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This Special Issue in Cancers, “Cell Therapy, Bispecific Antibodies and other Im-
munotherapies Against Cancer”, includes interesting reports and reviews on cell therapies
and bispecific antibodies. The authors showed that cell therapy, bispecific antibodies,
vaccine and immunomodulator approaches, combined with checkpoint inhibitors, are
effective in improving anticancer therapies. The immunomodulators and immune check-
point players, PD-1, PD-L1, CTLA-4, TIGIT and LAG-3, activate immune cells in the tumor
microenvironment and increase immune response. The main approaches, challenges and
future directions from this Special Issue are discussed.

Recently, a chimeric antigen receptor, CAR-T, cell therapy has revolutionized hemato-
logical cancer treatment. The FDA approved several CAR-T cell agents such as Kymriah,
Yescarta, Tecartus and Breyanzi, which target CD19, and Abecma and Carvykti, which
target BCMA antigens [1–4]. While the first round of treatments was successful, several
challenges persist, such as low efficacy against solid tumors, cytokine release storm, the
exhaustion of CAR-T cells, patient relapse, and the high cost of manufacturing. Novel
generations of CAR-T cells are developed, such as bi-specific or tandem CAR-T cells [5–10],
CAR-T cells with silenced checkpoint inhibitor pathways [11,12], CAR-T cells with dif-
ferent secreted cytokines (IL-15, IL-18, IL-12) to increase cell persistence and overcome a
repressive tumor microenvironment, CAR-T cells with different switches to increase their
safety. CAR-T cell therapy efficacy increased using different checkpoint inhibitors, such
as PD-1, PD-L1, TIGIT, LAG-3, CTLA-4 and TIM-3 antibodies [11,13,14]. The disruption
of PD-1 in CAR-T cells with Crispr/Cas-9 technology enhanced the functional activity of
CAR-T cells [12]. Future combinations of CAR-T cells and other immunotherapies must be
developed in clinical studies [15].

Another highly promising immunotherapy approach is CAR-NK cell therapy [16–20].
The advantage of using the NK cell for therapy is the absence of a GvHD (graft-versus-
host disease) response applied to the generation of allogenic CAR-NK cells. CARs can be
delivered into NK cells using lentiviruses, retroviruses, or mRNAs [21]. NK cells can be
generated from different sources: blood PBMC, umbilical cord blood, induced pluripotent
stem cells (iPSC) or the NK-92 cell line. There are several challenges for CAR-NK cell
therapies: the low efficiency of expansion and genetic modification in vitro. CAR mRNAs
can be embedded into lipid nanoparticles (LNPs) for increased stability and used for an
efficient transfection of NK cells. Recently, an efficient encapsulation of BCMA and CD19-
CAR mRNA into LNP and delivery to >500-fold expanded NK cells has been demonstrated,
resulting in the generation of highly functional CAR+CD56+ NK cells against cancer cells
and tumors [22]. The increased persistence of CAR-NK cells via a combination of CAR-NK
cell therapy with other therapy approaches will be developed in the future.

Different immune cells, such as macrophages, T cell-infiltrating lymphocytes (TILS) [23],
and gamma-delta T cells [24–27], can be used for the expression of CAR to target tumor
cells. More clinical studies on these CAR-T cells are needed to understand their safety and
efficacy against different types of cancer.

The application of T or NK cell-engaging bispecific antibodies is an alternative and
promising approach to immunotherapy against cancer. BITE (blinatumomab), a CD19-CD3
antibody, is successfully used against B-cell malignant tumors in a clinical setting [28–31].
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This year, the FDA granted accelerated approval for glofitamab, a CD20-CD3 bispecific
antibody [32], against relapsed or diffuse large B-cell lymphomas (DLBCL). Many different
designs of bispecific antibodies are developed with one domain binding to T/NK cells
and another domain binding to cancer cell antigens: BITEs, Fc-containing, CrossMab,
knob-hole, uni-, bi-valent and others [33,34]. There are several advantages of bi- and
tri-specific T cell engagers versus cell therapy, such as off-the-shelf availability, easier
logistics of administration and more economical manufacturing [35]. Several challenges
exist for this approach, such as toxicity or repressive tumor microenvironment, that will
be addressed in future pre-clinical and clinical studies. The improved engineering of
antibodies and combination with inhibitors of tumor microenvironment can be applied to
design these therapies.

Cancer vaccines (cell-based, peptide/protein-based, or gene-based) are another promis-
ing approach developed by several groups [36–39]. The goal of cancer vaccines is to target
cancer cells via antigen-specific effector T cells. Activated T cells recognize MHC (major
histocompatibility complex) I-peptide complexes, effector T cells target tumor cells and
memory T cells prevent tumor relapse. The dendritic vaccine is a promising approach
that stimulates T cells against tumor antigens [40]. The pulsing of DC with tumor cell
lysate, tumor antigen or mRNA is a widely used approach for antigen delivery and the
stimulation of an immune response. Dendritic cells are antigen-presenting cells and can be
divided into several groups: conventional dendritic cells (cDC), plasmocytoid (pDC) and
monocyte-derived DC (MoDC) [40]. The benefit of cancer vaccines is that they can target
intracellular antigens versus CAR-T cells or bispecific antibodies, which target extracellular
tumor-specific antigens [40]. Although conventional dendritic vaccines encounter limita-
tions due to the low immunogenicity of cold tumors, the induction of immunogenic cell
death (ICD) can convert cold tumors into hot tumors and improve DC vaccine potential.
Immunogenic cell death can be achieved via chemotherapy, radiotherapy, photodynamic or
photothermal therapy [40]. The local delivery of immunostimulants can increase the effect
of immunogenic cell death of tumors and lead to the activation of DC and effector T cells.

The combination of cell therapy, bi-, tri-specific antibodies, CAR-NK, immunomodula-
tors, checkpoint inhibitors and vaccines will be developed in future pre-clinical and clinical
studies [41–43]. In addition, a personalized medicine approach will be used when patient
tumors are sequenced to detect neoantigens that can be used for dendritic vaccine, bispecific
antibody, and cell therapy development [35]. The combination therapy targeting several
tumor antigens will be used to better target heterogeneous solid tumors. All discussed
linked approaches are presented in Figure 1. For example, bispecific antibody (EpCAM-
CD3 Ab is shown in Figure 1) can be delivered into tumors using mRNA [44], embedded
into LNP [45] and attract T cells to kill tumor cells. The lysed tumor cells can release tumor
neoantigens, serve as a cancer vaccine for attracting dendritic cells and, in combination
with co-stimulants (cytokines, chemokines, receptor ligands and other immuno-stimulants),
can target distant circulating tumor cells [37,46,47]. While EpCAM-CD3 mRNA-LNP
was delivered intratumorally, future studies will expand the tumor-specific delivery of
mRNA-LNP and the intravenous delivery of mRNA with tumor-specific expression of
proteins. The proteins and antibodies can be produced inside tumors representing factories
of proteins or antibodies, and secreted proteins will attract immune cells in the case of
bispecific immune-engaging antibodies. Combination therapy with immunomodulators
and checkpoint inhibitors will increase the efficacy of bispecific antibody and cell therapy
to target distant metastatic tumor cells [48–50].
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Figure 1. Bispecific antibody, immune T cell, immunostimulant and vaccine approaches. mRNA-LNP
is shown for intratumoral delivery of bispecific antibodies. Secreted bispecific antibody attracts T
cells to tumor and kills tumor cells. Tumor is lysed and serves as a tumor vaccine for stimulating
further immune response in combination with immunostimulants.

Conclusions

Novel immunotherapy approaches, including bispecific antibodies, cell therapies,
checkpoint inhibitors, vaccines and immunomodulators or their combination, must be
developed and tested in future pre-clinical and clinical studies. The mRNA-LNP is a
novel approach to deliver bispecific antibodies locally by enhancing immunomodulators to
target distant tumor cells. The personalized medicine approach with a high-throughput
sequencing of tumor antigens, detecting novel antigens and targets for immunotherapy,
will be developed for more effective anticancer therapies. Dendritic, peptide and protein
vaccines will be improved via novel tumor targets. The reports from this Special Issue in
Cancers provide a basis to further develop novel immunotherapies.
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