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Simple Summary: This article examines the fascinating association between melanoma, a malignant
skin cancer, and Parkinson’s disease (PD), a neurodegenerative disorder. Both diseases involve cells
that produce melanin, a pigment that provides skin color and protects against UV radiation. This
study explores the potential impact of melanin synthesis on these diseases, considering the divergent
roles of eumelanin and pheomelanin, melanin types present in both skin and brain cells. Additionally,
it investigates the influence of PD treatments, such as L-DOPA, on melanoma risk, although the
nature of this relationship remains uncertain. The research aims to provide insights into these intricate
connections and their implications for the medical field.

Abstract: A common feature of Parkinson’s disease (PD) and melanoma is their starting points
being based on cells capable of converting tyrosine into melanin. Melanocytes produce two types
of melanin: eumelanin and pheomelanin. These dyes are designed to protect epidermal cells from
the harmful effects of UV radiation. Neurones of the substantia nigra, which degenerate during PD,
produce neuromelanin, the physiological role of which is not fully explained. This article discusses
the potential role of melanins in the pathogenesis of both diseases. Melanins, due to their ability to
accumulate toxic substances, may become their sources over time. The use of glutathione for the
synthesis of pheomelanins and neuromelanins may reduce the antioxidant capacity of cells, leading
to an excessive synthesis of free radicals. This study also tested the hypothesis that certain drugs
used in the treatment of PD (L-DOPA, MAO-B and COMT inhibitors, and amantadine), aimed at
increasing dopamine concentration, could potentially contribute to the development of melanoma.
The role and properties of melanins should continue to be researched. Whether excessive melanin
synthesis or its accumulation in the extracellular space may be factors initiating the development of
diseases remains an open question.

Keywords: eumelanin; pheomelanin; neuromelanin; melanoma; Parkinson’s disease; dopamine

1. Introduction

Melanoma is one of the most serious human cancers. It develops as a result of the
neoplastic transformation of melanocytes, cells that are a part of the basal layer of the
epidermis, whose main physiological role is the production of skin pigments—melanin [1].
Over the past 60 years, the incidence rate of melanoma has been gradually increasing [2].
The incidence varies from 5 to 7 cases per 100,000 inhabitants per year in Italy, through to
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about 20 cases per 100,000 inhabitants in the USA, to the highest values in other countries
such as over 50 cases per 100,000 inhabitants in Queensland (Australia) [3]. The most
important modifiable risk factors for melanoma include exposure to ultraviolet radiation
(the role of radiation in the pathogenesis of melanoma is discussed below). However, the
etiology of melanoma is multifactorial and results from the interaction between genetic
susceptibility and environmental exposure. Fair skin, blue or green eyes, and freckles are
markers of greater susceptibility to melanoma [4].

Parkinson’s disease (PD) is a neurodegenerative disease in which the leading patholog-
ical feature is the degeneration and loss of nerve cells. The incidence of PD ranges from 1 to
2 per 1000 in unselected populations, increasing with age and therefore affecting 1% of the
population over 60 years of age. It is rare before the age of 50 and occurs in approximately
4% of the oldest people [5]. During idiopathic PD, the dopaminergic neurons located inside
the substantia nigra of the midbrain undergo atrophy [6].

What connects both types of cells, melanocytes and neurons of the substantia ni-
gra, is the ability to gradually convert tyrosine into different kind of melanin. Before
melanin is formed, the addition of a second hydroxyl group to the tyrosine aromatic
ring produces the DOPA compound, which can be decarboxylated into the first of the
series of catecholamines—dopamine (DA). In other cells (e.g., in the adrenal medulla),
dopamine is then hydroxylated to noradrenaline or further methylated to adrenaline. The
oxidation of both hydroxyl groups in DOPA converts it to a very reactive DOPAquinone,
which, in further transformations, polymerizes to give just two types of skin melanin [7].
Eumelanin does not form a homogeneous compound; it is a mixture of nitrogenous poly-
mers of 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA)
units [8].

The disappearance of dopamine results in the clinical symptoms observed in
PD—muscle stiffness, tremors, and the disturbance of precise movements. In this study,
we wanted to consider whether tyrosine metabolites (melanin) have a specific role in the
pathogenesis of both diseases. Moreover, it is not entirely clear whether PD treatment
associated with increasing dopamine levels may influence the development of melanoma.

2. Origin of Melanocytes and Neurons of the Substantia Nigra

One of the common features of melanocytes and neurons, including dopaminergic
neurons, is their ectodermal origin [9]. The melanocyte lineage originates from the neural
crest cells. These cells are highly migratory, forming many specialized structures and
tissues in the developing embryo through migration, proliferation, and differentiation [10].
The research of Erickson and Goins using avian transplants has shown that cells that leave
the crest early follow a ventral migration path through the anterior sclerotome and become
neurons and glia, whereas late cells follow a dorsolateral route between the ectoderm and
somites through the developing dermis and they become melanocytes. In addition, the
study showed that the fate of cells is not determined by their migration path, but it is
determined before leaving the crest [11]. The migration through the developing embryo
and interaction with their environment containing various types of cells to finally become
the stem cell population through which they self-renew might be one of the reasons that
melanoma is particularly aggressive and metastatic [10].

During PD, the degeneration of dopaminergic neurons is most severe in the ventral
part of the substantia nigra pars compacta, compared with other subregions of the substan-
tia nigra that seem to be more resistant to the neurodegeneration process [12]. A study by
Marchand and Poirier published 40 years ago in Neuroscience indicates that neurons in the
substantia nigra in rats arise at two different points on the basal plate at the level of the
foveal isthmus (the meso–isthmus junction) and migrate radially as two separate streams
towards the ventral midbrain during embryogenesis [13]. Using tyrosine hydroxylase, the
main enzyme for catecholamines synthesis, as a marker, Aubert et al. described the migra-
tion route of dopamine-synthesizing cells during human embryogenesis. They showed
that cells capable of synthesizing dopamine appear for the first time in the midbrain in the
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12th week of fetal life, migrating to the target site to reach the substantia nigra location
after approximately 7 weeks [14]. However, not only the place of origin, but also various
transcription factors, which translate into different protein expressions, may have decisive
impacts on the susceptibility to neurodegeneration of mature neurons (this aspect was
clearly described by Fu et al. [12]).

3. Eumelanin, Pheomelanin and Neuromelanin; Do Dyes Cause Trouble in the Cell?

Melanocytes synthesize two types of melanin, brown–black eumelanin, and red
pheomelanin [15]. Neuromelanin is produced in neurons of the substantia nigra. It is
a condensation product of two units present in both eumelanin and pheomelanin [16]
Figure 1.
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Figure 1. Simplified scheme of melanin synthesis. Tyrosine is a precursor to DOPA and Dopaquinone
(DOPAQ). In dopamine-producing cells, there is a partially spontaneous conversion of dopamine to
5,6-dihydroxyindole (DHI), which can also be formed directly from Dopachrome (DOPAC). The syn-
thesis of neuromelanin and pheomelanin requires glutathione. (5SCD) 5-S-cysteinyldopa, (5SCDA)5-
S-cysteinyldopamine. Dashed line arrows represent several reactions. The letter “S” in a circle
represents the sulfur of the thiol group. Based on [16,17].

Skin melanin is synthesized in melanosomes, and then it is transported to neighbor-
ing cells, keratinocytes, whose resources are located in supranuclear “caps” that protect
against harmful ultraviolet radiation (UV). Several review publications discuss the role and
distribution of melanin in different human races, so we will not duplicate this information
which is provided in the relevant articles [18]. It is undoubtedly a fact that UV radiation is
the main risk factor for the development of melanoma [19]. UV radiation may cause DNA
damage and lead to the formation of various types of mutagenic compounds. Direct DNA
damage is caused by UVB (~280–320 nm of wavelengths) more than UVA (~320–400 nm
of wavelengths). The second one seems to be less dangerous and carries less energy than
UVB but penetrates deeper layers of the skin. The mechanism of the harmful effect of UVA
is the generation of free oxygen radicals rather than the direct degradation of DNA (for a
review, see ref. [20]). However, the action of UV rays leading to the formation of melanoma
is undoubtedly more complicated than the stimulating of ROS and generating of mutagenic
compounds. UV is involved in the activation of various cytokines (for example, interferon
gamma) and pro-inflammatory enzymes (for example, matrix metalloproteinase-9) [19].
During increased exposure to UV radiation, there is an intense synthesis of melanin in
the skin leading to better protection against radiation. The protective effect of melanin is
confirmed both in experimental and epidemiological studies. Previous research shows that
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melanin successfully protects against electromagnetic radiation, causing the dispersion of
optical energy and converting it into heat [21]. In addition, it has been shown that melanins
are able to absorb other, more energetic types of electromagnetic radiation, such as X-rays
and Gamma rays. Some species of melanin-producing fungi colonize environments with
a high degree of radiation (e.g., nuclear reactors) without significant influence on their
viability [22]. One of the mechanisms of ionizing radiation, especially electromagnetic
radiation, is water radiolysis, which results in the formation of a number of free radicals
from the breakdown of water molecules [23]. However, melanins that have the ability
to scavenge free radicals may play a potential role in protection even against ionizing
radiation-causing water radiolysis. The protective effect of melanin has also been con-
firmed in human observations. People with dark skin have a several dozen times lower
risk of melanoma [24].

Since melanin acts as a protective shield against UV rays and has a free radical
scavenging effect, why does melanoma arise mainly in cells where the concentration of this
pigment is high? In addition to genetic factors, we want to consider what role melanin may
play in the induction of carcinogenesis. Cells laden with melanin should theoretically have
a lower tendency to form cancer. Perhaps the key here is the imbalance between synthesis
of different types of melanin, eumelanin, and pheomelanin. Pheomelanin requires the
sulfhydryl group, of which an important source in the body is glutathione, a compound
with significant antioxidant properties. Therefore, the intense pheomelanin synthesis
can lead to a depletion of glutathione in cells, potentially exposing cells to free radical
attack. Research by Tanaka et al. showed that the benzothiazole moieties of pheomelanin
showed pro-oxidative effects when exposed to UVA. The level of reduced glutathione
(GSH) was also decreased [25]. Lembo et al. point out that there is growing evidence
that melanin, particularly pheomelanin, is involved in the development of melanoma
and that this process does not require UV exposure for initiation. In their experiment,
the red hair pheomelanin and, in a lesser degree, the black hair eumelanin, but not the
white hair protein, significantly increased pro-inflammatory cytokines and decreased cell
viability in the in vitro model [26]. Interestingly, the research of Premi et al. published
in Science indicates that the mutagenic effect of melanin can occur under the influence
of free radicals, without the necessary participation of UV [27]. In addition, due to the
specificity of oxidoreductive processes, eumelanin may also exhibit oxidative properties,
which significantly complicates the unclear role of both pigments in the formation of
melanoma [28]. It is also worth remembering that melanins have a high affinity for heavy
metals, the presence of which may have a negative impact on cell metabolism and intensify
oxidative stress [29,30]. However, binding heavy metals can have the opposite effect on
cells; it is harmful in the long term, but it is a safe way to remove heavy metals from
cells [31]. The proposed role of melanin in the development of melanoma is presented in
the Figure 2.

The role of neuromelanin in the pathogenesis of PD is also unclear. Since idiopathic
PD only affects the neurodegeneration of neuromelanin-producing cells, the relationship
of this pigment to the disease has been the subject of research for many years [32]. The
main role of tyrosine in the neurons of the substantia nigra is to be a substrate for the
conversion to dopamine. DA is a key neurotransmitter of the extrapyramidal system,
the deficiency of which is responsible for the symptoms of PD [33]. The substantia nigra
gives connections to the striatum and is part of the extrapyramidal system responsible,
among others, for motor skills and control of voluntary movements [6]. Together with
DA, neuromelanin is synthesized in neurons, giving a black color to the cells (the name
comes from the black color of the cells caused by neuromelanin). Neuromelanin is also
present in noradrenergic neurons, but surprisingly it does not occur in cells synthesizing
the last of the series of catecholamines—adrenaline [34]. It seems that neuromelanin is a
byproduct of dopamine metabolism formed in the auto-oxidation pathway, without the
key role of UV radiation in this process (opposite to skin melanin) due to the obvious
limitation of UV access to neurons in the midbrain [35]. The enzyme that oxidizes tyrosine
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to L-DOPA (as tyrosinase) is not necessary for the synthesis of neuromelanin, because
neuromelanin is also present in albinos with a genetic defect of tyrosinase [36]. In addition,
tyrosinase activity is negligible in the normal human brain. However, rats stereotactically
implanted with a human tyrosinase viral vector into the substantia nigra significantly
increased neuromelanin synthesis, suggesting a possible, but not necessary, role of this
enzyme in neuromenaninogenesis [37].
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Figure 2. Proposed mechanism for the role of eumelanin and pheomelanin in the development of
melanoma. The amount of melanin increases under the influence of UV radiation. Melanins have
protective properties against UV rays, but the reduction of the glutathione level used for the synthesis
of pheomelanin can induce oxidative stress [25]. In addition, melanins accumulate metal ions and
toxins, which, when released gradually (red arrows), can potentially increase oxidative stress [29].
Certainly, this is not the only factor determining the development of melanoma.

An interesting observation is the presence of neuromelanin mainly in humans, to
a lesser extent in primates, and almost completely absent in other species. Since many
non-neuromelanin-producing animal species have numerous catecholamine-synthesizing
neurons, it follows that the conversion of tyrosine to dopamine or noradrenaline in the cell
need not be correlated with simultaneous neuromelanin synthesis [34].

Neuromelanin concentration fluctuates in the aging brain. It seems that exceed-
ing a certain concentration threshold of this dye in dopaminergic neurones may trigger
the neurodegeneration. The animals mentioned above developed movement disorders
characteristic of PD only after synthesizing a certain amount of neuromelanin [37]. The
neuromelanin level increases with the age of people from a negligible amount in the first
year of life to over 3 ug per 1 mg protein of substantia nigra pars compacta [38]. However,
the mere presence of neuromelanin is not the only reason for the development of PD
symptoms, because as symptoms increase, the amount of pigment is reduced, which has
been confirmed in pathological [38] and radiological studies using new neuromelanin imag-
ing techniques in magnetic resonance imaging (MRI) [39]. Neuromelanin present in cells
seems to have a protective function against toxins entering dopaminergic neurons, binding
them and preventing their toxicity [40]. On the other hand, the binding of toxins within
neuromelanin causes the concentration of toxins inside cells containing this pigment to
reach high values. D’Amato’s 1987 study indicates that the neurotoxin MPTP (1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine), after entering the body, binds inside the dopaminergic
neurons to neuromelanin, which becomes an intracellular depot of this toxin, gradually
releasing it. At the same time, the loading of neuromelanin with chloroquine, thereby re-
ducing the affinity of the dye for toxins, reduces the intracellular MPTP reservoir, reducing
extrapyramidal symptoms in experimental animals [41]. Also of interest is the increase in
the amount of extracellular neuromelanin in the elderly, which has been demonstrated in
histopathological studies. The toxins and metal ions accumulated in neuromelanin can be
released, increasing oxidative stress in the extracellular space that could potentially trigger
or intensify cell degeneration [42]. The possible stages and mechanisms of development of



Cancers 2023, 15, 5541 6 of 13

dopaminergic neuron degeneration are presented in Figure 3. However, the pathogenesis
of PD is probably not based solely on neuromelanin metabolism. Symptoms similar to PD
can be induced in animals, which, as mentioned, have a much lower amount of neurome-
lanin than humans. Moreover, animal models of PD are based either on modifications of
PD-related genes or on the administration of toxins that selectively attack substantia nigra
cells without directly affecting the neuromelanin metabolism [43].
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Figure 3. Proposed mechanism of neurodegeneration of neuromelanin-producing cells. During life,
the amount of intracellular and extracellular neuromelanin increases, protecting cells from damage.
After a certain threshold, accumulated toxins and metal atoms can be released (red arrows), leading
to increased oxidative stress and cell degeneration. The mechanism that triggers the cascade of
biochemical processes leading to neurodegeneration is unknown. Based on [38,42].

As shown in Figure 1, neuromelanin synthesis requires glutathione, a tripeptide
with strong antioxidant properties. In the 1990s, post-mortem studies showed reduced
concentrations of glutathione in neurons of the substantia nigra pars compacta of patients
with PD [44]. In addition, it was found that in patients with PD, the concentration of
glutathione in other brain regions did not change significantly [45]. This indicates that
glutathione is involved in the pathogenesis of PD. However, it is not known whether
glutathione depletion is the cause of the disease or its effect. The reason for the decrease in
glutathione concentration is also unknown. It can be assumed that the use of glutathione for
the synthesis of neuromelanin, together with increased oxidative stress caused by the release
of substances accumulated in the dye, may have a role in initiating the neurodegeneration of
dopaminergic cells. On the other hand, an attempt to explain the pathogenesis of melanoma
and PD with a reduced amount of glutathione seems too simple and does not explain why
only some cells of the body would react with pathological changes to its lack.

An interesting issue is the role of vitamin D in both the pathogenesis of melanoma and
PD. Vitamin D is a known steroid compound, the deficiency of which may adversely affect
various neurological diseases such as stroke, multiple sclerosis, Alzheimer’s disease and
PD [46]. In the case of PD, it was noticed that patients tend to have a lower concentration
of vitamin D in serum and bone, changes indicating that, for PD patients, a deficiency
of this vitamin appears more often. Previous clinical studies have shown that vitamin D
supplementation in PD patients not only improves bone condition, but also has a positive
effect on reducing neurological symptoms typical of PD [47]. The anticancer effects of
vitamin D have been documented in various cancers in both pre-clinical and clinical
studies. There are reports in the literature that a higher concentration of vitamin D in
serum is associated with a better prognosis in patients with melanoma [48]. However, the
relationship between vitamin D and melanoma seems to be more complex, including the
role of UV radiation, which is necessary for the synthesis of vitamin D and, at the same time,
is a risk factor of melanoma. Melanin, which is a natural sun filter, effectively absorbs UV
radiation, significantly limiting the skin photosynthesis of vitamin D3. The dark melanin
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pigment of Africans reduces the skin’s ability to produce the previtamin D3 by 95–99%
compared to Caucasians [49].

4. Treatment of PD and Development of Melanoma

Epidemiological studies show that, in general, both patients with PD are less likely to
develop various types of cancer and patients with cancer are less likely to develop PD [50].
This result seems logical, because cancer is a proliferative disease caused by excessive cell
division, while PD, as a degenerative disease (also containing melanin), is dominated by
cell loss. However, this rule does not apply to all cancers. Previous observations indicate a
certain positive connection between PD and melanoma and nonmelanoma skin cancers.
According to data from the Rochester Epidemiology Project, PD patients were 3.8 times
more likely to have a preexisting melanoma compared with controls (95% CI, 2.1–6.8;
p < 0.001), and the risk of developing PD was 4.2 times higher in patients with melanomas
(95% CI, 2.0–8.8; p < 0.001) [51]. A study based on data from the Danish National Hospital
Register showed that melanomas in patients with PD arose 95% more often than could be
expected (44 observations, compared with 22.5 cases that could be expected) [52]. A meta-
analysis covering over 140,000 individuals showed a higher incidence of skin cancer in
patients with PD (OD = 1.25, 95% CI: 1.17–1.33; p < 0.0001) [53]. The observed relationships
can be explained in many ways. One of them is a genetic predisposition to an increased
risk of both types of disease occurring simultaneously. An exemplary trigger factor is
a protein, alpha-synuclein, which is associated with the pathogenesis of dopaminergic
cell neurodegeneration in PD and is also involved in melanomagenesis [54]. Certainly,
common biochemical processes present in both dopaminergic neurones and melanocytes
include the transformation of tyrosine to melanin formation. Therefore, theoretically,
the treatment used in PD, which increases DA concentration, could contribute to the
development of melanoma in some way. However, it is not known whether the increase in
the incidence of melanoma in PD patients is related to the increase in melanin synthesis in
the skin.

The cause initiating the degenerative process of substantia nigra cells of the midbrain
is not known. The fact is that it can be observed—a gradual loss of dopaminergic neurones,
and thus a decrease in DA concentration mainly in the striatum, to which the axons of
the substantia nigra reach [6]. Therefore, a strategy for the treatment of PD is to increase
the concentration of DA in the brain. This type of therapy directly improves the clinical
condition of patients by reducing the clinical symptoms of the disease. In this paper,
we wanted to focus on the selected substances used in PD, the action of which aims at
increasing the concentration of DA in the brain. The first is L-DOPA, a direct precursor
of DA. The second substance, amantadine, elevates DA concentration by increasing the
release of DA from neurones [55]. The last two agents inhibit the breakdown of DA via
monoamine oxidase type B, MAOB (rasagiline) or via catechol-O-methyltransferase, COMT
(capone family, e.g., entacapone) [56,57]. All of them finally increase the DA level within
the central nervous system, acting through different mechanisms (see Figure 4).

To answer the question of whether PD treatment intensifies melanogenesis, leading
in some cases to the development of melanoma, relevant publications were searched in
the PubMed database by entering the phrase “melanoma” and “L-DOPA” (or “levodopa”,
“amantadine”, “MAO”, “COMT”), respectively, in the title or the abstract. In the case of
MAO or COMT inhibitors, the specific drug names were omitted to increase the number of
publications found. The search covered the last 20 years.



Cancers 2023, 15, 5541 8 of 13Cancers 2023, 15, x FOR PEER REVIEW 8 of 14 
 

 

 

Figure 4. Scheme of action of L-DOPA, amantadine, rasagiline and entacapone leading to an increase 

in DA concentration in the synaptic space. In the presynaptic neurone, tyrosine is converted to L-

DOPA and then to DA, which is placed in the synaptic vesicles waiting for a signal to be released 

outside the cell. In the synaptic space, DA binds to receptors in the membrane of the postsynaptic 

neurone, transmitting the impulse. L-DOPA is a direct precursor of DA, increasing its concentration 

in the brain. Amantadine increases DA secretion outside the cell. Rasagiline inhibits the breakdown 

of DA to homovanillic acid (HVA) by monoamine oxidase type B (MAOB), and entacapone inhibits 

the breakdown of DA by catechol-O-methyltransferase (COMT). 

To answer the question of whether PD treatment intensifies melanogenesis, leading 

in some cases to the development of melanoma, relevant publications were searched in 

the PubMed database by entering the phrase “melanoma” and “L-DOPA” (or “levodopa”, 

“amantadine”, “MAO”, “COMT”), respectively, in the title or the abstract. In the case of 

MAO or COMT inhibitors, the specific drug names were omitted to increase the number 

of publications found. The search covered the last 20 years. 

5. L-DOPA 

Among the above-mentioned pharmaceutical agents, L-DOPA has the greatest direct 

connection with the melanin synthesis pathway, which may potentially be associated with 

the pathogenesis of melanoma. L-DOPA is a direct precursor of DA and can be converted 

to other compounds involved in melanin synthesis. Furthermore, in vitro studies indicate 

that L-DOPA (similarly to tyrosine) is not only a substrate for melanogenesis, but it is a 

positive regulator of several processes that occur inside the cell (for a particular review 

see ref. [58]). The rate of a tyrosinase-catalyzed reaction increases in the presence of L-

DOPA [59]. At the same time, an increase in tyrosinase activity was found in melanoma 

[60]. It is also worth emphasizing that some publications from the last three decades of the 

20th century revealed a possible co-occurrence of L-DOPA treatment and the risk of mel-

anoma [61]. This may indicate a direct relationship between the availability of the tyrosi-

nase substrate (L-DOPA) and the development of this kind of tumor. However, the rela-

tionship between PD treatment with exogenous L-DOPA and the intensification of mel-

anogenesis or the risk of melanoma is unclear. Searching for the words “L-DOPA” (or 

“levodopa”) and “melanoma” in the title or abstract over the last 20 years reveals 103 

publications. To increase the number of retrieved publications, the search was not limited 

only to L-DOPA used as a therapeutic agent in PD, as all publications regarding L-DOPA 

Figure 4. Scheme of action of L-DOPA, amantadine, rasagiline and entacapone leading to an increase
in DA concentration in the synaptic space. In the presynaptic neurone, tyrosine is converted to
L-DOPA and then to DA, which is placed in the synaptic vesicles waiting for a signal to be released
outside the cell. In the synaptic space, DA binds to receptors in the membrane of the postsynaptic
neurone, transmitting the impulse. L-DOPA is a direct precursor of DA, increasing its concentration
in the brain. Amantadine increases DA secretion outside the cell. Rasagiline inhibits the breakdown
of DA to homovanillic acid (HVA) by monoamine oxidase type B (MAOB), and entacapone inhibits
the breakdown of DA by catechol-O-methyltransferase (COMT).

5. L-DOPA

Among the above-mentioned pharmaceutical agents, L-DOPA has the greatest direct
connection with the melanin synthesis pathway, which may potentially be associated with
the pathogenesis of melanoma. L-DOPA is a direct precursor of DA and can be converted to
other compounds involved in melanin synthesis. Furthermore, in vitro studies indicate that
L-DOPA (similarly to tyrosine) is not only a substrate for melanogenesis, but it is a positive
regulator of several processes that occur inside the cell (for a particular review see ref. [58]).
The rate of a tyrosinase-catalyzed reaction increases in the presence of L-DOPA [59]. At
the same time, an increase in tyrosinase activity was found in melanoma [60]. It is also
worth emphasizing that some publications from the last three decades of the 20th century
revealed a possible co-occurrence of L-DOPA treatment and the risk of melanoma [61].
This may indicate a direct relationship between the availability of the tyrosinase substrate
(L-DOPA) and the development of this kind of tumor. However, the relationship between
PD treatment with exogenous L-DOPA and the intensification of melanogenesis or the
risk of melanoma is unclear. Searching for the words “L-DOPA” (or “levodopa”) and
“melanoma” in the title or abstract over the last 20 years reveals 103 publications. To
increase the number of retrieved publications, the search was not limited only to L-DOPA
used as a therapeutic agent in PD, as all publications regarding L-DOPA in melanoma were
searched. Most of the studies found did not address the effect of L-DOPA treatment on the
development of melanoma but numerous studies were mainly related to the in vitro testing
of tyrosinase, in which L-DOPA was used as a substrate for this enzyme. However, after
screening the received publications, only six of them were included in the analysis. The first
one presented a case report of a patient treated with L-DOPA (together with carbiDOPA),
who developed eruptive melanocytic nevi (EMN) associated with the rapid development
of multiple melanocytic nevi on the skin. The authors of the case hypothesized that the



Cancers 2023, 15, 5541 9 of 13

relative increase in L-DOPA during the treatment of PD may stimulate the development
of melanocytic nevi production, leading to the development of EMN [62]. EMN is not a
melanoma, but the presented case report indicates the possibility of proliferation of melanin-
containing cells under the influence of L-DOPA. In a letter to the editor published in 2021,
a clinical case of a patient treated with L-DOPA due to PD, who developed melanocytic
hyperactivation simulating acral lentiginous melanoma, was described. Due to clinical
and histopathologic discordance, the whole skin change was removed [63]. Bougea et al.
reported in a meta-analysis that melanoma is the most common skin disease associated
with the use of L-DOPA. This conclusion was made on the basis of a review of clinical
cases in which of 32 described patients, 13 were diagnosed with melanoma after taking
L-DOPA [64]. However, Olsen et al. showed that L-DOPA had no effect on the risk of
malignant melanoma, as indicated by an odds ratio of 1.0 (95% confidence interval, 0.8–1.3)
per 1000 g of cumulative drug intake. The authors concluded that the increased incidence
of malignant melanoma observed in PD patients was limited to the patients with idiopathic
PD, but was not related to L-DOPA treatment [65]. Another study describing several
families with a genetic predisposition for developing melanoma due to the germline
mutation showed that they may had an increased risk of developing this cancer after
starting L-DOPA therapy. The authors suggested that there is a need to reconsider the
hypothesis of the involvement of L-DOPA in the development of melanoma, at least in
the context of the high-risk genetic basis [66]. In research published by Constantinescu
et al., the incidence of malignant melanoma was found to be higher than expected in PD
patients. However, there was no association between L-DOPA treatment and the occurrence
of melanoma [65]. In a letter to the editors of the Lancet, Zanetti and Rosso concluded
the previous reports on the relationship between L-DOPA treatment and the occurrence of
melanoma, stating that there is no direct relationship. The aetiology of both diseases (PD
and melanoma) is multifactorial, and despite the demonstrated relationship between the
occurrence of both diseases, no such relationship between PD treatment and the occurrence
of melanoma can be demonstrated [67].

Observations so far do not allow us to conclude that there is a clear connection between
L-DOPA treatment and excessive melanin synthesis or the development of melanoma.
Providing an exogenous substrate for tyrosinase is not sufficient to notice an obvious
increase in melanin synthesis, and individual reports of hyperpigmentation are insufficient
to confirm such a relationship. From a biochemical point of view, this is understandable
and observed in relation to other enzymes. For example, the in vivo supply of arginine, a
substrate for the synthesis of nitric oxide, did not increase the production of nitric oxide
and citrulline, which are the products of this reaction [68]. However, melanocytes have
the ability to capture extracellular L-DOPA and convert it into melanin [69], so a potential
risk can be assumed that large doses of this drug will increase the synthesis of melanin in
skin cells.

6. Amantadine, MAO-B and COMT Inhibitors

Amantadine is a drug commonly prescribed to mitigate the motor symptoms associ-
ated with PD, primarily through its action as a receptor antagonist of N-methyl-D-aspartate
(NMDA). These effects, particularly in relation to melanin production, are of interest as
dopamine regulates melanin, the pigment responsible for skin, hair, and eye color. Amanta-
dine affects dopamine levels in multiple ways. It enhances the release of dopamine by block-
ing the N-methyl-D-aspartate (NMDA) receptor and inhibits the reuptake of dopamine,
thereby increasing its availability in the synaptic cleft. Given these dopaminergic effects, it
is tempting to speculate that amantadine could influence melanin production [70].

When searching for publications published in the last 20 years on amantadine and
melanoma, we found seven items. None of them concern clinical trials. After rejecting
the review articles (three publications) and the article in Japanese, there were three items
left, only one of which directly concerned amantadine and melanoma. The publication
concerned in vitro studies related to the anti-cancer effect of amantadine on melanoma cells.
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The study had shown that amantadine enhances the effect of mitoxantrone and cisplatin by
inducing apoptosis in the melanoma cell line. However, there is no direct reference in the
work to the effect of amantadine on melanin synthesis in melanoma cells [71].

When searching for publications on rasagiline and melanoma in the PubMed database,
four articles appeared; two original works, one review and one letter to the editor. Only the
first two related to the relationship between rasagiline and melanoma. In a retrospective
study, Johannes et al. showed that patients treated with rasagiline had a slightly higher
number of melanomas. However, the authors believed that this was due to increased
dermatological supervision in these patients, compared to patients treated with other
preparations [72]. The second study compared the effect of rasagiline administered orally
versus transdermally in mice implanted with human melanoma cells. The aim of the
study was to determine whether the direct effect of an MAO-B inhibitor on the skin would
contribute to the development of melanoma and how both types of treatment would affect
the tumor mass. Both types of treatment reduced the tumor mass, which led the authors to
conclude that rasagiline may be a candidate for an antimelanoma drug [73].

Searching for the words “COMT” and “melanoma” in the title or abstract for the last
20 years reveals five publications. The assumed search criteria for publications indicate
that the topic of the relationship between treatment with COMT inhibitors for PD and the
risk of melanoma has not been widely discussed in the literature. One of the retrieved
publications concerned in vitro studies in which the effect of UVB on COMT activity in
melanoma cells was assessed. The study showed the presence of COMT in both melanoma
cells and keratinocytes. Under the influence of UVB, there was a significant reduction in
the activity of this enzyme in melanoma cells. Furthermore, the addition of the COMT
inhibitor, tolcapone, reduced melanin levels in melanoma cells parallel to reduced cell
numbers [74]. The observations may seem unexpected, as COMT inhibition potentially
should increase the availability of DA, which further can be used for melanin synthesis.
However, this study shows that under in vitro conditions, COMT activity is an important
factor that stimulates melanin synthesis in melanoma cells. The result of the study can
be compared with the study of the rasagiline effect on the growth of melanomas, which
also surprisingly showed that instead of the expected increase in tumor cells, the use of an
MAO-B inhibitor reduced their number [73].

7. Future and Conclusions

The unique ability of both melanocytes and dopaminergic neurons of the substantia
nigra to synthesize melanin allows us to assume that pathological processes affecting both
types of cells may have a common factor, which is melanin. However, the assumption that
an excessive amount of pigment in various types of cells leads to degeneration (PD) or
pathological proliferation (melanoma) seems too bold. Future in vitro studies that attempt
to elucidate the role of melanin in the pathogenesis of PD may involve assessing the effect
of neuromelanin on the survival of various types of cells in the nervous system. Such a
study may answer the question of whether the process of neurodegeneration under the
influence of neuromelanin is typical for cells in the substantia nigra or whether other cells
may be subject to it. On the other hand, the protective role of melanin against UV radiation
may disturb the apoptosis of cells which, having a limited ability to die, over-proliferate
and give rise to melanoma.
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