN amplification status was not available were excluded from further anal-
ysis. In a second layer of classification, 66 primary tumor samples with undifferentiated
or poorly differentiated histological status derived from high-risk and stage 4 patients
were subjected to ABIS deconvolution of immune cells. Twenty MYCN-amplified and
twenty-five non-MYCN-amplified samples displayed ≤10% enrichment for immune cells
and were utilized for differential gene expression analysis through EdgeR (p-value < 0.05
and |log2(FC)| ≥ 0.58). Genes with at least ten counts in twelve samples were processed
in the analysis.

2.2. ChIP-Seq Data Analyses

To investigate the role of MYCN in human neuroblastoma, we utilized ChIP-sequencing
FASTQ files obtained from the Gene Expression Omnibus database (GEO; https://www.
ncbi.nlm.nih.gov/geo/, accessed on 21 June 2023) (GEO accession number GSE138315).
Meta-analyses were conducted by integrating publicly available data from two distinct
groups of neuroblastoma cell lines based on MYCN amplification status. The analy-
sis was conducted using three MYCN-amplified neuroblastoma cell lines (COG-N-415,
LA-N-5, and NB-1643) and one non-MYCN-amplified neuroblastoma cell line (NB-69)
as a control. Detailed information about these samples is provided in [29]. Further-
more, we utilized publicly available MYCN-ChIP-seq data from the SHEP MYCN-ER cell
line, in which MYCN overexpression is achieved under a 4-hydroxytamoxifen (4-OHT)-
activating MYCN, while the control cells were treated with DMSO (GEO accession number
GSE199086) [26]. Moreover, for monitoring the ASCL1-binding profile in a human MYCN-
amplified neuroblastoma cell line, we utilized a publicly accessible ASCL1-ChIP-seq FASTQ
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file from Kelly cells, which was obtained from the GEO database (GEO accession number
GSE120074) [55]. ChIP-sequencing data were analyzed by utilizing the Galaxy online
platform (https://usegalaxy.org/, accessed on 21 June 2023) [56], a widely used tool for
bioinformatics analysis. Initial quality assessment of the sequencing reads was performed
using FastQC (Galaxy Version 0.73 + galaxy0). Adaptors and low-quality sequences were
trimmed, using Trim Galore (Galaxy Version 0.6.7 + galaxy0) with default parameters.
Trimmed reads were then aligned to the hg19 reference human genome using the Bowtie2
tool (Galaxy Version 2.5.0 + galaxy0) with “single-end” or “paired-end” and “very sensitive
end-to-end” parameters [57]. Duplicate reads were removed using the RmDup tool (Galaxy
Version 2.0.1) from the SAMtools package [58]. To ensure same-scale comparisons, the
samples were normalized for their sequencing depth using the Downsample SAM/BAM
tool (Galaxy Version 2.18.2.1). Peak calling was performed by MACS2 (Galaxy Version
2.2.7.1 + galaxy0), with the input data serving as control files and default parameters [59].
Peaks were considered significant using a q-value cutoff of 0.05. To ensure data reliability,
peaks detected in chromosome Y and unplaced contigs (e.g., chrUn and chrM) as well as
those found in hg19 ENCODE blacklisted regions known to have low sequencing assurance
were excluded [60]. The reads that mapped within the identified peaks were counted using
MultiCovBed (Galaxy Version 2.30.0) [61]. The quantification of the signal intensity was per-
formed using the bamCoverage tool from the deepTools package (Galaxy Version 3.5.1.0.0)
with the “normalize to reads per kilobase per million (RPKM)” and “average fragment
size = 300 bp” options, which generated bigwig files [62]. For the identification of in-
ducible peaks, a comparative analysis was conducted by calculating the FC values between
the MYCN-amplified neuroblastoma cell lines (COG-N-415, LA-N-5, and NB-1643) and
non-MYCN-amplified neuroblastoma cell line (NB-69). Similarly, in the case of MYCN over-
expression [26], inducible peaks were identified according to their FC value between SHEP
MYCN-ER 4-OHT and SHEP MYCN-ER DMSO. We set a minimum FC cutoff of ≥2 and
then the inducible peaks were filtered based on a minimum number of reads, specifically,
20 reads for MYCN-amplified neuroblastoma cell lines and 40 reads for SHEP MYCN-ER
4-OHT. Common MYCN-inducible peaks between the different MYCN-amplified neurob-
lastoma cell lines and/or SHEP MYCN-ER 4-OHT were identified using the “Intersect”
function of the bx-python package (Version 0.7.1), which was accessed through Galaxy.
This analysis allowed us to identify the overlapping inducible peaks that were consistently
shaped by MYCN across the different experimental conditions. Additionally, we employed
the “Intersect” function (Version 0.7.1) to identify ASCL1 peaks that overlapped with the
common MYCN-inducible peaks across the different MYCN-amplified neuroblastoma cell
lines and SHEP MYCN-ER 4-OHT over-expressing system. Furthermore, the assignment
of ChIP-seq peaks to the nearest transcription start site (TSS) of the hg19 reference human
genome was determined by the Genomic Regions Enrichment of Annotations Tool (GREAT)
(version 4.0.4), employing the whole genome as background and the “single nearest gene”
parameter within 1000 kb [63]. In addition, the identification and analysis of transcription
factor binding motifs (TFBMs) within the ChIP-seq peaks were carried out using the MEME-
ChIP [64] and AME (Analysis of Motif Enrichment) [65] tools, with motifs from the JASPAR
2022 CORE non-redundant vertebrate database as inputs (http://jaspar.genereg.net, ac-
cessed on 22 June 2023). For MEME-ChIP, the options “DNA -mod zoops or -mod anr
-minw 4 -maxw 15” were applied, and for AME, the options “-scoring average -method
fisher—hit-lo-fraction 0.25—control shuffle” were used to identify enriched motifs within
the ChIP-seq peaks. In both MEME-ChIP and AME analyses, an E-value threshold for
motif enrichment and a p-value cutoff of < 0.05 for statistical significance were considered,
ensuring the identification of TFBMs that exhibited biological relevance and statistical
significance within the ChIP-seq peaks. Furthermore, the identification of E-boxes was
centered on the inducible peaks located in close proximity to BCL6, DLX1, NRF2, ATF4,
and STAT5B genes. To conduct this analysis, we utilized the MAST (Motif Alignment and
Search Tool) and FIMO (Find Individual Motif Occurrences) tools, accessed through the
MEME-Suite [64,66,67], applying default parameters. The E-box motifs used as inputs for
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scanning were sourced from the JASPAR 2022 CORE non-redundant vertebrate database
(MA0059.1 and MA0819.2) [68]. The MAST tool was also utilized for the computational
analysis of TFBMs recognized by KLF4, STAT5B, STAT5A::STAT5B, and BCL6 across the
MYCN locus. Specifically, the relevant TFBMs used as inputs for this scanning were sourced
from the JASPAR 2022 CORE non-redundant vertebrate database (MA0039.4, MA1625.1,
MA0519.1, and MA0463.2). Finally, the visualization and exploration of signals in specific
genomic regions were performed using the IGV (Integrative Genomics Viewer version
2.16.1) browser [69].

3. Results
3.1. Gene Expression Rewiring and Metabolic Signatures in MYCN-Amplified Neuroblastoma

To monitor the gene expression in human neuroblastoma and address the impact
of MYCN amplification in in vivo metabolic reconstitution, we utilized our established
workflow that was previously applied [1] for intratumoral computational transcriptional
profiling in neuroblastoma published results [47]. We applied stringent criteria to avoid
any transcriptional noise dominating our downstream analyses, according to published
strategies [70]. The results indicated the profile of activation and repression of DEGs
(FC ≥ 2; p-value < 0.01), which then were evaluated according to the function of their
encoded products (Figure 1(Ai)). We fished out 286 uDEGs in MYCN-amplified compared
to non-MYCN-amplified neuroblastoma cell lines and processed them through GOs (Sup-
plementary Figure S1A). Next, we distinguished 38 that encode for TFs according to the
official TF list [50] (Table S1). At this stage, the functional significance of those TFs in
metabolism was assessed primarily based on their classification to specific processes via
GOs (Supplementary Figure S1A and Figure 1(Aii)). We selected 36 TFs that have been pre-
viously recorded in metabolism-related regulatory functions (Supplementary Figure S1B).
In particular, GOs highlighted metabolic pathways such as the cellular metabolic process
and macromolecule biosynthetic process (Figure 1(Aii)). This was accompanied by evalua-
tion of the TFs’ function based on published evidence, which resulted in 22 TFs, including,
among others, DLX1, KLF4, NRF2, BCL6, STAT5B, and MYCN (Figure 1(Aiii)). In addition,
manual curation highlighted ATF4 upregulation in MYCN-amplified compared to non-
MYCN-amplified neuroblastoma cell lines, even with less induction (FC 1.77, p-value 0.047)
(Supplementary Figure S1B). Integrative Genomic Viewer analyses (IGVs) display selected
examples of those findings (Figure 1B). Thus, the above integrative analyses captured
metabolism-related TF upregulation in neuroblastoma cell lines that bear copy number
genomic variations of MYCN.

3.1.1. MYCN-Binding Landscape in Neuroblastoma Illuminating Novel
TF-Encoding Target-Genes

To investigate how MYCN amplification mechanistically imposes the metabolic rewiring
of neuroblastoma cells, we first attended to the in cis distribution of its encoded product
(Figure 2A upper and lower panels). MYCN binding was monitored at the whole chromo-
somal and regional scales. We utilized published ChIP-seq datasets (workflow A) and con-
ducted genome topology assessments from the ground state (see Materials and Methods).
We applied our in-house workflow; published ChIP-seq datasets obtained from studies
in human neuroblastoma cell lines, which carried (COG-N-415, LA-N-5, and NB-1643) or
lacked (NB-69) genomic amplifications of the MYCN as described [29], were subjected to
rigorous bioinformatics processing (see Materials and Methods). Initially, MYCN-ChIP-seq
peaks were called, followed by individual pairwise comparisons of their signals’ intensities
implemented between NB-69 and COG-N-415, LA-N-5, and NB-1643. A list of inducible
signals was generated for each assessment (FC ≥ 2; enriched in MYCN-amplified cell lines
compared to non-MYCN-amplified) and showed 32,749 for COG-N-415/NB-69, 38,777 for
LA-N-5/NB-69, and 30,809 for NB-1643/NB-69 comparisons, respectively (Table S2). Next,
a step of evaluation of our ChIP-seq meta-analyses was oriented to validate MYCN-binding
events across known target loci where the oncogenic TF was captured [71], as well as
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additional off-targets; this process serves as an internal control. For instance, robust MYCN
binding was mapped across the SLC1A5 (ASCT2) locus, which encodes a known regulator
of glutamine metabolism, a key feature of neuroblastoma tumorigenesis [71,72] (Figure 2A
upper panel). In addition, MYCN binds to the NCL locus that encodes the nuclear RNA-
binding protein nucleolin, essential for rRNA processing and ribosome biogenesis [26,73],
and the NPM1 locus which encodes the multifunctional nuclear protein nucleophosmin,
known for ribosome biogenesis and genome stability regulation (Figure 2A upper panel).
In sharp contrast, off-target loci (e.g., AFM, OCT4) were scanned and demonstrated as inat-
tentive/not significant in MYCN binding (Figure 2A lower panel). IGVs sharply display the
above findings in high-resolution, thus ensuring the validity of our approach. In another
layer of evaluation, we detected MYCN binding across the ATF4 locus, an anticipated
result since the MYCN–ATF4 axis is one of the well-addressed TF interrelationships in
neuroblastoma [28,44]. This established feedback loop is crucial for increasing the amino
acid availability and, consequently, sustaining MYCN-mediated growth in neuroblastoma
cells. Thus, MYCN collaborates with ATF4 in regulating ASCT2 expression, but in addition,
it targets the ATF4 cis-acting regulatory region (IGVs) (Figure 2A upper panel). The above
results authenticate both the novelty and the accuracy of our approach.
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Figure 1. Transcriptional profiling of MYCN-amplified and non-amplified cell lines. (A): (i) RNA-seq
heatmap depicting the full spectrum of 506 differentially expressed genes (DEGs) in MYCN-amplified
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are downregulated. The heatmap was generated using log2(CPM) normalized counts. (ii) Selected
examples of the most statistically and biologically significant biological processes associated with
metabolism-related transcription factors (TFs), as determined by gene ontology analyses (GOs).
(iii) RNA-seq heatmap illustrating the transcriptional upregulation of the 22 renowned metabolism-
related TFs. log2(CPM) normalized counts were used for visualization. (B) High-resolution Inte-
grative Genomic Viewer (IGV) snapshots of transcriptomics signals, sharply illustrating RNA-seq
signal intensities across the genomic loci (exons) of selected uDEGs encoding for metabolism-related
TFs (ATF4, BCL6, DLX1, NRF2, STAT5B). The MYCN exhibits strong RNA-seq signal intensities
in MYCN-amplified cell lines, as anticipated, thus validating the specificity and sensitivity of our
analysis. Two subsets composed of three out of the five non-MYCN-amplified and three out of the
thirteen MYCN-amplified cell lines were selected for each individual locus visualization.
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Figure 2. The MYCN cistrome in neuroblastoma. (A) High-resolution IGV snapshots display MYCN
binding in chromatin landscapes proximal to the TSSs of known MYCN target genes (ATF4, NCL,
NPM1, SLC1A5), MYCN off-targets [AFM, OCT4 (POU5F1)], upregulated genes that encode for
metabolism-related TFs (BCL6, DLX1, NRF2, STAT5B), and the endogenous MYCN locus. Strong
inducible MYCN binding is illustrated in both workflows of examination, assessing MYCN-amplified
and non-MYCN-amplified cells (workflow A) and the SHEP MYCN-ER 4-OHT overexpressing system
(workflow B). ATF4, BCL6, DLX1, NRF2, and STAT5B transcription start site (TSS)-proximal genomic
loci harbor E-boxes recognized by MYCN::MAX or CLOCK, legible by MYCN oncoprotein. Of
significant interest is the difference observed in MYCN binding between MYCN-amplified cell lines
and the MYCN-overexpressing system of study (SHEP MYCN-ER 4-OHT). In MYCN-amplified
cell lines, tandemly arranged MYCN amplifications, spanning several kbs, provide an expanded
chromatin landscape, allowing for broad MYCN binding. In contrast, in the MYCN-overexpressing
system, a precisely shaped peak of approximately 1 kb length is mapped across the TSS-proximal
locus. (B) GOs, applied on the full spectrum of 7971 common inducible MYCN-ChIP-seq peaks
obtained from both workflows of our study, highlight the specificity of MYCN-inducible binding
for metabolism-related functions including RNA processing, macromolecule biosynthesis, peptide
biosynthesis, etc.
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Next, we examined the cistrome of MYCN across chromatin landscapes that host
genomic loci that encode for several of the upregulated metabolism-related TFs demarcated
above. We zoomed in across the chromatin microenvironments of residence and moni-
tored the patterns of MYCN genomic distribution. IGVs depict in high-resolution that the
BCL6 locus hosts enhanced MYCN binding, predominantly enriched ~5 kb downstream
of the TSS and at a lesser but significant intensity on the promoter of the gene (Figure 2A
upper panel). Indicatively, precisely shaped ChIP-seq signals are mounted across these
vicinities. These binding profiles are mapped in all three MYCN-amplified, but not in
the non-MYCN-amplified, neuroblastoma cell lines. Transcription factor binding motif
analyses (TFBMs) demonstrated that MYCN masks regulatory sequences enriched for TF
binding sites (TFBSs), including E-boxes recognized from MYCN::MAX (Figure 2A upper
panel), as evaluated by both MAST tool- and FIMO-based analyses [64,66,67]. Interest-
ingly, these genomic coordinates reconstitute in vivo chromatin landscapes that coincide
with the well-addressed SE of the gene, described in other types of cancers [19]. Hence,
BCL6 is tagged by MYCN binding, a profile that mechanistically is in line with its tran-
scriptional upregulation in MYCN-amplified neuroblastoma cells. DLX1 hosts enhanced
MYCN binding, predominantly enriched across a DNA stretch of ~1 kb that flanks its
TSS and encompasses the core promoter, as well as TFBSs for FOXM1 that were previ-
ously characterized in ovarian cancer [74] (Figure 2A upper panel). Indicatively, precisely
shaped ChIP-seq signals are mounted across these vicinities. These binding profiles are
mapped in all three MYCN-amplified (more intensively in LA-N-5 and COG-N-415), but
not in non-MYCN-amplified, neuroblastoma cell lines. TFBM analyses demonstrated that
MYCN masks regulatory sequences enriched for TFBSs, including E-boxes recognized from
MYCN::MAX, as evaluated by both MAST tool- and FIMO-based analyses. Hence, DLX1 is
tagged by MYCN binding, a profile that mechanistically is in line with its transcriptional
upregulation in MYCN-amplified neuroblastoma cells. The NRF2 locus hosts enhanced
MYCN binding, predominantly enriched across a DNA stretch of ~2 kb that flanks its TSS
and encompasses the core promoter. Indicatively, precisely shaped ChIP-seq signals are
mounted across these vicinities (Figure 2A lower panel). These binding profiles are mapped
in all three MYCN-amplified, but not in non-MYCN-amplified, neuroblastoma cell lines.
TFBM analyses demonstrated that MYCN masks regulatory sequences enriched for TFBSs,
including E-boxes recognized from MYCN::MAX (Figure 2A lower panel), as evaluated
by both MAST tool- and FIMO-based analyses. These results illuminate that NRF2 is a
direct target of MYCN, thus suggesting their regulatory interrelationship in neuroblastoma.
The STAT5B locus hosts enhanced MYCN binding, predominantly enriched across a DNA
stretch of ~0.7 kb that flanks its TSS and encompasses the core promoter. Indicatively, pre-
cisely shaped ChIP-seq signals are mounted across these vicinities. These binding profiles
are mapped in all three MYCN-amplified, but not in non-MYCN-amplified, neuroblastoma
cell lines. In addition, COG-N-415 cells exhibit another intragenic MYCN-binding signal
that masks introns and exons of STAT5B. TFBM analyses demonstrated that MYCN masks
regulatory sequences enriched for TFBSs, including E-boxes recognized from MYCN::MAX
(Figure 2A lower panel), as evaluated by both MAST tool- and FIMO-based analyses. These
results illuminate that STAT5B is a direct target of MYCN, thus suggesting their regulatory
interrelationship in neuroblastoma.

Evidently, our results underscore that MYCN is substantially committed to metabolic
rewiring in neuroblastoma cells through its attachment to transcriptional regulatory cis-
elements that neighbor metabolism-related TF-encoding genes. To gain further mechanistic
confirmation, we applied the same workflow to an alternative system of study that relies
on the enforced expression of MYCN (workflow B). More specifically, Wang et al. [26]
conducted an advanced study by utilizing the SHEP MYCN-ER cell line [34], which bears a
single copy of a 4-hydroxytamoxifen (4-OHT)-inducible MYCN transgene. This allows for a
fine-tuned overexpression of MYCN based on the addition of 4-OHT. SHEP MYCN-ER cells
treated with DMSO were utilized as a control. MYCN-ChIP-seq datasets were analyzed
according to our in-house protocol described above and subjected to rigorous bioinformat-
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ics processing (see Materials and Methods). In brief, MYCN-ChIP-seq peaks were called,
followed by pairwise comparison of their signal intensities between 4-OHT-treated and
DMSO-treated SHEP MYCN-ER experiments. A list of 11,308 inducible signals was gener-
ated (FC ≥ 2; enriched in 4-OHT-treated cells compared to DMSO-treated cells) (Table S2).
Next, we monitored in high-resolution the distribution of these signals across the loci that
host known- and off-targets, described above, and we verified to a significant extent the
results in both systems, thus confirming the specificity of our findings (Figure 2A upper and
lower panels). IGVs substantially validate the above findings, display in high-resolution
MYCN-binding profiles that match those obtained from the above analyses, and demon-
strate at the genomic loci-specific level that TSS-proximal cis-acting elements of the genes
of investigation are occupied by MYCN in both systems of study. Overall, the binding
profiles shaped recapitulate those that emerged from the analyses of the MYCN-amplified
versus non-MYCN-amplified neuroblastoma cells and depict robust binding of the MYCN
oncoprotein upstream of or flanking the TSSs of the above target-genes and control loci
(Figure 2A upper and lower panels). Indeed, these patterns of genomic distributions of
MYCN assembled during its attachment to the respective chromatin landscapes, in both cell
systems of study, are overlapping or nearly identical. Moreover, our computational investi-
gation was complemented with another layer of evaluation; we assessed the endogenous
MYCN for MYCN binding and identified that (a) MYCN exhibits auto-regulatory capabili-
ties facilitated by direct targeting of its own coding locus by its encoded oncoprotein. This
phenomenon is evident in both systems of study. This is consistent with previous studies
that mapped MYCN binding across extended genomic loci that harbor MYCN in neuroblas-
toma [75]. Interestingly, it has been shown that this type of autoregulation can be disrupted
in amplified, but not in single-copy, neuroblastoma cell lines [76]. This underscores the
impact of genomic amplification in the establishment of diverse mechanistic rules for the
same disease. (b) Furthermore, our results show that in neuroblastoma cell lines that carry
(COG-N-415, LA-N-5, and NB-1643) genomic amplifications of MYCN, robust binding of the
TF is mapped across an extended (≥10 kb) genomic region. This pattern is inattentive/not
significant, or even abolished, from the non-MYCN-amplified cells (NB-69). Given that
MYCN amplification routinely spans several or even hundreds of kb in cis [77,78], the
multiple copies generated can first provide an amplified chromatin landscape that serves
as an anchored site for MYCN binding and, in addition, can multiply intact amplicons
of coding genes resulting in overexpression of MYCN oncoprotein. Thus, it is realistic to
argue that MYCN amplifications footprint the endogenous loci at the (epi)genomic level.
(c) On the other hand, in the SHEP MYCN-ER cell line system of study, 4-OHT-inducible
binding of MYCN is centered around the TSS-proximal intronic and exonic sequences
of MYCN and mounts a precisely shaped peak that masks a DNA stretch of ~1 kb. This
sounds realistic since this cell line harbors a single copy MYCN transgene and lacks MYCN
amplicons. The above results imply that in both systems an auto-regulatory mechanism
facilitates MYCN overexpression with or without affecting the (epi)genome architecture of
its residential chromosomal coordinates. This is made more intriguing when considering
that outside of chromosomal landscapes MYCN-ecDNA-amplicons still work and encode
MYCN efficiently. Finally, an additional layer of verification was achieved by the intersec-
tion of the individual spectrums of the inducible MYCN peaks that emerged from the whole
meta-analysis. We sequentially overlayed the individual spectrums of MYCN-ChIP-seq
inducible peaks following a gradual decreasing mode of analysis. The results depicted
7971 common signal instances, which then were subjected to GOs (Figure 2B). The outcome
of this comparative assessment sharply illustrates strong correlation between the genomic
distribution of MYCN oncoprotein with metabolism-related processes in neuroblastoma
cells (Figure 2B). More specifically, GOs highlighted, among others, cellular functions
related to RNA metabolism, cellular macromolecule catabolic processes, ribonucleoprotein
complex and ribosome biogenesis, peptide biosynthetic processes, etc. Given that those
genomic loci are randomly distributed across chromosomal landscapes and that they were
ChIPed through MYCN binding, a clear correlation of the TF with metabolic rewiring is
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underscored. This suggests the assembly and function of an MYCN axis that involves
additional metabolism-related TFs, such as those comprehensively discussed above and in
the discussion section. The pleiotropic commitment of those regulators of gene expression
in vital cellular processes implies the in vivo reconstitution of a newly evolved metabolic
state in neuroblastoma.

Moreover, we investigated the enrichment of the MYCN genomic locus for TFBMs rec-
ognized by the above TFs. We applied MAST-tool-based analysis and processed a genomic
region of ~4.3 kb that flanks the TSS of MYCN (chr2:16,077,951–16,082,248) (Figure 3). We
mapped several motifs for KLF4, multiple for STAT5B, and a single one for BCL6, randomly
distributed across this DNA sequence. This profile poises for the binding of those MYCN-
targeted TFs across MYCN. Given that MYCN amplifications result in the in cis expansion
of additional copies of the amplified DNA sequence, the above TFBMs are anticipated
to become multiplied. Hence, the possibility of the assembly of an auto-regulatory loop
between those transcriptional regulatory proteins and MYCN cannot be excluded. This is
in line with the biology of TFs’ expression regulation, per se. Finally, we investigated the
binding profile of ASCL1, a basic helix–loop–helix TF that is expressed in neuroblastoma
cells and is required for cell growth and arrest of differentiation [55]. ASCL1 cis-regulatory
elements are targeted by MYCN and additional TF members of the adrenergic (ADRN) neu-
roblastoma core regulatory circuitry (CRC) [55]. We meta-analyzed one ASCL1-ChIP-seq
dataset derived from experiments in Kelly cells and an MYCN-amplified neuroblastoma cell
line, described in [55]. First, we called 10,661 ASCL1-ChIP-seq peaks and intersected them
with the common 7971 MYCN-ChIP-seq-inducible peaks, described above (Supplementary
Figure S2A). We retrieved 2081 common peaks, and we processed those in GOs. The
results show statistically and biologically significant metabolic processes, such as ncRNA
metabolic processes, cellular macromolecule metabolic processes, ribonucleoprotein com-
plex biogenesis, etc. (Supplementary Figure S2A). Next, we monitored the profile of ASCL1
binding across several genomic loci, including MYCN and other upregulated metabolism-
related TFs, described above. The results highlight proximal binding events of ASCL1 in
many of those genes, including KLF4, NRF2, GLI2, and MYCN (Supplementary Figure S2B).
This analysis strengthens our findings, since it illuminates that several of the upregulated
metabolism-related TFs described in our computational study are targeted by an additional
TF that is critical for neuroblastoma and is also an MYCN target. ASCL1 was captured
enriched, but not statistically significant upregulated, in our transcriptomics meta-analysis
between MYCN-amplified and non-MYCN-amplified cell lines, but this cannot exclude the
possibility for a regulatory role in fine-tuning the transcription of several of the upregulated
metabolism-related TFs genes discussed in our work. These findings open new avenues for
further investigations in the neuroblastoma field.

3.1.2. Computational Validation in Neuroblastoma Patient-Derived Samples

To further confirm our findings and to gain additional insights into the biology of
the disease, we assessed gene expression profiles in clinical samples derived from neurob-
lastoma patients. Transcriptomics profiling in patient-derived surgically removed solid
tumors frequently suffers from intrinsic tumor heterogeneity and/or enrichment of the
specimens with irrelevant cells, e.g., blood/immune cells, stroma cells, etc. These matter
against the precise recording of any differentiation between the transcriptomes of individ-
ual samples [79]. In cases of TF investigations, this becomes more challenging, since they
are broadly expressed in multitudes of tissue types and, consequently, the monitoring of
the expression states of their coding genes, in such systems of study, can be hindered when
“non-cancerous”/irrelevant cell types are significantly represented within the samples
of examination. Those drawbacks can lead to the domination of the entire computa-
tional analyses by “background” signals. To bypass these barriers, we applied a rigorous
computational rationale that significantly facilitates the abolishment of “non-cancerous”-
derived/non-specific RNA-seq signals yet maintains the balance between the samples and
the sensitivity of the analyses (see Materials and Methods). We utilized publicly available
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RNA-seq clinical datasets and performed transcriptomics meta-analyses centered on both
the metabolic rewiring and the 22 metabolism-related TFs identified. First, we curated
datasets from stage 4/M metastatic neuroblastoma patients [52] and processed them, with
emphasis on the deconvolution from immune cells, by the application of the ABIS tool [53].
From the entire pool of sixteen samples evaluated, six met the applied criteria, and were
meticulously selected for further investigation. An equal number of datasets derived from
patient samples from both categories (three MYCN-amplified neuroblastoma and three
non-MYCN-amplified neuroblastoma) that are characterized by similar-low enrichment
for immune cells (≤10%) were comparatively studied. The results depicted 2726 DEGs
[|log2(FC)| ≥ 0.6 and p-value < 0.05] between these groups. Of those, 1396 DEGs were
upregulated (Table S3). GOs applied on the 1396 uDEGs highlighted, among others, several
ontologies and functions connected to metabolism, including peptide biosynthetic, amide
metabolic, and cellular macromolecule processes, etc. (Supplementary Figure S3(Ai)). Next,
we intersected the spectrum of 1396 uDEGs with the one of 286 uDEGs initially identified in
cell lines and revealed 77 common genes (Table S3). Of those, eight encode for metabolism-
related TFs included in the pool of the 22 TFs initially identified, such as MYCN, BCL6,
KLF4, SIX4, NR2F2, GLI2, GLI3, and WT1. Two additional metabolism-related TF-encoding
genes, ATF4 and DLX1, were captured that were commonly upregulated according to FC
but not statistically significant according to the p-value threshold and were thus excluded
from the heatmap (Supplementary Figure S3(Aii)). These findings significantly validate the
knowledge derived from the studies on cell lines.
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Next, we explored another cohort of samples derived from neuroblastoma patients
annotated in TARGET-NBL (neuroblastoma project) [54]. Rigorous criteria were applied
and gated the samples that derived from primary, undifferentiated or poorly differentiated,
high-risk, and stage 4 neuroblastoma tumors. The pool of 66 samples was then processed
for deconvolution of absolute immune signals, as described above, and resulted in a
sub-cohort of 45 samples composed of 20 MYCN-amplified and 25 non-MYCN-amplified
neuroblastoma tumors that are characterized by similar-low enrichment from immune
cells (≤10%). Comparative transcriptomics analysis highlighted 3424 uDEGs (Table S3),
and GOs revealed, among others, cellular biosynthetic, peptide metabolic, and rRNA
metabolic processes (Supplementary Figure S3(Bi)). Next, we intersected the spectrums
of 3424 uDEGs and 286 uDEGs and identified 110 common genes. Of those, ten encode
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for metabolism-related TFs included in the pool of the 22 TFs initially identified, such as
FOXF1, OSR2, WT1, MYCN, NR2F2, SIX4, GLI2, NR1D1, HLF, and CREBZF. Interestingly,
manual curation of ATF4 depicts a statistically significant p-value threshold even with lower
induction (FC 1.42), whereas DLX1 was captured while upregulated according to its FC but
was not statistically significant according to the p-value threshold; thus, both were excluded
from the heatmap (Supplementary Figure S3(Bii)). In line with the results described above,
these findings also validate the knowledge emerging from the studies on cell lines. Overall,
our findings illuminate previously unspecified elements of the complex transcriptional
regulatory landscape(s) assembled and underscore the essential commitment of TFs during
the metabolic rewiring occurring in neuroblastoma.

4. Discussion

Human nervous system metabolism has been elucidated both under normal and onco-
genic states [3]. Herein, we conducted alternative workflows and succeeded in addressing
the interrelationship of several TFs with MYCN overexpression, in neuroblastoma. Among
them, BCL6, KLF4, DLX1, NRF2, and STAT5B are prominent and involved in metabolic
regulation. In more detail, the BCL6 gene, also known as B-Cell Lymphoma 6, resides at
Chromosome 3q27.3 in a genomic region of 24.3 kb and encodes a TF that is a member of
the Broad-Complex, Tramtrack, and Bric-a-Brac/Pox Virus and Zinc Finger (BTB/POZ)
family [80,81]. It was initially identified as a genomic region susceptible to chromosomal
abnormalities in cases involving the diffuse large B-cell lymphoma (DLBCL) family [80]
and follicular lymphoma (FL) [19,82,83]. BCL6 is a transcriptional repressor that binds
DNA through six zinc fingers and can interact with several other factors in order to regulate
transcription. It is crucial for B cell development and overexpressed in lymphomas, while
it also serves as a diagnostic and prognostic marker, facilitating patient stratification and
treatment decision-making [84,85]. Mutations which disrupt two neighboring binding
sites that are recognized by transcriptional repressors of the gene diminish the capacity
of BCL6 to effectively bind to its own promoter, thereby disrupting the negative autoreg-
ulatory mechanism that maintains control over the expression levels of BCL6 [81,86]. In
addition, an intragenic super-enhancer (iSE) of approximately 33 kb, which spans the first
intron of BCL6, exhibits a high frequency of mutations in primary DLBCL cases [1,19]. In
addition, knock-in mouse models with constitutive expression of BCL6 in B cells, which
resemble the 3q27 chromosomal translocation of the human DLBCL, have been studied.
More specifically, Cattoretti et al. [87] showed that mice developed increased GC formation
and lymphomas that closely resembled human DLBCL. These findings highlight the critical
role of BCL6 dysregulation in DLBCL [87]. Metabolic reprogramming of B cells has been
shown to integrate epigenetic activation of BCL6 gene to induce germinal center B cell dif-
ferentiation, thus confirming its crucial pathogenic role in lymphomagenesis and immune
diseases [88]. Indeed, BCL6 has been involved in the pathogenesis of B-acute lymphoblastic
leukemia (B-ALL), chronic myeloid leukemia (CML), breast cancer, and non-small cell lung
cancer (NSCLC) [85,89–91], and thus its dysregulated gene expression is an attractive target
for therapeutic interventions. Furthermore, the balance between MYC and BCL6 expression
in pre-B-ALL has been previously suggested as a key determinant of cell survival [92].

Notably, BCL6 has also been proposed to act as a metabolic switch in mouse liver
cells, regulating genes involved in lipid metabolism. It functions as a repressor of genes
involved in fat burning, being a negative regulator of oxidative metabolism and a promising
target for fatty liver disease [93]. Novel compounds, including peptide and small molecule
inhibitors, have been developed to target BCL6 effectively and disrupt its interaction with
co-repressor complexes, counteracting the effects on its target genes [85].

In neuroblastoma cell lines, differential BCL6 mRNA expression has been recorded be-
tween neuroblastic (N-type) and Schwannian stromal (S-type) cells, being higher in S-type
cells [32]. However, BCL6 expression in the neuroblastic regions of neuroblastoma tumors
was associated with enhanced relapse time and increased overall patient survival compared
to regions without BCL6 expression. This positive association of BCL6 with clinical outcome
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has also been observed in primary central nervous system lymphoma, follicular lymphoma,
and DLBCL, possibly because BCL6 enhances chemotherapy responses. Although detailed
mechanistic studies on the role of BCL6 expression in neuroblastoma are missing, it can
be speculated that, analogous to lymphomas, BCL6 can mediate the arrest of neural crest
cell differentiation involved in tumor development, as well as potentially contribute to the
genetic instability observed in neuroblastomas, possibly due to attenuation of the DNA
damage response [32].

In turn, the KLF4 gene, also known as Krüppel-like factor 4, resides at Chromosome
9q31.2 in a genomic region of 4.9 kb. KLF4 encodes for a DNA binding and zinc finger-
containing TF that functions as a master regulator of the reprogramming of somatic cells to
induced pluripotent stem cells (iPSCs) along with OCT4, SOX2, and c-MYC (Yamanaka
factors) [94]. KLF4′s unique structural features confer pioneer regulatory activities: its
three zinc fingers bind to a 10 bp cognate DNA sequence (5′-GAGGCGTGGC-3′) [95] and,
in addition, it exhibits a low complexity surface efficient in interacting with chromatin
remodelers and TFs [96]. KLF4 functions either as a tumor suppressor or as an oncogene
in a tissue-specific fashion. For instance, it has been identified as overexpressed in early
breast cancer and squamous cell carcinomas [97]. Oppositely, KLF4 loss in early colorec-
tal cancers due to targeted proteasome-dependent degradation designates its function
as a tumor-suppressor through inhibiting tumorigenesis via regulation of cell-cycle ar-
rest [98]. Regarding its commitment to tumor metabolic rewiring, in breast cancer, elevated
KLF4 expression has been detected and contributes to activating phosphofructokinase
(PFKP), a key enzyme involved in the glycolysis pathway [99]. Conversely, in pancreatic
cancer, KLF4 executes an alternative role and inhibits tumor progression by transcrip-
tionally repressing the lactate dehydrogenase (LDHA) enzyme. This operation restricts
the glycolysis-dependent altered metabolic reprogramming of cancer cells, suggesting a
potential tumor-suppressive function for KLF4 in this context [100]. In a recent study, a
novel interaction between monomethyltransferase SET8 and KLF4 was identified. The
SET8/KLF4 complex formation negatively affects the transcriptional activation of SIRT4 by
KLF4, thus promoting the proliferation-favorable Warburg effect of hepatocellular carci-
noma cells [101]. In glioblastoma, KLF4 methylation-dependent transcriptional activation
of UDP-glucose 6-dehydrogenase (UGDH) increases the synthesis of glycosaminoglycans
(GAGs), which constitute essential structural polymers/components of the extracellular
matrix (ECM), thus facilitating tumor growth and invasion [102]. Interestingly, KLF4 has
been described as a putative MYCN-target gene [103].

In neuroblastoma tumors, low expression of KLF4 has been associated with poor
survival of patients, while its overexpression in neuroblastoma cell line SH-SY-5Y was
shown to inhibit cell proliferation and induce cell arrest by upregulating the cell cycle-
inhibitor p21Waf1/Cip1 as well as activating cell differentiation [104]. In our study, many
neuroblastoma cell lines with MYCN amplification exhibited increased expression of KLF4,
indicating a potential contribution to the cell cycle dysregulation and the transformation
process underlying neuroblastoma development.

The DLX1 gene, also known as Distal-Less Homeobox 1, resides at Chromosome 2q31.1
in a genomic region of 4.1 kb. DLX1 encodes for a homeobox-containing TF, a homolog of
the renowned TF that is encoded by the Distal-less (Dll) gene in Drosophila melanogaster. Dll
controls the development of limb appendages, such as the distal part of the leg, the assembly
of structures of the peripheral nervous system, etc., in fruit flies [105–109]. DLX1 in humans
exerts crucial roles in the assembly of craniofacial structures, and its dysregulation is
engaged in distinct types of cancer [110]. For instance, DLX1 is a reliable biomarker
for prostate cancer (PCa), and its elevated expression accompanies the development of
aggressive phenotypes of the disease and poor patient survival [111,112]. At the molecular
level, DLX1 establishes protein–protein interactions with beta-catenin and activates beta-
catenin/TCF signaling pathways, thus promoting growth, migration, and cell colony
assembly in Pca [112]. In addition, in normal hematopoiesis, DLX1 is expressed in a lineage-
specific manner, interacts with SMAD4 via its homeodomain, and inhibits BMP-4-induced
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transcriptional activation [110,113]. In aberrant hematopoiesis, such as in acute myeloid
leukemia (AML), upregulated expression of DLX1 has been recorded as a downstream
effect of activating mutations of fms-like tyrosine kinase 3 (FLT3), a frequent genomic
alteration (~30%) that accompanies AML phenotypes [114,115]. Mechanistically, this is
served by MAPK and JNK pathways [114]. Finally, in ovarian cancer, DLX1 is a direct target
of Forkhead Box M1 (FOXM1) TF. FOXM1 recognizes two conserved binding sites that
flank the TSS of DLX1, thus upregulating its expression in high-grade ovarian cancer [74].
Consequently, DLX1 upregulation promotes cell proliferation, migration, and metastasis.
The above findings imply a pleiotropic commitment of DLX1 in various mechanisms
of tumorigenesis. Although there are no studies available elucidating the expression
and function of DLX1 in neuroblastoma, a possible role in the regulation of neural crest
cell differentiation mechanisms cannot be excluded, given its expression in neural crest
cells [116].

Furthermore, the NRF2 gene, also known as Nuclear Factor Erythroid 2-related factor 2
(NFE2L2), resides at Chromosome 2q31.2 in a genomic region of 34.8 kb. It encodes for a TF
that is a cap’n’collar (CNC) member of a family of basic leucine zipper proteins (bZIP) and
is composed of 7 Neh domains [117]. NRF2 can be activated by toxic electrophilic stimuli
and oxidant factors to induce the transcription of antioxidant and detoxifying genes, but
also genes involved in immune and inflammatory responses, tissue remodeling, and car-
cinogenesis [118]. However, the primary function of NRF2 is cell adaptation to stress [119].
It is well known that oxidative stress and metabolic dysfunction are highly interconnected,
leading to severe pathogenic conditions. NRF2, being a master regulator of stress responses,
has been shown to be activated in diverse tumor types where it is implicated in tumor
formation, progression, and metastasis [120,121]. NRF2 forms heterodimers with MAF
proteins and regulates the expression of multitudes of genes that are under the control of
antioxidant response elements (ARE) [122]. The functions of NRF2 in cancer include both
protective and promoting roles. Interestingly, transient activation of NRF2 works against
cancer development, while its permanent activation is committed to carcinogenesis [123],
metastasis, and resistance to therapies [117,124].

In neuroblastoma, NRF2 has been described to promote cell proliferation and resistance
to retinoic acid (RA) cytotoxicity [125], as well as to a variety of other therapeutic agents.
In respect to MYCN, a study showed that the aggressive neuroblastoma cell line HTLA-
230 bearing MYCN amplification was slightly sensitive to bortezomib (BTZ), a selective
inhibitor of the proteasome, due to NRF2 activation and subsequent upregulation of the
antioxidant heme oxygenase-1 (HO-1). After treatment, these cells downregulated p53
and upregulated p21, favoring cell survival. However, the SH-SY-5Y cells without MYCN
amplification exhibited a higher sensitivity to BTZ because they were unable to upregulate
HO-1, indicating the importance of NRF2 in targeting neuroblastoma chemoresistance and
driving cell adaption to oxidative stress [126].

The STAT5B gene, also known as Signal Transducer and Activator of Transcription 5B,
resides at Chromosome 17q21.2 in a genomic region of 77.2 kb. STAT5B encodes for a TF
that optimally binds to tandemly arranged interferon gamma-activated sequence (GAS)
motifs [127]. Prior to activation, STAT5B is located in the cytoplasm. Upon activation, it
becomes phosphorylated, translocates into the nucleus, and regulates the transcriptional
activation of its target genes [128]. STAT5B is executive in hematopoiesis and in the
differentiation of pluripotent stem cells (PSCs) in adult bone marrow. STAT5 plays an
oncogenic role through the activation of c-Myc, cyclin D1, and Bcl-xl, inducing cellular
transformation and progression of the cell cycle [129].

Its aberrant activation has been associated with myeloid malignancies such as chronic
and acute myelogenous leukemia (CML and AML) [130]. STAT5’s contribution to metabolic
rewiring in cancer has been well-studied. It has been linked to oxidative metabolism in pre-
B cells [131] as well as to a metabolic shift towards aerobic glycolysis in tumor cells [132].
Additionally, there is evidence of STAT5‘s direct activation of the glutamine synthetase (GS)
enzyme upon radiotherapy. The GS promoter region harbors STAT5 response elements,
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and GS elevated expression in radioresistant cancer cells is suggested to enhance their DNA
repair capacity and their survival advantage [133]. Moreover, an interaction of STAT5B
with the δ-opioid receptors has been shown to increase neuronal survival, as well as neurite
outgrowth and differentiation [134,135]. In neuroblastoma cell lines, STAT5B has been
reported as a target of 5-aza-2′-deoxycytidine treatment to induce cell apoptosis and inhibit
cell proliferation by changing the expression level of genes involved in the JAK/STAT
pathway [136], indicating its important role.

5. Conclusions

Taken altogether, it is evident that MYCN amplification exhibits a crucial regula-
tory role in neuroblastoma cells, and our findings provide additional mechanistic insights
through the regulation of pivotal transcription factors such as BCL6, KLF4, DLX1, NRF2, and
STAT5B, which confer altered gene expression programs. It is known that inducible gene
expression requires the synergistic operation of TFs and their counterparts that function
together with respect to signal integration and epigenomic dependencies, e.g., accessibility
of histone-DNA structures and nucleosome packaging, modifications on histones and DNA,
coactivators and chromatin modifier/remodeler integration in chromosomal landscapes,
etc. [16,137]. In many cases, a TF is sufficient to reprogram a cellular state or even to trans-
form entire tissues or organs, e.g., HOX TFs [138]. Such transformations are gained through
the establishment of newly developed gene expression programs that efficiently convert the
phenotypic characteristics of origin. In neuroblastoma, this phenotypic conversion primar-
ily relies, among others, on the overexpression of MYCN oncoprotein, which accounts for
the altered transcriptional regulation of dozens of genes. Elegant studies have shown that,
even when “chopped out” from the endogenous chromatin microenvironment, MYCN can
be assembled in ecDNA amplicons, which therefore episomally drive the overexpression of
MYCN [39]. Here, we show that occasionally in MYCN-amplified oncogenotypes, some
of the upregulated MYCN target-genes encode for additional TFs, and many of those
share the capacity to implement metabolism-related functions. Given the capability of
TFs to establish regulatory networks [18], to fine-tune their own expression by assembling
auto-regulatory loops [16], and to execute distinct modalities depending, among others, on
the epigenetic landscape of incorporation, it becomes evident that neuroblastoma oncophe-
notype evolution might be mechanistically controlled in multiple layers. Moreover, it is
well respected that an advanced approach to developing therapeutic applications targets
the fundamental components that regulate the dysregulated gene expression programs on
which the oncogenic phenotype relies [16]. A class of such functional candidate molecules
is the TFs, which in many cases function as the master regulators of tumorigenesis or
downstream targets of the oncogenic drivers. This provides tremendous capabilities for
designing therapeutic approaches based on synthetic lethality [139]. Such vulnerabilities
cannot be identified or precisely predicted by plain DNA sequence examinations but re-
quire an in-depth understanding of how cancer cells establish their vital gene expression
programs. Hence, we envision that monitoring of the TFs’ mechanistic dependencies and
functional interrelationships is essential in order that such perplexing biological phenomena
of human pathogenesis will become adequately disentangled.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers15194803/s1, Figure S1: Differential gene expression anal-
yses in neuroblastoma: (A) The dotplot illustrates the most statistically and biologically significant
processes associated with the total spectrum of 286 uDEGs, as defined by GOs. The metabolism-
related ontologies are highlighted within boxes. (B) The heatmap depicts the transcriptional pro-
file of TF-encoding genes side by side in non-MYCN-amplified and MYCN-amplified neuroblas-
toma cell lines. Figure S2: ASCL1-binding profile and correlation with neuroblastoma metabolism.
(A) Intersection of ASCL1- and MYCN-ChIP-seq peaks and GOs on their common spectrum. Metabolism-
related processes are highlighted. (B) The distribution of ASCL1 proximal to metabolism-related
TFs in Kelly neuroblastoma cells. Several binding events are captured proximal to the TSSs of
GLI2, HLF, KLF4, NRF2, NR1D1, NR2F2, TCFL5, ZFP1, and MYCN. Figure S3: Transcriptional pro-
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filing of MYCN-amplified and non-amplified neuroblastoma patient-derived samples. (A) Gene
expression investigation on MYCN-amplified and non-MYCN-amplified stage 4/M metastatic neu-
roblastoma specimens. (i) Selected examples of the most statistically and biologically significant
biological processes, as determined by gene ontology analyses (GOs) applied to the 1396 uDEGs, are
highlighted. Among these, several ontologies and functions connected to metabolism are depicted.
(ii) RNA-seq heatmap illustrating the transcriptional upregulation of MYCN, BCL6, KLF4, SIX4,
NR2F2, GLI2, GLI3, and WT1. The heatmap was generated using log2(CPM) normalized counts.
(B) Gene expression investigation on MYCN-amplified and non-MYCN-amplified primary, undiffer-
entiated or poorly differentiated, high-risk, stage 4, neuroblastoma specimens. (i) Selected examples
of the most statistically and biologically significant biological processes, as determined by gene ontol-
ogy analyses (GOs) applied to the 3424 uDEGs, are highlighted. Among these, several ontologies and
functions connected to metabolism are depicted. (ii) RNA-seq heatmap illustrating the transcriptional
upregulation of FOXF1, OSR2, WT1, MYCN, NR2F2, SIX4, GLI2, NR1D1, HLF, and CREBZF. The
heatmap was generated using log2(CPM) normalized counts. Table S1: Differential gene expression
analysis applied in MYCN-amplified compared to non-MYCN-amplified neuroblastoma cell lines
and TFs list. Table S2: MYCN-inducible binding signals (peaks) enriched in MYCN-amplified and
MYCN-overexpressing cell lines retrieved from our MYCN-ChIP-seq meta-analyses. Table S3: Dif-
ferential gene expression analysis applied in MYCN-amplified compared to non-MYCN-amplified
neuroblastoma patient-derived samples and TFs list.

Author Contributions: Conceptualization: M.A., M.P., M.A.K. and C.P.; Formal computational
analysis: M.A., M.P., M.A.K. and L.C.; Writing—original draft, preparation M.A., M.A.K., M.P., L.C.,
G.V., C.P. and A.-I.G.; Writing—review and editing, M.A., M.A.K., M.P., L.C., G.V., C.P. and A.-I.G.
Supervision, M.A. and C.P.; Project administration, M.A. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by research grants to M.A. from: the Bodossaki Foundation,
Fondation Santé, two Asklepios Grants from Gilead Sciences Hellas, the Antonios and Ioannis
Angelicoussis Foundation, and the A.G. Leventis Foundation. This research work was supported
by the Hellenic Foundation for Research and Innovation (HFRI) under the 4th Call for HFRI PhD
Fellowships (Fellowship Number: 10657) to M.A.K. The funders had no role in the study design, the
collection, analyses, and interpretation of results, the writing, or the submission of the manuscript.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: RNA-sequencing FASTQ files of human neuroblastoma cell lines
were downloaded from the Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/,
accessed on 21 June 2023) database (GEO accession number GSE90683), and information about
samples can be found in Boeva, et al., 2017 [47]. RNA-sequencing FASTQ files of human neu-
roblastoma patient-derived samples were downloaded from the Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/, accessed on 21 June 2023) database (GEO accession number
GSE94035), and information about samples can be found in Rifatbegovic et al., 2018 [52]. RNA-
seq data for TARGET-NBL datasets with related clinical information were retrieved from the Na-
tional Cancer Institute GDC Data Portal. ChIP-sequencing FASTQ files for transcription factor
MYCN in human neuroblastoma cell lines were obtained from the Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/, accessed on 21 June 2023) database (GEO accession numbers
GSE138315 and GSE199086). Further information regarding the samples can be found in Upton et al.,
2020 [29] and Wang et al., 2023 [26]. The ChIP-sequencing FASTQ file for transcription factor ASCL1
in human neuroblastoma cell line with MYCN amplification was sourced from the Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/, accessed on 21 June 2023) database (GEO
accession number GSE120074). Detailed sample information can be found in Wang et al., 2019 [55].

Acknowledgments: The authors would like to thank Vasileios L. Zogopoulos for critical proofreading
of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/


Cancers 2023, 15, 4803 19 of 24

References
1. Koutsi, M.A.; Pouliou, M.; Champezou, L.; Vatsellas, G.; Giannopoulou, A.I.; Piperi, C.; Agelopoulos, M. Typical Enhancers,

Super-Enhancers, and Cancers. Cancers 2022, 14, 4375. [CrossRef] [PubMed]
2. Faubert, B.; Solmonson, A.; DeBerardinis, R.J. Metabolic reprogramming and cancer progression. Science 2020, 368, eaaw5473.

[CrossRef] [PubMed]
3. DeBerardinis, R.J.; Chandel, N.S. Fundamentals of cancer metabolism. Sci. Adv. 2016, 2, e1600200. [CrossRef] [PubMed]
4. Pavlova, N.N.; Thompson, C.B. The Emerging Hallmarks of Cancer Metabolism. Cell Metab. 2016, 23, 27–47. [CrossRef]
5. Kim, J.; DeBerardinis, R.J. Mechanisms and Implications of Metabolic Heterogeneity in Cancer. Cell Metab. 2019, 30, 434–446.

[CrossRef]
6. Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [CrossRef]
7. Liberti, M.V.; Locasale, J.W. The Warburg Effect: How Does it Benefit Cancer Cells? Trends Biochem. Sci. 2016, 41, 211–218.

[CrossRef]
8. Peng, X.; Chen, Z.; Farshidfar, F.; Xu, X.; Lorenzi, P.L.; Wang, Y.; Cheng, F.; Tan, L.; Mojumdar, K.; Du, D.; et al. Molecular

Characterization and Clinical Relevance of Metabolic Expression Subtypes in Human Cancers. Cell Rep. 2018, 23, 255–269.e4.
[CrossRef]

9. Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [CrossRef]
10. Warburg, O.; Wind, F.; Negelein, E. The Metabolism of Tumors in The Body. J. Gen. Physiol. 1927, 8, 519–530. [CrossRef]
11. Yoshida, G.J. Beyond the Warburg Effect: N-Myc Contributes to Metabolic Reprogramming in Cancer Cells. Front. Oncol. 2020,

10, 791. [CrossRef] [PubMed]
12. Hoadley, K.A.; Yau, C.; Hinoue, T.; Wolf, D.M.; Lazar, A.J.; Drill, E.; Shen, R.; Taylor, A.M.; Cherniack, A.D.; Thorsson, V.;

et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell 2018, 173,
291–304.e6. [CrossRef] [PubMed]

13. Ji, H.; Ramsey, M.R.; Hayes, D.N.; Fan, C.; McNamara, K.; Kozlowski, P.; Torrice, C.; Wu, M.C.; Shimamura, T.; Perera, S.A.; et al.
LKB1 modulates lung cancer differentiation and metastasis. Nature 2007, 448, 807–810. [CrossRef] [PubMed]

14. Sousa, C.M.; Biancur, D.E.; Wang, X.; Halbrook, C.J.; Sherman, M.H.; Zhang, L.; Kremer, D.; Hwang, R.F.; Witkiewicz, A.K.; Ying,
H.; et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 2016, 536, 479–483.
[CrossRef]

15. Wang, X.; Liu, R.; Zhu, W.; Chu, H.; Yu, H.; Wei, P.; Wu, X.; Zhu, H.; Gao, H.; Liang, J.; et al. UDP-glucose accelerates SNAI1
mRNA decay and impairs lung cancer metastasis. Nature 2019, 571, 127–131. [CrossRef]

16. Bradner, J.E.; Hnisz, D.; Young, R.A. Transcriptional Addiction in Cancer. Cell 2017, 168, 629–643. [CrossRef]
17. Agelopoulos, M.; Foutadakis, S.; Thanos, D. The Causes and Consequences of Spatial Organization of the Genome in Regulation

of Gene Expression. Front. Immunol. 2021, 12, 682397. [CrossRef]
18. Papathanasiou, M.; Tsiftsoglou, S.A.; Polyzos, A.P.; Papadopoulou, D.; Valakos, D.; Klagkou, E.; Karagianni, P.; Pliatska, M.;

Talianidis, I.; Agelopoulos, M.; et al. Identification of a dynamic gene regulatory network required for pluripotency factor-induced
reprogramming of mouse fibroblasts and hepatocytes. EMBO J. 2021, 40, e102236. [CrossRef]

19. Bal, E.; Kumar, R.; Hadigol, M.; Holmes, A.B.; Hilton, L.K.; Loh, J.W.; Dreval, K.; Wong, J.; Vlasevska, S.; Corinaldesi, C.; et al.
Super-enhancer hypermutation alters oncogene expression in B cell lymphoma. Nature 2022, 607, 808–815. [CrossRef]

20. Schaub, F.X.; Dhankani, V.; Berger, A.C.; Trivedi, M.; Richardson, A.B.; Shaw, R.; Zhao, W.; Zhang, X.; Ventura, A.; Liu, Y.; et al.
Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas. Cell Syst. 2018, 6,
282–300.e2. [CrossRef]

21. Prior, I.A.; Lewis, P.D.; Mattos, C. A comprehensive survey of Ras mutations in cancer. Cancer Res. 2012, 72, 2457–2467. [CrossRef]
[PubMed]

22. Kohl, N.E.; Kanda, N.; Schreck, R.R.; Bruns, G.; Latt, S.A.; Gilbert, F.; Alt, F.W. Transposition and amplification of oncogene-related
sequences in human neuroblastomas. Cell 1983, 35, 359–367. [CrossRef] [PubMed]

23. Liu, R.; Shi, P.; Wang, Z.; Yuan, C.; Cui, H. Molecular Mechanisms of MYCN Dysregulation in Cancers. Front. Oncol. 2021, 10,
625332. [CrossRef] [PubMed]

24. Valentijn, L.J.; Koster, J.; Haneveld, F.; Aissa, R.A.; van Sluis, P.; Broekmans, M.E.; Molenaar, J.J.; van Nes, J.; Versteeg, R. Functional
MYCN signature predicts outcome of neuroblastoma irrespective of MYCN amplification. Proc. Natl. Acad. Sci. USA 2012, 109,
19190–19195. [CrossRef]

25. Schwab, M.; Alitalo, K.; Klempnauer, K.H.; Varmus, H.E.; Bishop, J.M.; Gilbert, F.; Brodeur, G.; Goldstein, M.; Trent, J. Amplified
DNA with limited homology to myc cellular oncogene is shared by human neuroblastoma cell lines and a neuroblastoma tumour.
Nature 1983, 305, 245–248. [CrossRef]

26. Wang, D.; Yin, Z.; Wang, H.; Wang, L.; Li, T.; Xiao, R.; Xie, T.; Han, R.; Dong, R.; Liu, H.; et al. The super elongation complex
drives transcriptional addiction in MYCN-amplified neuroblastoma. Sci. Adv. 2023, 9, eadf0005. [CrossRef]

27. Brodeur, G.M. Neuroblastoma: Biological insights into a clinical enigma. Nat. Rev. Cancer 2003, 3, 203–216. [CrossRef]
28. Bansal, M.; Gupta, A.; Ding, H.F. MYCN and Metabolic Reprogramming in Neuroblastoma. Cancers 2022, 14, 4113. [CrossRef]
29. Upton, K.; Modi, A.; Patel, K.; Kendsersky, N.M.; Conkrite, K.L.; Sussman, R.T.; Way, G.P.; Adams, R.N.; Sacks, G.I.; Fortina, P.;

et al. Epigenomic profiling of neuroblastoma cell lines. Sci. Data 2020, 7, 116. [CrossRef]

https://doi.org/10.3390/cancers14184375
https://www.ncbi.nlm.nih.gov/pubmed/36139535
https://doi.org/10.1126/science.aaw5473
https://www.ncbi.nlm.nih.gov/pubmed/32273439
https://doi.org/10.1126/sciadv.1600200
https://www.ncbi.nlm.nih.gov/pubmed/27386546
https://doi.org/10.1016/j.cmet.2015.12.006
https://doi.org/10.1016/j.cmet.2019.08.013
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.tibs.2015.12.001
https://doi.org/10.1016/j.celrep.2018.03.077
https://doi.org/10.1126/science.123.3191.309
https://doi.org/10.1085/jgp.8.6.519
https://doi.org/10.3389/fonc.2020.00791
https://www.ncbi.nlm.nih.gov/pubmed/32547946
https://doi.org/10.1016/j.cell.2018.03.022
https://www.ncbi.nlm.nih.gov/pubmed/29625048
https://doi.org/10.1038/nature06030
https://www.ncbi.nlm.nih.gov/pubmed/17676035
https://doi.org/10.1038/nature19084
https://doi.org/10.1038/s41586-019-1340-y
https://doi.org/10.1016/j.cell.2016.12.013
https://doi.org/10.3389/fimmu.2021.682397
https://doi.org/10.15252/embj.2019102236
https://doi.org/10.1038/s41586-022-04906-8
https://doi.org/10.1016/j.cels.2018.03.003
https://doi.org/10.1158/0008-5472.CAN-11-2612
https://www.ncbi.nlm.nih.gov/pubmed/22589270
https://doi.org/10.1016/0092-8674(83)90169-1
https://www.ncbi.nlm.nih.gov/pubmed/6197179
https://doi.org/10.3389/fonc.2020.625332
https://www.ncbi.nlm.nih.gov/pubmed/33614505
https://doi.org/10.1073/pnas.1208215109
https://doi.org/10.1038/305245a0
https://doi.org/10.1126/sciadv.adf0005
https://doi.org/10.1038/nrc1014
https://doi.org/10.3390/cancers14174113
https://doi.org/10.1038/s41597-020-0458-y


Cancers 2023, 15, 4803 20 of 24

30. Monclair, T.; Brodeur, G.M.; Ambros, P.F.; Brisse, H.J.; Cecchetto, G.; Holmes, K.; Kaneko, M.; London, W.B.; Matthay, K.K.;
Nuchtern, J.G.; et al. The International Neuroblastoma Risk Group (INRG) staging system: An INRG Task Force report. J. Clin.
Oncol. 2009, 27, 298–303. [CrossRef]

31. Irwin, M.S.; Naranjo, A.; Zhang, F.F.; Cohn, S.L.; London, W.B.; Gastier-Foster, J.M.; Ramirez, N.C.; Pfau, R.; Reshmi, S.; Wagner,
E.; et al. Revised Neuroblastoma Risk Classification System: A Report From the Children’s Oncology Group. J. Clin. Oncol. 2021,
39, 3229–3241. [CrossRef] [PubMed]

32. Chamdin, A.; Jarzembowski, J.A.; Subramanian, C.; Kuick, R.; Lee, J.S.; Kwok, R.P.; Castle, V.P.; Opipari, A.W. Bcl6 is expressed in
neuroblastoma: Tumor cell type-specific expression predicts outcome. Transl. Oncol. 2009, 2, 128–137. [CrossRef]

33. Brodeur, G.M.; Seeger, R.C.; Schwab, M.; Varmus, H.E.; Bishop, J.M. Amplification of N-myc in untreated human neuroblastomas
correlates with advanced disease stage. Science 1984, 224, 1121–1124. [CrossRef] [PubMed]

34. Qing, G.; Li, B.; Vu, A.; Skuli, N.; Walton, Z.E.; Liu, X.; Mayes, P.A.; Wise, D.R.; Thompson, C.B.; Maris, J.M.; et al. ATF4 regulates
MYC-mediated neuroblastoma cell death upon glutamine deprivation. Cancer Cell 2012, 22, 631–644. [CrossRef] [PubMed]

35. Schleiermacher, G.; Mosseri, V.; London, W.B.; Maris, J.M.; Brodeur, G.M.; Attiyeh, E.; Haber, M.; Khan, J.; Nakagawara, A.;
Speleman, F.; et al. Segmental chromosomal alterations have prognostic impact in neuroblastoma: A report from the INRG
project. Br. J. Cancer 2012, 107, 1418–1422. [CrossRef] [PubMed]

36. Fuchs, S.; Danßmann, C.; Klironomos, F.; Winkler, A.; Fallmann, J.; Kruetzfeldt, L.M.; Szymansky, A.; Naderi, J.; Bernhart, S.H.;
Grunewald, L.; et al. Defining the landscape of circular RNAs in neuroblastoma unveils a global suppressive function of MYCN.
Nat. Commun. 2023, 14, 3936. [CrossRef]

37. Fransson, S.; Martinez-Monleon, A.; Johansson, M.; Sjöberg, R.M.; Björklund, C.; Ljungman, G.; Ek, T.; Kogner, P.; Martinsson, T.
Whole-genome sequencing of recurrent neuroblastoma reveals somatic mutations that affect key players in cancer progression
and telomere maintenance. Sci. Rep. 2020, 10, 22432. [CrossRef]

38. van Groningen, T.; Akogul, N.; Westerhout, E.M.; Chan, A.; Hasselt, N.E.; Zwijnenburg, D.A.; Broekmans, M.; Stroeken, P.;
Haneveld, F.; Hooijer, G.K.J.; et al. A NOTCH feed-forward loop drives reprogramming from adrenergic to mesenchymal state in
neuroblastoma. Nat. Commun. 2019, 10, 1530. [CrossRef]

39. Helmsauer, K.; Valieva, M.E.; Ali, S.; Chamorro González, R.; Schöpflin, R.; Röefzaad, C.; Bei, Y.; Dorado Garcia, H.; Rodriguez-Fos,
E.; Puiggròs, M.; et al. Enhancer hijacking determines extrachromosomal circular MYCN amplicon architecture in neuroblastoma.
Nat. Commun. 2020, 11, 5823. [CrossRef]

40. Ackermann, S.; Cartolano, M.; Hero, B.; Welte, A.; Kahlert, Y.; Roderwieser, A.; Bartenhagen, C.; Walter, E.; Gecht, J.; Kerschke, L.;
et al. A mechanistic classification of clinical phenotypes in neuroblastoma. Science 2018, 362, 1165–1170. [CrossRef]

41. Koneru, B.; Lopez, G.; Farooqi, A.; Conkrite, K.L.; Nguyen, T.H.; Macha, S.J.; Modi, A.; Rokita, J.L.; Urias, E.; Hindle, A.; et al.
Telomere Maintenance Mechanisms Define Clinical Outcome in High-Risk Neuroblastoma. Cancer Res. 2020, 80, 2663–2675.
[CrossRef] [PubMed]

42. Ogawa, S.; Takita, J.; Sanada, M.; Hayashi, Y. Oncogenic mutations of ALK in neuroblastoma. Cancer Sci. 2011, 102, 302–308.
[CrossRef] [PubMed]

43. Trochet, D.; Bourdeaut, F.; Janoueix-Lerosey, I.; Deville, A.; de Pontual, L.; Schleiermacher, G.; Coze, C.; Philip, N.; Frébourg, T.;
Munnich, A.; et al. Germline mutations of the paired-like homeobox 2B (PHOX2B) gene in neuroblastoma. Am. J. Hum. Genet.
2004, 74, 761–764. [CrossRef]

44. Xia, Y.; Ye, B.; Ding, J.; Yu, Y.; Alptekin, A.; Thangaraju, M.; Prasad, P.D.; Ding, Z.C.; Park, E.J.; Choi, J.H.; et al. Metabolic
Reprogramming by MYCN Confers Dependence on the Serine-Glycine-One-Carbon Biosynthetic Pathway. Cancer Res. 2019, 79,
3837–3850. [CrossRef] [PubMed]

45. Tao, L.; Mohammad, M.A.; Milazzo, G.; Moreno-Smith, M.; Patel, T.D.; Zorman, B.; Badachhape, A.; Hernandez, B.E.; Wolf, A.B.;
Zeng, Z.; et al. MYCN-driven fatty acid uptake is a metabolic vulnerability in neuroblastoma. Nat. Commun. 2022, 13, 3728.
[CrossRef] [PubMed]

46. Guo, Y.F.; Duan, J.J.; Wang, J.; Li, L.; Wang, D.; Liu, X.Z.; Yang, J.; Zhang, H.R.; Lv, J.; Yang, Y.J.; et al. Inhibition of the
ALDH18A1-MYCN positive feedback loop attenuates MYCN-amplified neuroblastoma growth. Sci. Transl. Med. 2020, 12,
eaax8694. [CrossRef]

47. Boeva, V.; Louis-Brennetot, C.; Peltier, A.; Durand, S.; Pierre-Eugène, C.; Raynal, V.; Etchevers, H.C.; Thomas, S.; Lermine, A.;
Daudigeos-Dubus, E.; et al. Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries. Nat. Genet. 2017,
49, 1408–1413. [CrossRef]

48. Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and
HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [CrossRef] [PubMed]

49. Anders, S.; Pyl, P.T.; Huber, W. HTSeq—A Python framework to work with high-throughput sequencing data. Bioinformatics 2015,
31, 166–169. [CrossRef]

50. Lambert, S.A.; Jolma, A.; Campitelli, L.F.; Das, P.K.; Yin, Y.; Albu, M.; Chen, X.; Taipale, J.; Hughes, T.R.; Weirauch, M.T. The
Human Transcription Factors. Cell 2018, 172, 650–665. [CrossRef]

51. Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g:Profiler: A web server for functional enrichment
analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [CrossRef] [PubMed]

https://doi.org/10.1200/JCO.2008.16.6876
https://doi.org/10.1200/JCO.21.00278
https://www.ncbi.nlm.nih.gov/pubmed/34319759
https://doi.org/10.1593/tlo.08220
https://doi.org/10.1126/science.6719137
https://www.ncbi.nlm.nih.gov/pubmed/6719137
https://doi.org/10.1016/j.ccr.2012.09.021
https://www.ncbi.nlm.nih.gov/pubmed/23153536
https://doi.org/10.1038/bjc.2012.375
https://www.ncbi.nlm.nih.gov/pubmed/22976801
https://doi.org/10.1038/s41467-023-38747-4
https://doi.org/10.1038/s41598-020-78370-7
https://doi.org/10.1038/s41467-019-09470-w
https://doi.org/10.1038/s41467-020-19452-y
https://doi.org/10.1126/science.aat6768
https://doi.org/10.1158/0008-5472.CAN-19-3068
https://www.ncbi.nlm.nih.gov/pubmed/32291317
https://doi.org/10.1111/j.1349-7006.2010.01825.x
https://www.ncbi.nlm.nih.gov/pubmed/21205076
https://doi.org/10.1086/383253
https://doi.org/10.1158/0008-5472.CAN-18-3541
https://www.ncbi.nlm.nih.gov/pubmed/31088832
https://doi.org/10.1038/s41467-022-31331-2
https://www.ncbi.nlm.nih.gov/pubmed/35764645
https://doi.org/10.1126/scitranslmed.aax8694
https://doi.org/10.1038/ng.3921
https://doi.org/10.1038/s41587-019-0201-4
https://www.ncbi.nlm.nih.gov/pubmed/31375807
https://doi.org/10.1093/bioinformatics/btu638
https://doi.org/10.1016/j.cell.2018.01.029
https://doi.org/10.1093/nar/gkz369
https://www.ncbi.nlm.nih.gov/pubmed/31066453


Cancers 2023, 15, 4803 21 of 24

52. Rifatbegovic, F.; Frech, C.; Abbasi, M.R.; Taschner-Mandl, S.; Weiss, T.; Schmidt, W.M.; Schmidt, I.; Ladenstein, R.; Ambros, I.M.;
Ambros, P.F. Neuroblastoma cells undergo transcriptomic alterations upon dissemination into the bone marrow and subsequent
tumor progression. Int. J. Cancer 2018, 142, 297–307. [CrossRef] [PubMed]

53. Monaco, G.; Lee, B.; Xu, W.; Mustafah, S.; Hwang, Y.Y.; Carré, C.; Burdin, N.; Visan, L.; Ceccarelli, M.; Poidinger, M.; et al.
RNA-Seq Signatures Normalized by mRNA Abundance Allow Absolute Deconvolution of Human Immune Cell Types. Cell Rep.
2019, 26, 1627–1640.e7. [CrossRef] [PubMed]

54. Wei, J.S.; Kuznetsov, I.B.; Zhang, S.; Song, Y.K.; Asgharzadeh, S.; Sindiri, S.; Wen, X.; Patidar, R.; Najaraj, S.; Walton, A.; et al.
Clinically Relevant Cytotoxic Immune Cell Signatures and Clonal Expansion of T-Cell Receptors in High-Risk MYCN-Not-
Amplified Human Neuroblastoma. Clin. Cancer Res. 2018, 24, 5673–5684. [CrossRef]

55. Wang, L.; Tan, T.K.; Durbin, A.D.; Zimmerman, M.W.; Abraham, B.J.; Tan, S.H.; Ngoc, P.C.T.; Weichert-Leahey, N.; Akahane, K.;
Lawton, L.N.; et al. ASCL1 is a MYCN- and LMO1-dependent member of the adrenergic neuroblastoma core regulatory circuitry.
Nat. Commun. 2019, 10, 5622. [CrossRef]

56. Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.; Cech, M.; Chilton, J.; Clements, D.; Coraor, N.; Grüning, B.A.; et al.
The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 46,
W537–W544. [CrossRef]

57. Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [CrossRef]
58. Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; 1000 Genome Project Data

Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [CrossRef]
59. Feng, J.; Liu, T.; Qin, B.; Zhang, Y.; Liu, X.S. Identifying ChIP-seq enrichment using MACS. Nat. Protoc. 2012, 7, 1728–1740.

[CrossRef]
60. Amemiya, H.M.; Kundaje, A.; Boyle, A.P. The ENCODE Blacklist: Identification of Problematic Regions of the Genome. Sci. Rep.

2019, 9, 9354. [CrossRef]
61. Quinlan, A.R.; Hall, I.M. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 2010, 26, 841–842.

[CrossRef] [PubMed]
62. Ramírez, F.; Ryan, D.P.; Grüning, B.; Bhardwaj, V.; Kilpert, F.; Richter, A.S.; Heyne, S.; Dündar, F.; Manke, T. deepTools2: A next

generation web server for deep-sequencing data analysis. Nucleic Acids Res. 2016, 44, W160–W165. [CrossRef] [PubMed]
63. McLean, C.Y.; Bristor, D.; Hiller, M.; Clarke, S.L.; Schaar, B.T.; Lowe, C.B.; Wenger, A.M.; Bejerano, G. GREAT improves functional

interpretation of cis-regulatory regions. Nat. Biotechnol. 2010, 28, 495–501. [CrossRef] [PubMed]
64. Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: Tools for

motif discovery and searching. Nucleic Acids Res. 2009, 37, W202–W208. [CrossRef] [PubMed]
65. McLeay, R.C.; Bailey, T.L. Motif Enrichment Analysis: A unified framework and an evaluation on ChIP data. BMC Bioinform.

2010, 11, 165. [CrossRef]
66. Bailey, T.L.; Gribskov, M. Combining evidence using p-values: Application to sequence homology searches. Bioinformatics 1998,

14, 48–54. [CrossRef]
67. Grant, C.E.; Bailey, T.L.; Noble, W.S. FIMO: Scanning for occurrences of a given motif. Bioinformatics 2011, 27, 1017–1018.

[CrossRef]
68. Michael, A.K.; Stoos, L.; Crosby, P.; Eggers, N.; Nie, X.Y.; Makasheva, K.; Minnich, M.; Healy, K.L.; Weiss, J.; Kempf, G.; et al.

Cooperation between bHLH transcription factors and histones for DNA access. Nature 2023, 619, 385–393. [CrossRef]
69. Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer.

Nat. Biotechnol. 2011, 29, 24–26. [CrossRef]
70. Tong, A.J.; Liu, X.; Thomas, B.J.; Lissner, M.M.; Baker, M.R.; Senagolage, M.D.; Allred, A.L.; Barish, G.D.; Smale, S.T. A Stringent

Systems Approach Uncovers Gene-Specific Mechanisms Regulating Inflammation. Cell 2016, 165, 165–179. [CrossRef]
71. Ren, P.; Yue, M.; Xiao, D.; Xiu, R.; Gan, L.; Liu, H.; Qing, G. ATF4 and N-Myc coordinate glutamine metabolism in MYCN-

amplified neuroblastoma cells through ASCT2 activation. J. Pathol. 2015, 235, 90–100. [CrossRef] [PubMed]
72. Wise, D.R.; DeBerardinis, R.J.; Mancuso, A.; Sayed, N.; Zhang, X.Y.; Pfeiffer, H.K.; Nissim, I.; Daikhin, E.; Yudkoff, M.; McMahon,

S.B.; et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction.
Proc. Natl. Acad. Sci. USA 2008, 105, 18782–18787. [CrossRef] [PubMed]

73. Westermann, F.; Muth, D.; Benner, A.; Bauer, T.; Henrich, K.O.; Oberthuer, A.; Brors, B.; Beissbarth, T.; Vandesompele, J.; Pattyn,
F.; et al. Distinct transcriptional MYCN/c-MYC activities are associated with spontaneous regression or malignant progression in
neuroblastomas. Genome Biol. 2008, 9, R150. [CrossRef] [PubMed]

74. Chan, D.W.; Hui, W.W.; Wang, J.J.; Yung, M.M.; Hui, L.M.; Qin, Y.; Liang, R.R.; Leung, T.H.; Xu, D.; Chan, K.K.; et al. DLX1 acts as
a crucial target of FOXM1 to promote ovarian cancer aggressiveness by enhancing TGF-β/SMAD4 signaling. Oncogene 2017, 36,
1404–1416. [CrossRef]

75. Suenaga, Y.; Kaneko, Y.; Matsumoto, D.; Hossain, M.S.; Ozaki, T.; Nakagawara, A. Positive auto-regulation of MYCN in human
neuroblastoma. Biochem. Biophys. Res. Commun. 2009, 390, 21–26. [CrossRef]

76. Sivak, L.E.; Tai, K.F.; Smith, R.S.; Dillon, P.A.; Brodeur, G.M.; Carroll, W.L. Autoregulation of the human N-myc oncogene is
disrupted in amplified but not single-copy neuroblastoma cell lines. Oncogene 1997, 15, 1937–1946. [CrossRef]

77. Reiter, J.L.; Brodeur, G.M. High-resolution mapping of a 130-kb core region of the MYCN amplicon in neuroblastomas. Genomics
1996, 32, 97–103. [CrossRef]

https://doi.org/10.1002/ijc.31053
https://www.ncbi.nlm.nih.gov/pubmed/28921546
https://doi.org/10.1016/j.celrep.2019.01.041
https://www.ncbi.nlm.nih.gov/pubmed/30726743
https://doi.org/10.1158/1078-0432.CCR-18-0599
https://doi.org/10.1038/s41467-019-13515-5
https://doi.org/10.1093/nar/gky379
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1038/nprot.2012.101
https://doi.org/10.1038/s41598-019-45839-z
https://doi.org/10.1093/bioinformatics/btq033
https://www.ncbi.nlm.nih.gov/pubmed/20110278
https://doi.org/10.1093/nar/gkw257
https://www.ncbi.nlm.nih.gov/pubmed/27079975
https://doi.org/10.1038/nbt.1630
https://www.ncbi.nlm.nih.gov/pubmed/20436461
https://doi.org/10.1093/nar/gkp335
https://www.ncbi.nlm.nih.gov/pubmed/19458158
https://doi.org/10.1186/1471-2105-11-165
https://doi.org/10.1093/bioinformatics/14.1.48
https://doi.org/10.1093/bioinformatics/btr064
https://doi.org/10.1038/s41586-023-06282-3
https://doi.org/10.1038/nbt.1754
https://doi.org/10.1016/j.cell.2016.01.020
https://doi.org/10.1002/path.4429
https://www.ncbi.nlm.nih.gov/pubmed/25142020
https://doi.org/10.1073/pnas.0810199105
https://www.ncbi.nlm.nih.gov/pubmed/19033189
https://doi.org/10.1186/gb-2008-9-10-r150
https://www.ncbi.nlm.nih.gov/pubmed/18851746
https://doi.org/10.1038/onc.2016.307
https://doi.org/10.1016/j.bbrc.2009.09.044
https://doi.org/10.1038/sj.onc.1201363
https://doi.org/10.1006/geno.1996.0081


Cancers 2023, 15, 4803 22 of 24

78. Schwab, M. MYCN in neuronal tumours. Cancer Lett. 2004, 204, 179–187. [CrossRef]
79. Jin, H.; Zhang, C.; Zwahlen, M.; von Feilitzen, K.; Karlsson, M.; Shi, M.; Yuan, M.; Song, X.; Li, X.; Yang, H.; et al. Systematic

transcriptional analysis of human cell lines for gene expression landscape and tumor representation. Nat. Commun. 2023, 14, 5417.
[CrossRef]

80. Ye, B.H.; Lista, F.; Lo Coco, F.; Knowles, D.M.; Offit, K.; Chaganti, R.S.; Dalla-Favera, R. Alterations of a zinc finger-encoding gene,
BCL-6, in diffuse large-cell lymphoma. Science 1993, 262, 747–750. [CrossRef]

81. Yang, H.; Green, M.R. Epigenetic Programing of B-Cell Lymphoma by BCL6 and Its Genetic Deregulation. Front. Cell Dev. Biol.
2019, 7, 272. [CrossRef] [PubMed]

82. Duan, S.; Cermak, L.; Pagan, J.K.; Rossi, M.; Martinengo, C.; di Celle, P.F.; Chapuy, B.; Shipp, M.; Chiarle, R.; Pagano, M. FBXO11
targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature 2012, 481, 90–93. [CrossRef] [PubMed]

83. Batmanov, K.; Wang, W.; Bjørås, M.; Delabie, J.; Wang, J. Integrative whole-genome sequence analysis reveals roles of regulatory
mutations in BCL6 and BCL2 in follicular lymphoma. Sci. Rep. 2017, 7, 7040. [CrossRef] [PubMed]

84. Brescia, P.; Schneider, C.; Holmes, A.B.; Shen, Q.; Hussein, S.; Pasqualucci, L.; Basso, K.; Dalla-Favera, R. MEF2B Instructs
Germinal Center Development and Acts as an Oncogene in B Cell Lymphomagenesis. Cancer Cell 2018, 34, 453–465.e9. [CrossRef]

85. Cardenas, M.G.; Oswald, E.; Yu, W.; Xue, F.; MacKerell, A.D., Jr.; Melnick, A.M. The Expanding Role of the BCL6 Oncoprotein as
a Cancer Therapeutic Target. Clin. Cancer Res. 2017, 23, 885–893. [CrossRef]

86. Pasqualucci, L.; Migliazza, A.; Basso, K.; Houldsworth, J.; Chaganti, R.S.; Dalla-Favera, R. Mutations of the BCL6 proto-oncogene
disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood 2003, 101, 2914–2923. [CrossRef]

87. Cattoretti, G.; Pasqualucci, L.; Ballon, G.; Tam, W.; Nandula, S.V.; Shen, Q.; Mo, T.; Murty, V.V.; Dalla-Favera, R. Deregulated
BCL6 expression recapitulates the pathogenesis of human diffuse large B cell lymphomas in mice. Cancer Cell 2005, 7, 445–455.
[CrossRef]

88. Haniuda, K.; Fukao, S.; Kitamura, D. Metabolic Reprogramming Induces Germinal Center B Cell Differentiation through Bcl6
Locus Remodeling. Cell Rep. 2020, 33, 108333. [CrossRef]

89. Geng, H.; Brennan, S.; Milne, T.A.; Chen, W.Y.; Li, Y.; Hurtz, C.; Kweon, S.M.; Zickl, L.; Shojaee, S.; Neuberg, D.; et al. Integrative
epigenomic analysis identifies biomarkers and therapeutic targets in adult B-acute lymphoblastic leukemia. Cancer Discov. 2012,
2, 1004–1023. [CrossRef]

90. Hurtz, C.; Hatzi, K.; Cerchietti, L.; Braig, M.; Park, E.; Kim, Y.M.; Herzog, S.; Ramezani-Rad, P.; Jumaa, H.; Müller, M.C.; et al.
BCL6-mediated repression of p53 is critical for leukemia stem cell survival in chronic myeloid leukemia. J. Exp. Med. 2011, 208,
2163–2174. [CrossRef]

91. Walker, S.R.; Liu, S.; Xiang, M.; Nicolais, M.; Hatzi, K.; Giannopoulou, E.; Elemento, O.; Cerchietti, L.; Melnick, A.; Frank, D.A.
The transcriptional modulator BCL6 as a molecular target for breast cancer therapy. Oncogene 2015, 34, 1073–1082. [CrossRef]
[PubMed]

92. Kume, K.; Chen, Z.; Chan, L.N.; Robinson, M.E.; Leveille, E.; Lee, J.; Cosgun, K.N.; Arce, D.F.; Khanduja, D.; Klemm, L.; et al.
Divergent MYC- and BCL6-Driven Metabolic Programs Enable Dynamic Regulation of Cell Biomass in B-Cell Malignancies.
Blood 2022, 140, 5900–5901. [CrossRef]

93. Sommars, M.A.; Ramachandran, K.; Senagolage, M.D.; Futtner, C.R.; Germain, D.M.; Allred, A.L.; Omura, Y.; Bederman, I.R.;
Barish, G.D. Dynamic repression by BCL6 controls the genome-wide liver response to fasting and steatosis. Elife 2019, 8, e43922.
[CrossRef] [PubMed]

94. Takahashi, K.; Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined
factors. Cell 2006, 126, 663–676. [CrossRef] [PubMed]

95. Shields, J.M.; Yang, V.W. Identification of the DNA sequence that interacts with the gut-enriched Krüppel-like factor. Nucleic
Acids Res. 1998, 26, 796–802. [CrossRef] [PubMed]

96. Sharma, R.; Choi, K.J.; Quan, M.D.; Sharma, S.; Sankaran, B.; Park, H.; LaGrone, A.; Kim, J.J.; MacKenzie, K.R.; Ferreon, A.C.M.;
et al. Liquid condensation of reprogramming factor KLF4 with DNA provides a mechanism for chromatin organization. Nat.
Commun. 2021, 12, 5579. [CrossRef] [PubMed]

97. Rowland, B.D.; Peeper, D.S. KLF4, p21 and context-dependent opposing forces in cancer. Nat. Rev. Cancer 2006, 6, 11–23.
[CrossRef]

98. Gamper, A.M.; Qiao, X.; Kim, J.; Zhang, L.; DeSimone, M.C.; Rathmell, W.K.; Wan, Y. Regulation of KLF4 turnover reveals an
unexpected tissue-specific role of pVHL in tumorigenesis. Mol. Cell 2012, 45, 233–243. [CrossRef]

99. Moon, J.S.; Kim, H.E.; Koh, E.; Park, S.H.; Jin, W.J.; Park, B.W.; Park, S.W.; Kim, K.S. Krüppel-like factor 4 (KLF4) activates
the transcription of the gene for the platelet isoform of phosphofructokinase (PFKP) in breast cancer. J. Biol. Chem. 2011, 286,
23808–23816. [CrossRef]

100. Shi, M.; Cui, J.; Du, J.; Wei, D.; Jia, Z.; Zhang, J.; Zhu, Z.; Gao, Y.; Xie, K. A novel KLF4/LDHA signaling pathway regulates
aerobic glycolysis in and progression of pancreatic cancer. Clin. Cancer Res. 2014, 20, 4370–4380. [CrossRef]

101. Chen, X.; Ding, X.; Wu, Q.; Qi, J.; Zhu, M.; Miao, C. Monomethyltransferase SET8 facilitates hepatocellular carcinoma growth by
enhancing aerobic glycolysis. Cell Death Dis. 2019, 10, 312. [CrossRef] [PubMed]

102. Oyinlade, O.; Wei, S.; Lal, B.; Laterra, J.; Zhu, H.; Goodwin, C.R.; Wang, S.; Ma, D.; Wan, J.; Xia, S. Targeting UDP-α-D-glucose
6-dehydrogenase inhibits glioblastoma growth and migration. Oncogene 2018, 37, 2615–2629. [CrossRef] [PubMed]

https://doi.org/10.1016/S0304-3835(03)00454-3
https://doi.org/10.1038/s41467-023-41132-w
https://doi.org/10.1126/science.8235596
https://doi.org/10.3389/fcell.2019.00272
https://www.ncbi.nlm.nih.gov/pubmed/31788471
https://doi.org/10.1038/nature10688
https://www.ncbi.nlm.nih.gov/pubmed/22113614
https://doi.org/10.1038/s41598-017-07226-4
https://www.ncbi.nlm.nih.gov/pubmed/28765546
https://doi.org/10.1016/j.ccell.2018.08.006
https://doi.org/10.1158/1078-0432.CCR-16-2071
https://doi.org/10.1182/blood-2002-11-3387
https://doi.org/10.1016/j.ccr.2005.03.037
https://doi.org/10.1016/j.celrep.2020.108333
https://doi.org/10.1158/2159-8290.CD-12-0208
https://doi.org/10.1084/jem.20110304
https://doi.org/10.1038/onc.2014.61
https://www.ncbi.nlm.nih.gov/pubmed/24662818
https://doi.org/10.1182/blood-2022-170396
https://doi.org/10.7554/eLife.43922
https://www.ncbi.nlm.nih.gov/pubmed/30983568
https://doi.org/10.1016/j.cell.2006.07.024
https://www.ncbi.nlm.nih.gov/pubmed/16904174
https://doi.org/10.1093/nar/26.3.796
https://www.ncbi.nlm.nih.gov/pubmed/9443972
https://doi.org/10.1038/s41467-021-25761-7
https://www.ncbi.nlm.nih.gov/pubmed/34552088
https://doi.org/10.1038/nrc1780
https://doi.org/10.1016/j.molcel.2011.11.031
https://doi.org/10.1074/jbc.M111.236737
https://doi.org/10.1158/1078-0432.CCR-14-0186
https://doi.org/10.1038/s41419-019-1541-1
https://www.ncbi.nlm.nih.gov/pubmed/30952833
https://doi.org/10.1038/s41388-018-0138-y
https://www.ncbi.nlm.nih.gov/pubmed/29479058


Cancers 2023, 15, 4803 23 of 24

103. Cotterman, R.; Knoepfler, P.S. N-Myc regulates expression of pluripotency genes in neuroblastoma including lif, klf2, klf4, and
lin28b. PLoS ONE 2009, 4, e5799. [CrossRef] [PubMed]

104. Shum, C.K.; Lau, S.T.; Tsoi, L.L.; Chan, L.K.; Yam, J.W.; Ohira, M.; Nakagawara, A.; Tam, P.K.; Ngan, E.S. Krüppel-like factor
4 (KLF4) suppresses neuroblastoma cell growth and determines non-tumorigenic lineage differentiation. Oncogene 2013, 32,
4086–4099. [CrossRef] [PubMed]

105. Panganiban, G.; Rubenstein, J.L. Developmental functions of the Distal-less/Dlx homeobox genes. Development 2002, 129,
4371–4386. [CrossRef]

106. Giorgianni, M.W.; Mann, R.S. Establishment of medial fates along the proximodistal axis of the Drosophila leg through direct
activation of dachshund by Distalless. Dev. Cell 2011, 20, 455–468. [CrossRef] [PubMed]

107. Gebelein, B.; McKay, D.J.; Mann, R.S. Direct integration of Hox and segmentation gene inputs during Drosophila development.
Nature 2004, 431, 653–659. [CrossRef]

108. Agelopoulos, M.; McKay, D.J.; Mann, R.S. Developmental regulation of chromatin conformation by Hox proteins in Drosophila.
Cell Rep. 2012, 1, 350–359. [CrossRef]

109. Agelopoulos, M.; McKay, D.J.; Mann, R.S. cgChIP: A cell type- and gene-specific method for chromatin analysis. Methods Mol.
Biol. 2014, 1196, 291–306. [CrossRef]

110. Tan, Y.; Testa, J.R. DLX Genes: Roles in Development and Cancer. Cancers 2021, 13, 3005. [CrossRef]
111. Goel, S.; Bhatia, V.; Kundu, S.; Biswas, T.; Carskadon, S.; Gupta, N.; Asim, M.; Morrissey, C.; Palanisamy, N.; Ateeq, B.

Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat.
Commun. 2021, 12, 5325. [CrossRef]

112. Liang, M.; Sun, Y.; Yang, H.L.; Zhang, B.; Wen, J.; Shi, B.K. DLX1, a binding protein of beta-catenin, promoted the growth and
migration of prostate cancer cells. Exp. Cell Res. 2018, 363, 26–32. [CrossRef] [PubMed]

113. Chiba, S.; Takeshita, K.; Imai, Y.; Kumano, K.; Kurokawa, M.; Masuda, S.; Shimizu, K.; Nakamura, S.; Ruddle, F.H.; Hirai, H.
Homeoprotein DLX-1 interacts with Smad4 and blocks a signaling pathway from activin A in hematopoietic cells. Proc. Natl.
Acad. Sci. USA 2003, 100, 15577–15582. [CrossRef] [PubMed]

114. Starkova, J.; Gadgil, S.; Qiu, Y.H.; Zhang, N.; Hermanova, I.; Kornblau, S.M.; Drabkin, H.A. Up-regulation of homeodomain
genes, DLX1 and DLX2, by FLT3 signaling. Haematologica 2011, 96, 820–828. [CrossRef] [PubMed]

115. Stirewalt, D.L.; Radich, J.P. The role of FLT3 in haematopoietic malignancies. Nat. Rev. Cancer 2003, 3, 650–665. [CrossRef]
[PubMed]

116. Mimura, S.; Suga, M.; Okada, K.; Kinehara, M.; Nikawa, H.; Furue, M.K. Bone morphogenetic protein 4 promotes craniofacial
neural crest induction from human pluripotent stem cells. Int. J. Dev. Biol. 2016, 60, 21–28. [CrossRef]

117. Rojo de la Vega, M.; Chapman, E.; Zhang, D.D. NRF2 and the Hallmarks of Cancer. Cancer Cell 2018, 34, 21–43. [CrossRef]
118. Hybertson, B.M.; Gao, B.; Bose, S.K.; McCord, J.M. Oxidative stress in health and disease: The therapeutic potential of Nrf2

activation. Mol. Asp. Med. 2011, 32, 234–246. [CrossRef]
119. Nguyen, T.; Nioi, P.; Pickett, C.B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress.

J. Biol. Chem. 2009, 284, 13291–13295. [CrossRef]
120. Panieri, E.; Saso, L. Potential Applications of NRF2 Inhibitors in Cancer Therapy. Oxid. Med. Cell Longev. 2019, 2019, 8592348.

[CrossRef]
121. Weiss-Sadan, T.; Ge, M.; Hayashi, M.; Gohar, M.; Yao, C.H.; de Groot, A.; Harry, S.; Carlin, A.; Fischer, H.; Shi, L.; et al. NRF2

activation induces NADH-reductive stress, providing a metabolic vulnerability in lung cancer. Cell Metab. 2023, 35, 487–503.e7.
[CrossRef] [PubMed]

122. Zhu, M.; Fahl, W.E. Functional characterization of transcription regulators that interact with the electrophile response element.
Biochem. Biophys. Res. Commun. 2001, 289, 212–219. [CrossRef] [PubMed]

123. Pouremamali, F.; Pouremamali, A.; Dadashpour, M.; Soozangar, N.; Jeddi, F. An update of Nrf2 activators and inhibitors in cancer
prevention/promotion. Cell Commun. Signal. 2022, 20, 100. [CrossRef] [PubMed]

124. Wang, X.J.; Sun, Z.; Villeneuve, N.F.; Zhang, S.; Zhao, F.; Li, Y.; Chen, W.; Yi, X.; Zheng, W.; Wondrak, G.T.; et al. Nrf2 enhances
resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 2008, 29, 1235–1243. [CrossRef]
[PubMed]

125. de Miranda Ramos, V.; Zanotto-Filho, A.; de Bittencourt Pasquali, M.A.; Klafke, K.; Gasparotto, J.; Dunkley, P.; Gelain, D.P.;
Moreira, J.C.F. NRF2 Mediates Neuroblastoma Proliferation and Resistance to Retinoic Acid Cytotoxicity in a Model of In Vitro
Neuronal Differentiation. Mol. Neurobiol. 2016, 53, 6124–6135. [CrossRef] [PubMed]

126. Furfaro, A.L.; Piras, S.; Passalacqua, M.; Domenicotti, C.; Parodi, A.; Fenoglio, D.; Pronzato, M.A.; Marinari, U.M.; Moretta, L.;
Traverso, N.; et al. HO-1 up-regulation: A key point in high-risk neuroblastoma resistance to bortezomib. Biochim. Biophys. Acta
2014, 1842, 613–622. [CrossRef]

127. Soldaini, E.; John, S.; Moro, S.; Bollenbacher, J.; Schindler, U.; Leonard, W.J. DNA binding site selection of dimeric and tetrameric
Stat5 proteins reveals a large repertoire of divergent tetrameric Stat5a binding sites. Mol. Cell Biol. 2000, 20, 389–401. [CrossRef]

128. Lin, J.X.; Li, P.; Liu, D.; Jin, H.T.; He, J.; Ata Ur Rasheed, M.; Rochman, Y.; Wang, L.; Cui, K.; Liu, C.; et al. Critical Role of STAT5
transcription factor tetramerization for cytokine responses and normal immune function. Immunity 2012, 36, 586–599. [CrossRef]

129. Xiong, H.; Su, W.Y.; Liang, Q.C.; Zhang, Z.G.; Chen, H.M.; Du, W.; Chen, Y.X.; Fang, J.Y. Inhibition of STAT5 induces G1 cell cycle
arrest and reduces tumor cell invasion in human colorectal cancer cells. Lab. Investig. 2009, 89, 717–725. [CrossRef]

https://doi.org/10.1371/journal.pone.0005799
https://www.ncbi.nlm.nih.gov/pubmed/19495417
https://doi.org/10.1038/onc.2012.437
https://www.ncbi.nlm.nih.gov/pubmed/23045286
https://doi.org/10.1242/dev.129.19.4371
https://doi.org/10.1016/j.devcel.2011.03.017
https://www.ncbi.nlm.nih.gov/pubmed/21497759
https://doi.org/10.1038/nature02946
https://doi.org/10.1016/j.celrep.2012.03.003
https://doi.org/10.1007/978-1-4939-1242-1_18
https://doi.org/10.3390/cancers13123005
https://doi.org/10.1038/s41467-021-25623-2
https://doi.org/10.1016/j.yexcr.2018.01.007
https://www.ncbi.nlm.nih.gov/pubmed/29317218
https://doi.org/10.1073/pnas.2536757100
https://www.ncbi.nlm.nih.gov/pubmed/14671321
https://doi.org/10.3324/haematol.2010.031179
https://www.ncbi.nlm.nih.gov/pubmed/21357706
https://doi.org/10.1038/nrc1169
https://www.ncbi.nlm.nih.gov/pubmed/12951584
https://doi.org/10.1387/ijdb.160040mk
https://doi.org/10.1016/j.ccell.2018.03.022
https://doi.org/10.1016/j.mam.2011.10.006
https://doi.org/10.1074/jbc.R900010200
https://doi.org/10.1155/2019/8592348
https://doi.org/10.1016/j.cmet.2023.01.012
https://www.ncbi.nlm.nih.gov/pubmed/36841242
https://doi.org/10.1006/bbrc.2001.5944
https://www.ncbi.nlm.nih.gov/pubmed/11708801
https://doi.org/10.1186/s12964-022-00906-3
https://www.ncbi.nlm.nih.gov/pubmed/35773670
https://doi.org/10.1093/carcin/bgn095
https://www.ncbi.nlm.nih.gov/pubmed/18413364
https://doi.org/10.1007/s12035-015-9506-6
https://www.ncbi.nlm.nih.gov/pubmed/26541884
https://doi.org/10.1016/j.bbadis.2013.12.008
https://doi.org/10.1128/MCB.20.1.389-401.2000
https://doi.org/10.1016/j.immuni.2012.02.017
https://doi.org/10.1038/labinvest.2009.11


Cancers 2023, 15, 4803 24 of 24

130. Coffer, P.J.; Koenderman, L.; de Groot, R.P. The role of STATs in myeloid differentiation and leukemia. Oncogene 2000, 19,
2511–2522. [CrossRef]

131. Cholez, E.; Debuysscher, V.; Bourgeais, J.; Boudot, C.; Leprince, J.; Tron, F.; Brassart, B.; Regnier, A.; Bissac, E.; Pecnard, E.; et al.
Evidence for a protective role of the STAT5 transcription factor against oxidative stress in human leukemic pre-B cells. Leukemia
2012, 26, 2390–2397. [CrossRef]

132. Chueh, F.Y.; Leong, K.F.; Yu, C.L. Mitochondrial translocation of signal transducer and activator of transcription 5 (STAT5) in
leukemic T cells and cytokine-stimulated cells. Biochem. Biophys. Res. Commun. 2010, 402, 778–783. [CrossRef] [PubMed]

133. Fu, S.; Li, Z.; Xiao, L.; Hu, W.; Zhang, L.; Xie, B.; Zhou, Q.; He, J.; Qiu, Y.; Wen, M.; et al. Glutamine Synthetase Promotes Radiation
Resistance via Facilitating Nucleotide Metabolism and Subsequent DNA Damage Repair. Cell Rep. 2019, 28, 1136–1143.e4.
[CrossRef] [PubMed]

134. Georganta, E.M.; Tsoutsi, L.; Gaitanou, M.; Georgoussi, Z. δ-opioid receptor activation leads to neurite outgrowth and neuronal
differentiation via a STAT5B-Gαi/o pathway. J. Neurochem. 2013, 127, 329–341. [CrossRef]

135. Pallaki, P.; Georganta, E.M.; Serafimidis, I.; Papakonstantinou, M.P.; Papanikolaou, V.; Koutloglou, S.; Papadimitriou, E.; Agalou,
A.; Tserga, A.; Simeonof, A.; et al. A novel regulatory role of RGS4 in STAT5B activation, neurite outgrowth and neuronal
differentiation. Neuropharmacology 2017, 117, 408–421. [CrossRef] [PubMed]

136. Sanaei, M.; Kavoosi, F. The Effect of 5-aza,2’-deoxyCytidine (5 AZA CdR or Decitabine) on Extrinsic, Intrinsic, and JAK/STAT
Pathways in Neuroblastoma and Glioblastoma Cells Lines. Asian Pac. J. Cancer Prev. 2023, 24, 1841–1854. [CrossRef] [PubMed]

137. Agelopoulos, M.; Thanos, D. Epigenetic determination of a cell-specific gene expression program by ATF-2 and the histone
variant macroH2A. EMBO J. 2006, 25, 4843–4853. [CrossRef] [PubMed]

138. Struhl, G. A homoeotic mutation transforming leg to antenna in Drosophila. Nature 1981, 292, 635–638. [CrossRef]
139. Thng, D.K.H.; Toh, T.B.; Chow, E.K. Capitalizing on Synthetic Lethality of MYC to Treat Cancer in the Digital Age. Trends

Pharmacol. Sci. 2021, 42, 166–182. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/sj.onc.1203479
https://doi.org/10.1038/leu.2012.112
https://doi.org/10.1016/j.bbrc.2010.10.112
https://www.ncbi.nlm.nih.gov/pubmed/21036145
https://doi.org/10.1016/j.celrep.2019.07.002
https://www.ncbi.nlm.nih.gov/pubmed/31365859
https://doi.org/10.1111/jnc.12386
https://doi.org/10.1016/j.neuropharm.2017.02.012
https://www.ncbi.nlm.nih.gov/pubmed/28219718
https://doi.org/10.31557/APJCP.2023.24.6.1841
https://www.ncbi.nlm.nih.gov/pubmed/37378911
https://doi.org/10.1038/sj.emboj.7601364
https://www.ncbi.nlm.nih.gov/pubmed/17036053
https://doi.org/10.1038/292635a0
https://doi.org/10.1016/j.tips.2020.11.014

	Introduction 
	Materials and Methods 
	Transcriptomics Analyses 
	ChIP-Seq Data Analyses 

	Results 
	Gene Expression Rewiring and Metabolic Signatures in MYCN-Amplified Neuroblastoma 
	MYCN-Binding Landscape in Neuroblastoma Illuminating Novel TF-Encoding Target-Genes 
	Computational Validation in Neuroblastoma Patient-Derived Samples 


	Discussion 
	Conclusions 
	References

